Rapid FTIR Spectral Fingerprinting of Kidney Allograft Perfusion Fluids Distinguishes DCD from DBD Donors: A Pilot Machine Learning Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
Sample Size Justification
2.2. FTIR Spectra Acquisition
2.3. Spectral Quality Control
2.4. Spectral Preprocessing, Feature Selection, and Multivariate Analysis
3. Results
3.1. Baseline Characteristics of the Donor Cohorts
3.2. FTIR Spectra Quality
3.3. Spectral Classification Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| FTIR | Fourier-transform infrared spectroscopy |
| DCD | Donation after circulatory death |
| DBD | Donation after brain death |
| SCS | Static cold storage |
| 2D-COS | Two-dimensional correlation spectroscopy |
| AUC | Area under the curve |
| IRI | Ischemia–reperfusion injury |
| VN | Vector normalization |
| BC | Rubber band baseline correction |
| FCBF | Fast correlation-based filter |
| LOOCV | Leave-one-out cross-validation |
| QC | Quality control |
| IQR | Interquartile range |
| SD | Standard deviation |
| ROC | Receiver operating characteristic |
| t-SNE | t-distributed stochastic neighbor embedding |
Appendix A

References
- Jolliffe, J.; Brookes, J.; Williams, M.; Walker, E.; Jansz, P.; Watson, A.; MacDonald, P.; Smith, J.; Bennetts, J.; Boffini, M.; et al. Donation after Circulatory Death Transplantation: A Systematic Review and Meta-Analysis of Outcomes and Methods of Donation. Ann. Cardiothorac. Surg. 2025, 14, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Burgess, M.; Silsby, L.; Madden, S.; Letra, J.D.S.; Thomson, S.; Tate, J.; Mitchinson, S.; Hurley, K.; Hurley, R.; Bon, M.; et al. Eligible DBD Donors Proceeding via the DCD Pathway: Incidence, Cause, and Outcomes in the United Kingdom. Transplant. Direct 2025, 11, e1804. [Google Scholar] [CrossRef] [PubMed]
- Ghoneima, A.S.; Sousa Da Silva, R.X.; Gosteli, M.A.; Barlow, A.D.; Kron, P. Outcomes of Kidney Perfusion Techniques in Transplantation from Deceased Donors: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 3871. [Google Scholar] [CrossRef] [PubMed]
- Kalisvaart, M.; de Haan, J.E.; Polak, W.G.; IJzermans, J.N.M.; Gommers, D.; Metselaar, H.J.; de Jonge, J. Onset of Donor Warm Ischemia Time in Donation After Circulatory Death Liver Transplantation: Hypotension or Hypoxia? Liver Transplant. 2018, 24, 1001–1010. [Google Scholar] [CrossRef]
- Arnold, M.; Do, P.; Davidson, S.M.; Large, S.R.; Helmer, A.; Beer, G.; Siepe, M.; Longnus, S.L. Metabolic Considerations in Direct Procurement and Perfusion Protocols with DCD Heart Transplantation. Int. J. Mol. Sci. 2024, 25, 4153. [Google Scholar] [CrossRef]
- Alghannam, K.; Fine, J.; Howard, B.; Loza, J.; Goussous, N.M.; Sageshima, J.; Mineyev, N.M.; Wang, A.X.; Perez, R.V.; Than, P.A. Impact of Warm Ischemia Time on Donation After Circulatory Death Kidney Transplant Outcomes. Clin. Transplant. 2024, 38, e15436. [Google Scholar] [CrossRef]
- Watts, R.P.; Thom, O.; Fraser, J.F. Inflammatory Signalling Associated with Brain Dead Organ Donation: From Brain Injury to Brain Stem Death and Posttransplant Ischaemia Reperfusion Injury. J. Transplant. 2013, 2013, 521369. [Google Scholar] [CrossRef]
- Yang, C.; Shannon, C.P.; Zhao, H.; Tebbutt, S.J. Donor-Specific Graft Injury in Solid Organ Transplantation: Potential Mechanisms and Therapeutic Strategies. Front. Transplant. 2024, 3, 1427106. [Google Scholar] [CrossRef]
- Liu, R.X.; Koyawala, N.; Thiessen-Philbrook, H.R.; Doshi, M.D.; Reese, P.P.; Hall, I.E.; Mohan, S.; Parikh, C.R. Untargeted Metabolomics of Perfusate and Their Association with Hypothermic Machine Perfusion and Allograft Failure. Kidney Int. 2023, 103, 762–771. [Google Scholar] [CrossRef]
- Avramidou, E.; Srinivasan, D.; Todorov, D.; Tsoulfas, G.; Papalois, V. Diagnostic and Prognostic Value of Machine Perfusion Biomarkers in Kidney Graft Evaluation. Transplant. Proc. 2024, 56, 1308–1318. [Google Scholar] [CrossRef]
- Van Der Hoek, J.L.; Krommendijk, M.E.; Manohar, S.; Arens, J.; Groot Jebbink, E. Ex-Vivo Human-Sized Organ Machine Perfusion: A Systematic Review on the Added Value of Medical Imaging for Organ Condition Assessment. Transpl. Int. 2024, 37, 12827. [Google Scholar] [CrossRef] [PubMed]
- Hosgood, S.A.; Callaghan, C.J.; Wilson, C.H.; Smith, L.; Mullings, J.; Mehew, J.; Oniscu, G.C.; Phillips, B.L.; Bates, L.; Nicholson, M.L. Normothermic Machine Perfusion versus Static Cold Storage in Donation after Circulatory Death Kidney Transplantation: A Randomized Controlled Trial. Nat. Med. 2023, 29, 1511–1519. [Google Scholar] [CrossRef] [PubMed]
- Delrue, C.; De Bruyne, S.; Speeckaert, M.M. The Potential Use of Near- and Mid-Infrared Spectroscopy in Kidney Diseases. Int. J. Mol. Sci. 2023, 24, 6740. [Google Scholar] [CrossRef] [PubMed]
- Barth, A. Infrared Spectroscopy of Proteins. Biochim. Biophys. Acta (BBA)—Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef]
- Baker, M.J.; Trevisan, J.; Bassan, P.; Bhargava, R.; Butler, H.J.; Dorling, K.M.; Fielden, P.R.; Fogarty, S.W.; Fullwood, N.J.; Heys, K.A.; et al. Using Fourier Transform IR Spectroscopy to Analyze Biological Materials. Nat. Protoc. 2014, 9, 1771–1791. [Google Scholar] [CrossRef]
- Al-Kelani, M.; Buthelezi, N. Advancements in Medical Research: Exploring Fourier Transform Infrared (FTIR) Spectroscopy for Tissue, Cell, and Hair Sample Analysis. Ski Res. Technol. 2024, 30, e13733. [Google Scholar] [CrossRef]
- Ramalhete, L.M.; Araújo, R.; Ferreira, A.; Calado, C.R.C. Proteomics for Biomarker Discovery for Diagnosis and Prognosis of Kidney Transplantation Rejection. Proteomes 2022, 10, 24. [Google Scholar] [CrossRef]
- Ramalhete, L.; Vieira, M.B.; Araújo, R.; Vigia, E.; Aires, I.; Ferreira, A.; Calado, C.R.C. Predicting Cellular Rejection of Renal Allograft Based on the Serum Proteomic Fingerprint. Int. J. Mol. Sci. 2024, 25, 3844. [Google Scholar] [CrossRef]
- Ramalhete, L.; Araújo, R.; Vieira, M.B.; Vigia, E.; Aires, I.; Ferreira, A.; Calado, C.R.C. Integration of FTIR Spectroscopy and Machine Learning for Kidney Allograft Rejection: A Complementary Diagnostic Tool. J. Clin. Med. 2025, 14, 846. [Google Scholar] [CrossRef]
- Araújo, R.; Ramalhete, L.; Viegas, A.; Von Rekowski, C.P.; Fonseca, T.A.H.; Calado, C.R.C.; Bento, L. Simplifying Data Analysis in Biomedical Research: An Automated, User-Friendly Tool. Methods Protoc. 2024, 7, 36. [Google Scholar] [CrossRef]
- Hamelink, T.L.; Ogurlu, B.; Jaynes, C.L.; Lantinga, V.A.; Leuvenink, H.G.D.; Keller, A.K.; Moers, C. Perfusate Biomarker Comparison during Renal Hypothermic and Normothermic Machine Perfusion: Do These Techniques Provide Similar Insights? Transplantation 2025, 109, e554–e566. [Google Scholar] [CrossRef]
- Elmer, A.; Rohrer, M.-L.; Benden, C.; Krügel, N.; Beyeler, F.; Immer, F.F. Organ Donation after Circulatory Death as Compared with Organ Donation after Brain Death in Switzerland—An Observational Study. Swiss Med. Wkly. 2022, 152, w30139. [Google Scholar] [CrossRef]
- Vidgren, M.; Delorme, C.; Oniscu, G.C. Challenges and Opportunities in Organ Donation after Circulatory Death. J. Intern. Med. 2025, 297, 124–140. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Park, Y.; Noda, I.; Jung, Y.M. Novel Developments and Progress in Two-Dimensional Correlation Spectroscopy (2D-COS). Appl. Spectrosc. 2025, 79, 13–35. [Google Scholar] [CrossRef]
- Noda, I. Recent Developments in Two-Dimensional (2D) Correlation Spectroscopy. Chin. Chem. Lett. 2015, 26, 167–172. [Google Scholar] [CrossRef]
- Cunha, B.R.; Ramalhete, L.; Fonseca, L.P.; Calado, C.R.C. Fourier-Transform Mid-Infrared (FT-MIR) Spectroscopy in Biomedicine. In Essential Techniques for Medical and Life Scientists: A Guide to Contemporary Methods and Current Applications-Part II.; Tutar, Y., Ed.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2020; ISBN 9789811464867. [Google Scholar]
- Garner, M.; Jay, C.L.; Sharda, B.; Webb, C.; Farney, A.C.; Orlando, G.; Rogers, J.; Reeves-Daniel, A.; Mena-Gutierrez, A.; Sakhovskaya, N.; et al. Long-Term Outcomes of Kidney Transplantation from Deceased Donors with Terminal Acute Kidney Injury: Single Center Experience and Literature Review. Clin. Transplant. 2023, 37, e14886. [Google Scholar] [CrossRef] [PubMed]
- Nita, G.E.; Gopal, J.P.; Khambalia, H.A.; Moinuddin, Z.; van Dellen, D. Kidney Transplantation From Donors With Acute Kidney Injury: Are the Concerns Justified? A Systematic Review and Meta-Analysis. Transpl. Int. 2023, 36, 11232. [Google Scholar] [CrossRef] [PubMed]
- Araújo, R.; Bento, L.F.N.; Fonseca, T.A.H.; Von Rekowski, C.P.; da Cunha, B.R.; Calado, C.R.C. Infection Biomarkers Based on Metabolomics. Metabolites 2022, 12, 92. [Google Scholar] [CrossRef] [PubMed]
- Guzzi, F.; Knight, S.R.; Ploeg, R.J.; Hunter, J.P. A Systematic Review to Identify Whether Perfusate Biomarkers Produced during Hypothermic Machine Perfusion Can Predict Graft Outcomes in Kidney Transplantation. Transpl. Int. Off. J. Eur. Soc. Organ Transplant. 2020, 33, 590–602. [Google Scholar] [CrossRef]
- Faucher, Q.; Alarcan, H.; Sauvage, F.L.; Forestier, L.; Miquelestorena-Standley, E.; Nadal-Desbarats, L.; Arnion, H.; Venhard, J.C.; Brichart, N.; Bruyère, F.; et al. Perfusate Metabolomics Content and Expression of Tubular Transporters during Human Kidney Graft Preservation by Hypothermic Machine Perfusion. Transplantation 2022, 106, 1831–1843. [Google Scholar] [CrossRef]
- Trotter, P.B.; Jochmans, I.; Hulme, W.; Robb, M.; Watson, C.; Neuberger, J.; Bradley, J.A. Transplantation of Kidneys from DCD and DBD Donors Who Died after Ligature Asphyxiation: The UK Experience. Am. J. Transplant. 2018, 18, 2739–2751. [Google Scholar] [CrossRef]






| Feature | DBD (n = 5) | DCD (n = 5) | p-Value |
|---|---|---|---|
| Age | 54.0 [54.0–64.0] | 53.0 [50.0–54.0] | 0.397615 1 |
| Sex (% female) | 80% | 80% | 1 2 |
| Weight | 70.0 [65.0–70.0] | 74.0 [74.0–80.0] | 0.137564 1 |
| Height | 165.0 [160.0–165.0] | 172.0 [165.0–175.0] | 0.167938 1 |
| Body mass index | 25.7 [25.4–25.7] | 25.0 [24.2–29.4] | 0.834035 1 |
| Hypertension (% yes) | 60% | 80% | 1 3 |
| Diabetes | 80% | 80% | 1 3 |
| Serum creatinine | 0.6 [0.6–0.7] | 1.1 [1.0–1.1] | 0.045866 1 |
| Urea | 21.0 [14.0–27.0] | 35.0 [22.0–36.0] | 0.150794 1 |
| Estimated glomerular filtration rate | 93.0 [90.0–103.0] | 77.0 [60.0–79.0] | 0.059327 1 |
| Cardiorespiratory arrest (%yes) | 40% | 100% | 0.166667 3 |
| DonorID | Group | SNR_AmideI | Spike_Count | Cosine_fp |
|---|---|---|---|---|
| PT2023/000784 | DCD | 204.725 | 57 | 0.859 |
| PT2023/000981 | DCD | 67.697 | 12 | 0.998 |
| PT2024/000420 | DCD | 58.219 | 6 | 1 |
| PT2024/000677 | DCD | 77.158 | 4 | 0.994 |
| PT2023/000090 | DCD | 80.408 | 53 | 0.987 |
| PT2023/000114 | DBD | 81.152 | 34 | 0.992 |
| PT2023/000182 | DBD | 4.364 | 12 | 0.942 |
| PT2024/000212 | DBD | 20.737 | 36 | 0.953 |
| PT2024/000660 | DBD | 67.108 | 6 | 0.998 |
| PT2023/000284 | DBD | 85.07 | 8 | 0.998 |
| Variable | DCD_Median [IQR] | DBD_Median [IQR] | DCD_Mean ± SD | DBD_Mean ± SD | U | p-Value | Rank-Biserial_r |
|---|---|---|---|---|---|---|---|
| SNR_AmideI | 77.16 [67.70, 80.41] | 67.11 [20.74, 81.15] | 97.64 ± 60.49 | 51.69 ± 36.80 | 16 | 0.5476 | −0.28 |
| Spike_count | 12.00 [6.00, 53.00] | 12.00 [8.00, 34.00] | 26.40 ± 26.31 | 19.20 ± 14.60 | 13 | 1 | −0.04 |
| Cosine_fp | 0.99 [0.99, 1.00] | 0.99 [0.95, 1.00] | 0.97 ± 0.06 | 0.98 ± 0.03 | 15 | 0.6905 | −0.2 |
| Model | Region | Preprocessing | AUC | Accuracy (95% CI) | Sensitivity | Specificity |
|---|---|---|---|---|---|---|
| SVM | Amide I 1600–1700 cm−1 | Rubber band BC | 0.28 | 0.50 (0.19–0.81) | 0.50 | 0.50 |
| VN | 0.20 | 0.50 (0.19–0.81) | 0.50 | 0.50 | ||
| 1st derivative | 0.32 | 0.30 (0.07–0.65) | 0.30 | 0.30 | ||
| 1st derivative + VN | 0.24 | 0.70 (0.35–0.93) | 0.41 | 0.70 | ||
| 2nd derivative | 0.60 | 0.80 (0.44–0.97) | 0.60 | 0.80 | ||
| 2nd derivative + FCBF (~1673 cm−1) | 0.88 | 0.90 (0.55–1.00) | 0.70 | 0.70 | ||
| Naïve Bayes | Rubber band BC | 0.70 | 0.50 (0.19–0.81) | 0.50 | 0.50 | |
| VN | 0.56 | 0.70 (0.35–0.93) | 0.70 | 0.70 | ||
| 1st derivative | 0.48 | 0.50 (0.19–0.81) | 0.50 | 0.50 | ||
| 1st derivative + VN | 0.62 | 0.70 (0.35–0.93) | 0.70 | 0.70 | ||
| 2nd derivative | 0.80 | 0.80 (0.44–0.97) | 0.60 | 0.90 | ||
| 2nd derivative + FCBF (~1673 cm−1) | 0.92 | 0.70 (0.35–0.93) | 0.70 | 0.70 | ||
| SVM | Fingerprint 900–1800 cm−1 | Rubber band BC | 0.36 | 0.00 (0.00–0.31) | 0.00 | 0.00 |
| VN | 0.20 | 0.30 (0.07–0.65) | 0.30 | 0.30 | ||
| 1st derivative | 0.00 | 0.70 (0.35–0.93) | 0.70 | 0.70 | ||
| 1st derivative + VN | 0.08 | 0.40 (0.12–0.74) | 0.40 | 0.40 | ||
| 2nd derivative | 0.64 | 0.70 (0.35–0.93) | 0.70 | 0.70 | ||
| 2nd derivative + FCBF (~1202, ~1203, ~1342, ~1413 cm−1) | 0.84 | 0.90 (0.55–1.00) | 0.90 | 0.90 | ||
| Naïve Bayes | Rubber band BC | 0.56 | 0.50 (0.19–0.81) | 0.50 | 0.50 | |
| VN | 0.76 | 0.80 (0.44–0.97) | 0.80 | 0.80 | ||
| 1st derivative | 0.74 | 0.70 (0.35–0.93) | 0.70 | 0.70 | ||
| 1st derivative + VN | 0.86 | 0.80 (0.44–0.97) | 0.80 | 0.80 | ||
| 2nd derivative | 0.88 | 0.80 (0.44–0.97) | 0.80 | 0.80 | ||
| 2nd derivative + FCBF (~1202, ~1203, ~1342, ~1413 cm−1) | 1.00 | 1.00 (0.69–1.00) | 1.00 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramalhete, L.; Araújo, R.; Vieira, M.B.; Vigia, E.; Pena, A.; Carrelha, S.; Ferreira, A.; Calado, C.R.C. Rapid FTIR Spectral Fingerprinting of Kidney Allograft Perfusion Fluids Distinguishes DCD from DBD Donors: A Pilot Machine Learning Study. Metabolites 2025, 15, 702. https://doi.org/10.3390/metabo15110702
Ramalhete L, Araújo R, Vieira MB, Vigia E, Pena A, Carrelha S, Ferreira A, Calado CRC. Rapid FTIR Spectral Fingerprinting of Kidney Allograft Perfusion Fluids Distinguishes DCD from DBD Donors: A Pilot Machine Learning Study. Metabolites. 2025; 15(11):702. https://doi.org/10.3390/metabo15110702
Chicago/Turabian StyleRamalhete, Luis, Rúben Araújo, Miguel Bigotte Vieira, Emanuel Vigia, Ana Pena, Sofia Carrelha, Anibal Ferreira, and Cecília R. C. Calado. 2025. "Rapid FTIR Spectral Fingerprinting of Kidney Allograft Perfusion Fluids Distinguishes DCD from DBD Donors: A Pilot Machine Learning Study" Metabolites 15, no. 11: 702. https://doi.org/10.3390/metabo15110702
APA StyleRamalhete, L., Araújo, R., Vieira, M. B., Vigia, E., Pena, A., Carrelha, S., Ferreira, A., & Calado, C. R. C. (2025). Rapid FTIR Spectral Fingerprinting of Kidney Allograft Perfusion Fluids Distinguishes DCD from DBD Donors: A Pilot Machine Learning Study. Metabolites, 15(11), 702. https://doi.org/10.3390/metabo15110702

