Serum Metabolomics of Senior Dogs Fed a Fresh, Human-Grade Food or an Extruded Kibble Diet
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Canine Population Health Overview
3.2. Metabolomic Serum Profile Results
3.3. Principal Component Analysis
3.4. Overview of Impacted Metabolic Pathways
4. Discussion
4.1. Branched-Chain Amino Acid (BCAA) Metabolism
4.2. Fatty Acid β-Oxidation and Fatty Acid Synthesis
4.3. Long-Chain Fatty Acid Metabolism
4.4. Sugars and Advanced Glycation End Products (AGEs)
4.5. Histidine, Carnosine, Anserine, and Ergothioneine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ME | Metabolizable energy |
CBC | Complete blood count |
PCA | Principal component analysis |
BCAA | Branched-chain amino acid |
BCAT | Branched-chain aminotransferase |
BCKD | Branched-chain α-keto acid dehydrogenase |
TCA | Tricarboxylic acid |
TAG | Triacylglycerol |
DAG | Diacylglycerol |
MAG | Monoacylglycerol |
SCFA | Short-chain fatty acid |
BHBA | 3-hydroxybutyrate |
PUFA | Polyunsaturated fatty acid |
EPA | Eicosapentaenoic acid |
DHA | Docosahexaenoic acid |
ALA | Alpha-linolenic acid |
AGE | Advanced glycation end product |
1-5-AG | 1,5-anhydroglucitol |
MR | Maillard reaction |
CML | Nɛ-(carboxymethyl)-lysine |
References
- Lane, M.M.; Gamage, E.; Du, S.; Ashtree, D.N.; McGuinness, A.J.; Gauci, S.; Baker, P.; Lawrence, M.; Rebholz, C.M.; Srour, B.; et al. Ultra-processed food exposure and adverse health outcomes: Umbrella review of epidemiological meta-analyses. BMJ 2024, 384, e077310. [Google Scholar] [CrossRef]
- Dodd, S.; Cave, N.; Abood, S.; Shoveller, A.-K.; Adolphe, J.; Verbrugghe, A. An observational study of pet feeding practices and how these have changed between 2008 and 2018. Vet. Rec. 2020, 186, 643. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Association of American Feed Control Officials. Official Publication; AAFCO: Champaign, IL, USA, 2025. [Google Scholar]
- Goldston, R.T. Preface to geriatrics and gerontology. Vet. Clin. N. Am. Small Anim. Pract. 1989, 19, ix–x. [Google Scholar]
- Harper, E.J. Changing perspectives on aging and energy requirements: Aging and energy intakes in humans, dogs, and cats. J. Nutr. 1998, 128, S2623–S2626. [Google Scholar] [CrossRef] [PubMed]
- Wannemacher, R.W.; McCoy, J.R. Determination of optimal dietary protein requirements in young and old dogs. J. Nutr. 1966, 88, 66–74. [Google Scholar] [CrossRef]
- Scauf, S.; Stockman, J.; Haydock, R.; Eyre, R.; Fortener, L.; Park, J.S.; Bakke, A.M.; Watson, P. Healthy aging is associated with preserved or enhanced nutrient and mineral apparent digestibility in dogs and cats fed commercial relevant extruded diets. Animals 2021, 11, 2127. [Google Scholar] [CrossRef]
- Wu, T.; Chen, Y.; Yang, M.; Wang, S.; Wang, X.; Hu, M.; Cheng, X.; Wan, J.; Hu, Y.; Ding, Y.; et al. Comparative plasma and urine metabolomics analysis of juvenile and adult canines. Front. Vet. Sci. 2023, 9, 1037327. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.I. Macronutrient proportions and fat type impact ketogenicity and shape the circulating lipidome in dogs. Metabolites 2022, 12, 591. [Google Scholar] [CrossRef]
- Harrison, B.R.; Partida-Aguilar, M.; Marye, A.; Djukovic, D.; Kauffman, M.; Dunbar, M.D.; Mariner, B.L.; McCoy, B.M.; Algavi, Y.M.; Muller, E.; et al. Protein catabolites as blood-based biomarkers of aging physiology: Findings from the dog aging project. bioRxiv 2024. [Google Scholar] [CrossRef]
- Puurunen, J.; Ottka, C.; Salonen, M.; Niskanen, J.E.; Lohi, H. Age, breed, sex and diet influence serum metabolite profiles of 2000 pet dogs. R. Soc. Open Sci. 2022, 9, 211642. [Google Scholar] [CrossRef]
- Richards, S.E.; Wang, Y.; Claus, S.P.; Lawler, D.; Kochhar, S.; Holmes, E.; Nicholson, J.K. Metabolic phenotype modulation by caloric restriction in a lifelong dog study. J. Proteome Res. 2013, 12, 3117–3127. [Google Scholar] [CrossRef]
- Frantz, N.Z.; Yamka, R.M.; Brockman, J. Metabolomic profiling of plasma in arthritic vs. non-arthritic dogs. J. Vet. Intern. Med. 2009, 23, 765. [Google Scholar]
- Montague, B.; Summers, A.; Bhawal, R.; Anderson, E.T.; Kraus-Malett, S.; Zhang, S.; Goggs, R. Identifying potential biomarkers and therapeutic targets for dogs with sepsis using metabolomics and lipidomics analyses. PLoS ONE 2022, 17, e0271137. [Google Scholar] [CrossRef] [PubMed]
- Melgarejo, T.; Harrison, S.; Chang, Y.; Munoz, M.; Kim, K.; Choi, Y.; Riveroll-Gonzalez, J.; Natterson-Horowitz, B.; Linde, A. Untargeted plasma metabolomics in canine cognitive dysfunction: The naturally occurring Alzheimer’s disease analog in dogs. bioRxiv 2025. [Google Scholar] [CrossRef]
- Pan, Y.; Sindelar, M.; Stancliffe, E.; Shriver, L.P.; Middleton, R.P.; Patti, G.J. Effects of dietary medium-chain triglyceride supplementation on the serum metabolome of young adult and senior canines. Animals 2024, 14, 3577. [Google Scholar] [CrossRef]
- O’Connor, L.E.; Hall, K.D.; Herrick, K.A.; Reedy, J.; Chung, S.T.; Stagliano, M.; Courville, A.B.; Sinha, R.; Freedman, N.D.; Hong, H.G.; et al. Metabolomic profiling of an ultraprocessed dietary pattern in a domiciled randomized controlled crossover feeding trial. J. Nutr. 2023, 153, 2181–2192. [Google Scholar] [CrossRef]
- Gamble, L.J.; Frye, C.W.; Hansen, C.M.; Locasale, J.W.; Liu, X.; Davis, M.S.; Wakshlag, J.J. Serum metabolomics of Alaskan Sled dogs during racing. Comp. Exerc. Phys. 2018, 14, 149–159. [Google Scholar] [CrossRef]
- Harris, R.C.; Lowe, J.A.; Warnes, K.; Orme, C.E. The concentration of creatine in meat, offal and commercial dog food. Res. Vet. Sci. 1997, 62, 58–62. [Google Scholar] [CrossRef]
- Bedford, A.; Joshua Gong, J. Implications of butyrate and its derivatives for gut health and animal production. Anim. Nutr. 2018, 4, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.T.; Cresci, G.A.M. The immunomodulatory functions of butyrate. J. Inflamm. Res. 2021, 14, 6025–6041. [Google Scholar] [CrossRef] [PubMed]
- Tavener, S.K.; Jackson, M.I.; Panickar, K.S. Immune-modulating effects of low-carbohydrate ketogenic foods in healthy canines. Curr. Dev. Nutr. 2024, 8, 102128. [Google Scholar] [CrossRef]
- Bibus, D.M.; Stitt, P.A. Metabolism of alpha-linolenic acid from flaxseed in dogs. World Rev. Nutr. Diet. 1998, 83, 186–189. [Google Scholar]
- Dunbar, B.L.; Bigley, K.E.; Bauer, J.E. Early and sustained enrichment of serum n-3 long chain polyunsaturated fatty acids in dogs fed a flaxseed supplemented diet. Lipids 2010, 45, 1–10. [Google Scholar] [CrossRef]
- Purushothaman, D.; Brow, W.Y.; Vanselow, B.A.; Quinn, K.; Wu, S.B. Flaxseed oil supplementation alters the expression of inflammatory-related genes in dogs. Genet. Mol. Res. 2014, 13, 5322–5332. [Google Scholar] [CrossRef]
- Yamka, R.M.; Friesen, K.G.; Lowry, S.R.; Coffman, L. Measurement of arthritic and bone serum metabolites in arthritic, non-arthritic, and geriatric dogs fed wellness foods. Int. J. Appl. Res. Vet. Med. 2006, 4, 255–264. [Google Scholar]
- Zicker, S.C.; Jewell, D.E.; Yamka, R.M.; Milgram, N.W. Evaluation of cognitive learning, memory, psychomotor, immunologic, and retinal functions in healthy puppies fed foods fortified with docosahexaenoic acid-rich fish oil from 8 to 52 weeks of age. J. Am. Vet. Med. Assoc. 2012, 241, 583–594. [Google Scholar] [CrossRef]
- Mehlera, S.J.; Maya, L.R.; King, C.; Harris, W.S.; Shah, Z. A prospective, randomized, double blind, placebo-controlled evaluation of the effects of eicosapentaenoic acid and docosahexaenoic acid on the clinical signs and erythrocyte membrane polyunsaturated fatty acid concentrations in dogs with osteoarthritis. Prostaglandins Leukot. Essent. Fat. Acids 2016, 109, 1–7. [Google Scholar] [CrossRef]
- Carlisle, C.; Metzger, B.T.; Tintle, N.L.; Polley, K.; Jackson, K.H.; Le Brun-Blashka, S.; Griffiths, J.; Harris, W.S. The effects of omega-3 supplementation on the omega-3 index and quality of life and pain scores in dogs. Animals 2024, 14, 3108. [Google Scholar] [CrossRef]
- van Rooijen, C.; Bosch, G.; van der Poel, A.F.B.; Wierenga, P.A.; Alexander, L.; Hendriks, W.H. Quantitation of Maillard reaction products in commercially available pet foods. J. Agric. Food Chem. 2014, 62, 8883–8891. [Google Scholar] [CrossRef]
- Oba, P.M.; Hwisa, N.; Huang, X.; Cadwallader, K.R.; Swanson, K.S. Nutrient and Maillard reaction product concentrations of commercially available pet foods and treats. J. Anim. Sci. 2022, 100, skac305. [Google Scholar] [CrossRef]
- Gentzel, J.B. Does contemporary canine diet cause cancer? A review. Vet. World 2013, 6, 632–639. [Google Scholar] [CrossRef]
- Teodorowicz, M.; Hendriks, W.H.; Wichers, H.J.; Savelkoul, H.F.J. Immunomodulation by processed animal feed: The role of Maillard reaction products and advanced glycation end-products (AGEs). Front. Immunol. 2018, 9, 2088. [Google Scholar] [CrossRef]
- Anonymous. Chapter 6. Protein and Amino Acids. In Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006; p. 122. [Google Scholar]
- Quinn, P.J.; Boldyrev, A.A.; Formazuyk, V.E. Carnosine: Its properties, functions and potential therapeutic applications. Mol. Asp. Med. 1992, 13, 379–444. [Google Scholar] [CrossRef] [PubMed]
- Manhiani, P.S.; Northcutt, J.K.; Han, I.; Bridges, W.C.; Dawson, P.L. Antioxidant activity of carnosine extracted from various poultry tissues. Poult. Sci. 2013, 92, 444–453. [Google Scholar] [CrossRef]
- Yang, K.T.; Lin, C.; Liu, C.W.; Chen, Y.C. Effects of chicken-liver hydrolysates on lipid metabolism in a high-fat diet. Food Chem. 2014, 160, 148–156. [Google Scholar] [CrossRef]
- Kopec, W.; Jamroz, D.; Wiliczkiewicz, A.; Biazik, E.; Pudlo, A.; Korzeniowska, M.; Hikawczuk, T.; Skiba, T. Antioxidative characteristics of chicken breast meat and blood after diet supplementation with carnosine, L-histidine, and β-alanine. Antioxidants 2020, 9, 1093. [Google Scholar] [CrossRef]
- Charoensin, S.; Laopaiboon, B.; Boonkum, W.; Phetcharaburanin, J.; Villareal, M.O.; Isoda, H.; Duangjinda, M. Thai native chicken as a potential functional meat source rich in anserine, anserine/carnosine, and antioxidant substances. Animals 2021, 11, 902. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Roles of nutrients in the brain development, cognitive function, and mood of dogs and cats. In Nutrition and Metabolism of Dogs and Cats; Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2024; Volume 1446, pp. 177–202. [Google Scholar]
- Boldyrev, A.A.; Severin, S.E. The histidine-containing dipeptides, carnosine and anserine: Distribution, properties and biological significance. Adv. Enzym. Regul. 1990, 30, 175–194. [Google Scholar] [CrossRef] [PubMed]
- Borodina, I.; Kenny, L.C.; McCarthy, C.M.; Paramasivan, K.; Pretorius, E.; Roberts, T.J.; van der Hoek, S.A.; Kell, D.B. The biology of ergothioneine, an antioxidant nutraceutical. Nutr. Res. Rev. 2020, 33, 190–217. [Google Scholar] [CrossRef]
- Cheah, I.K.; Halliwell, B. Ergothioneine, recent developments. Redox Biol. 2021, 42, 101868. [Google Scholar] [CrossRef]
- Beelman, R.B.; Phillips, A.T.; Richie Jr, J.P.; Ba, D.M.; Duiker, S.W.; Kalaras, M.D. Health consequences of improving the content of ergothioneine in the food supply. FEBS Lett. 2022, 596, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
Control 1 | Treatment 2 | ||
---|---|---|---|
Nutrient Composition, per 1000 kcal | |||
Crude Protein | g | 82.4 | 120.3 |
Alanine | g | 6.17 | 6.63 |
Arginine | g | 4.26 | 6.55 |
Aspartic acid | g | 6.47 | 9.8 |
Cystine | g | 1.22 | 0.72 |
Glutamic acid | g | 12.98 | 16.25 |
Glycine | g | 5.96 | 6.82 |
Histidine | g | 1.82 | 3.27 |
Isoleucine | g | 3.28 | 4.03 |
Leucine | g | 7.99 | 7.57 |
Lysine | g | 5.96 | 9.24 |
Methionine | g | 1.98 | 1.75 |
Phenylalanine | g | 3.80 | 3.96 |
Proline | g | 6.05 | 4.68 |
Serine | g | 3.62 | 4.59 |
Threonine | g | 2.98 | 4.52 |
Tryptophan | g | 0.64 | 1.59 |
Tyrosine | g | 2.80 | 2.87 |
Valine | g | 3.77 | 4.51 |
Taurine | g | 0.15 | 0.31 |
Crude Fat | g | 53.2 | 66.4 |
Linoleic Acid 18:2 | g | 12.4 | 11.9 |
Alpha-Linolenic Acid 18:3 | g | 0.6 | 5.9 |
Eicosapentaenoic Acid + Docosahexaenoic Acid | g | 0.0 | 0.6 |
Minerals | |||
Calcium | g | 4.56 | 4.30 |
Chloride | g | 3.47 | 2.39 |
Copper | mg | 39.51 | 4.22 |
Iodine | mg | 5.17 | 0.82 |
Iron | mg | 1155 | 46 |
Magnesium | g | 0.33 | 0.40 |
Manganese | mg | 176.3 | 5.1 |
Phosphorus | g | 2.61 | 3.35 |
Potassium | g | 1.70 | 3.51 |
Selenium | mg | 1.37 | 0.21 |
Sodium | g | 1.55 | 0.96 |
Zinc | mg | 578 | 44 |
Vitamins | |||
Vitamin A | IU | 79,027 | 15,694 |
Vitamin D | IU | 12158 | 210 |
Vitamin E (Alpha Tocopherol) | IU | 623 | 49 |
Thiamine (B1) | mg | 42.6 | 6.2 |
Riboflavin (B2) | mg | 45.6 | 9.2 |
Niacin (B3) | mg | 334.3 | 55.8 |
Pantothenic Acid (B5) | mg | 76.0 | 24.5 |
Pyridoxine (B6) | mg | 51.67 | 2.64 |
Folic Acid (B9) | mg | 10.03 | 0.51 |
Vitamin B12 | mg | 0.27 | 0.18 |
Choline | mg | 5319 | 1028 |
Crude Fiber | g | 8.2 | 9.8 |
NFE 3 | g | 88 | 4.1 |
Energy Content | |||
Metabolizable Energy, kcal/kg | 3290 | 1300 | |
% protein, ME 4 | 27.3 | 35.0 | |
% fat, ME | 36.2 | 62.0 | |
% carbohydrate, ME | 36.5 | 3.0 |
Biochemical Name | Treatment Control | ||||
---|---|---|---|---|---|
Month 0 | Month 1 | Month 3 | Month 6 | Month 12 | |
creatine | 1.38 | 4.70 | 6.27 | 5.46 | 5.74 |
creatinine | 0.86 | 0.79 | 0.89 | 0.87 | 0.87 |
taurine | 1.07 | 0.99 | 1.32 | 1.10 | 1.25 |
urea | 0.92 | 1.30 | 1.24 | 1.23 | 1.40 |
leucine | 1.01 | 1.13 | 1.19 | 1.14 | 1.25 |
4-methyl-2-oxopentanoate | 0.83 | 1.55 | 1.60 | 1.58 | 1.33 |
isoleucine | 1.08 | 1.69 | 1.81 | 1.71 | 1.71 |
3-methyl-2-oxovalerate | 0.88 | 3.42 | 2.97 | 3.38 | 2.54 |
2-hydroxy-3-methylvalerate | 1.23 | 0.94 | 1.52 | 1.02 | 2.45 |
valine | 1.00 | 1.85 | 1.81 | 1.69 | 1.83 |
3-methyl-2-oxobutyrate | 0.83 | 2.76 | 1.88 | 2.81 | 1.94 |
alpha-hydroxyisovalerate | 0.80 | 1.96 | 1.74 | 1.53 | 2.15 |
Sub Pathway | Biochemical Name | Treatment Control | ||||
---|---|---|---|---|---|---|
Month 0 | Month 1 | Month 3 | Month 6 | Month 12 | ||
Ketone Bodies | 3-hydroxybutyrate (BHBA) | 1.23 | 2.72 | 2.22 | 2.89 | 2.46 |
Glycerolipid Metabolism | glycerol | 0.74 | 1.31 | 1.21 | 1.24 | 1.27 |
glycerol 3-phosphate | 1.03 | 1.16 | 1.24 | 1.42 | 1.38 | |
Fatty Acid Synthesis | malonate | 0.87 | 0.71 | 0.70 | 0.74 | 0.63 |
Saturated Fatty Acid | butyrate/isobutyrate (4:0) | 1.07 | 1.69 | 2.08 | 1.74 | 1.60 |
myristate (14:0) | 0.93 | 1.19 | 1.48 | 2.78 | 1.38 | |
palmitate (16:0) | 1.15 | 1.01 | 1.47 | 2.09 | 1.15 | |
stearate (18:0) | 1.36 | 0.91 | 1.15 | 2.00 | 1.06 | |
arachidate (20:0) | 1.59 | 0.95 | 1.18 | 2.21 | 1.24 | |
Acylcarnitines | acetylcarnitine (C2) | 0.87 | 1.17 | 1.06 | 1.32 | 1.26 |
hexanoylcarnitine (C6) | 0.79 | 1.51 | 1.53 | 1.66 | 1.29 | |
palmitoylcarnitine (C16) | 1.06 | 1.43 | 1.28 | 1.69 | 1.35 | |
stearoylcarnitine (C18) | 1.25 | 1.54 | 1.25 | 1.63 | 1.40 | |
arachidoylcarnitine (C20) | 1.39 | 1.57 | 1.41 | 1.75 | 1.27 | |
lignoceroylcarnitine (C24) | 1.26 | 1.60 | 1.72 | 1.98 | 1.42 | |
cerotoylcarnitine (C26) | 1.20 | 1.38 | 1.69 | 1.65 | 1.42 |
Biochemical Name | Treatment Control | ||||
---|---|---|---|---|---|
Month 0 | Month 1 | Month 3 | Month 6 | Month 12 | |
linoleate (18:2n6) | 1.10 | 1.14 | 1.23 | 1.84 | 0.89 |
linolenate alpha or gamma (18:3n3 or 6) | 1.12 | 5.87 | 5.58 | 21.26 | 9.11 |
arachidonate (20:4n6) | 1.43 | 0.68 | 1.23 | 2.11 | 0.95 |
hexadecatrienoate (16:3n3) | 0.55 | 5.93 | 4.99 | 9.91 | 6.29 |
stearidonate (18:4n3) | 0.62 | 4.17 | 5.32 | 13.40 | 6.92 |
eicosapentaenoate (EPA; 20:5n3) | 1.61 | 1.94 | 3.30 | 13.10 | 5.15 |
heneicosapentaenoate (21:5n3) | 1.23 | 2.50 | 1.57 | 8.45 | 5.58 |
docosapentaenoate (n3 DPA; 22:5n3) | 2.09 | 1.17 | 1.76 | 4.60 | 1.83 |
docosahexaenoate (DHA; 22:6n3) | 1.69 | 1.44 | 2.41 | 7.83 | 3.70 |
Sub Pathway | Biochemical Name | Treatment Control | ||||
---|---|---|---|---|---|---|
Month 0 | Month 1 | Month 3 | Month 6 | Month 12 | ||
Sugars | 1,5-anhydroglucitol (1,5-AG) | 0.67 | 0.37 | 0.34 | 0.28 | 0.27 |
glucose | 1.01 | 0.93 | 1.02 | 1.03 | 0.93 | |
sucrose | 0.46 | 0.29 | 0.12 | 0.33 | 0.37 | |
mannose | 1.13 | 2.14 | 2.83 | 2.73 | 1.87 | |
Advanced Glycation End Products | N6-carboxymethyllysine | 0.93 | 0.32 | 0.37 | 0.39 | 0.54 |
pyrraline | 0.95 | 0.06 | 0.09 | 0.05 | 0.06 |
Biochemical Name | Treatment Control | ||||
---|---|---|---|---|---|
Month 0 | Month 1 | Month 3 | Month 6 | Month 12 | |
beta-alanine | 1.07 | 1.12 | 1.25 | 1.18 | 1.23 |
histidine | 0.99 | 1.04 | 1.17 | 1.02 | 1.13 |
carnosine | 0.92 | 1.71 | 1.90 | 1.91 | 1.86 |
anserine | 0.62 | 1.27 | 1.55 | 1.65 | 1.75 |
ergothioneine | 0.90 | 2.25 | 0.94 | 2.19 | 1.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamka, R.; Sires, R.; Wakshlag, J.; Huson, H.J. Serum Metabolomics of Senior Dogs Fed a Fresh, Human-Grade Food or an Extruded Kibble Diet. Metabolites 2025, 15, 676. https://doi.org/10.3390/metabo15100676
Yamka R, Sires R, Wakshlag J, Huson HJ. Serum Metabolomics of Senior Dogs Fed a Fresh, Human-Grade Food or an Extruded Kibble Diet. Metabolites. 2025; 15(10):676. https://doi.org/10.3390/metabo15100676
Chicago/Turabian StyleYamka, Ryan, Rae Sires, Joe Wakshlag, and Heather J. Huson. 2025. "Serum Metabolomics of Senior Dogs Fed a Fresh, Human-Grade Food or an Extruded Kibble Diet" Metabolites 15, no. 10: 676. https://doi.org/10.3390/metabo15100676
APA StyleYamka, R., Sires, R., Wakshlag, J., & Huson, H. J. (2025). Serum Metabolomics of Senior Dogs Fed a Fresh, Human-Grade Food or an Extruded Kibble Diet. Metabolites, 15(10), 676. https://doi.org/10.3390/metabo15100676