Association of Intracellular Microstructural and Neuropsychological Changes in HIV: A Pilot Validation of Trace Diffusion-Weighted Magnetic Resonance Spectroscopic Imaging Using Radial Trajectories
Abstract
1. Introduction
2. Materials and Methods
2.1. Trace-Weighted Single-Shot Diffusion Spectroscopic Imaging
2.2. Subjects
2.3. Data Acquisition
2.4. Data Reconstruction and Post Processing
2.5. Neuropsychological Testing
2.6. Statistical Analysis
3. Results
3.1. ADCs at Selected Voxels in GM and WM Regions
3.1.1. Metabolite ADC Comparison of PLWH vs. HC Groups
3.1.2. Estimates of ADC in Pure WM and GM
3.1.3. Correlation with Neuropsychological Scores and Emotional Functions
3.2. Metabolite Ratios at Selected Voxels in GM and WM Regions
3.2.1. Metabolite Ratio Comparison of PLWH vs. HC
3.2.2. Correlation with Neuropsychological and Emotional Function
3.2.3. Linear Discriminant Analysis
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adhikary, K.; Banerjee, A.; Sarkar, R.; Banerjee, R.; Chowdhury, S.R.; Ganguly, K.; Karak, P. HIV-associated neurocognitive disorders (HAND): Optimal diagnosis, antiviral therapy, pharmacological treatment, management, and future scopes. J. Neurol. Sci. 2025. [CrossRef]
- Cysique, L.A.; Maruff, P.; Brew, B.J. Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre-and post-highly active antiretroviral therapy eras: A combined study of two cohorts. J. Neurovirol. 2004, 10, 350–357. [Google Scholar] [CrossRef] [PubMed]
- For the German Association of Neuro-AIDS und Neuro-Infectiology (DGNANI); Eggers, C.; Arendt, G.; Hahn, K.; Husstedt, I.W.; Maschke, M.; Neuen-Jacob, E.; Obermann, M.; Rosenkranz, T.; Schielke, E.; et al. HIV-1-associated neurocognitive disorder: Epidemiology, pathogenesis, diagnosis, and treatment. J. Neurol. 2017, 264, 1715–1727. [Google Scholar] [CrossRef] [PubMed]
- Mateen, F.J.; Mills, E.J. Aging and HIV-related cognitive loss. JAMA 2012, 308, 349–350. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, S.; Dreyer, A.J.; Saylor, D.; Gisslén, M.; Winston, A.; Joska, J.A. Moving on from HAND: Why we need new criteria for cognitive impairment in persons living with human immunodeficiency virus and a proposed way forward. Clin. Infect. Dis. 2021, 73, 1113–1118. [Google Scholar] [CrossRef]
- Zenebe, Y.; Necho, M.; Yimam, W.; Akele, B. Worldwide occurrence of HIV-associated neurocognitive disorders and its associated factors: A systematic review and meta-analysis. Front. Psychiatry 2022, 13, 814362. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, W.; Li, H.; Shi, Y.; Zhao, L.; Lu, Y.; Wei, X.; Li, H. Decoding HIV-associated neurocognitive disorders: A new perspective from multimodal connectomics. Front. Neurol. 2025, 16, 1467175. [Google Scholar] [CrossRef]
- Mastrorosa, I.; Pinnetti, C.; Brita, A.C.; Mondi, A.; Lorenzini, P.; Del Duca, G.; Vergori, A.; Mazzotta, V.; Gagliardini, R.; Camici, M.; et al. Declining prevalence of human immunodeficiency virus (HIV)–associated neurocognitive disorders in recent years and associated factors in a large cohort of antiretroviral therapy–treated individuals with HIV. Clin. Infect. Dis. 2023, 76, e629–e637. [Google Scholar] [CrossRef]
- Kelebie, M.A.; Tinsae, T.; Alemayehu, B.F.; Walelign, G.K.; Takelle, G.M. Prevalence and associated factors of neurocognitive disorder among people living with HIV/AIDS in the South Gondar zone primary hospitals, North-West Ethiopia: An institution-based cross-sectional study. BMJ Open 2024, 14, e082773. [Google Scholar] [CrossRef]
- Saylor, D.; Dickens, A.M.; Sacktor, N.; Haughey, N.; Slusher, B.; Pletnikov, M.; Mankowski, J.L.; Brown, A.; Volsky, D.J.; McArthur, J.C. HIV-associated neurocognitive disorder—Pathogenesis and prospects for treatment. Nat. Rev. Neurol. 2016, 12, 234–248. [Google Scholar] [CrossRef]
- Yadav, S.K.; Gupta, R.K.; Hashem, S.; Nisar, S.; Azeem, T.; Bhat, A.A.; Syed, N.; Garg, R.K.; Venkatesh, V.; Kamal, M.; et al. Brain microstructural changes support cognitive deficits in HIV uninfected children born to HIV infected mothers. Brain Behav. Immun.-Health 2020, 2, 100039. [Google Scholar] [CrossRef]
- Assaf, Y.; Pasternak, O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review. J. Mol. Neurosci. 2008, 34, 51–61. [Google Scholar] [CrossRef]
- Le Bihan, D.; Johansen-Berg, H. Diffusion MRI at 25: Exploring brain tissue structure and function. NeuroImage 2012, 61, 324–341. [Google Scholar] [CrossRef] [PubMed]
- Minosse, S.; Picchi, E.; Conti, A.; di Giuliano, F.; di Ciò, F.; Sarmati, L.; Teti, E.; de Santis, S.; Andreoni, M.; Floris, R.; et al. Multishell diffusion MRI reveals whole-brain white matter changes in HIV. Hum. Brain Mapp. 2023, 44, 5113–5124. [Google Scholar] [CrossRef] [PubMed]
- Mudra Rakshasa-Loots, A.; Diteko, G.; Dowell, N.G.; Ronen, I.; Vera, J.H. Neuroimmunometabolic alterations and severity of depressive symptoms in people with HIV: An exploratory diffusion-weighted MRS study. Brain Neurosci. Adv. 2025, 9, 23982128251335792. [Google Scholar] [CrossRef]
- Uddin, M.N.; Singh, M.V.; Faiyaz, A.; Szczepankiewicz, F.; Nilsson, M.; Boodoo, Z.D.; Sutton, K.R.; Tivarus, M.E.; Zhong, J.; Wang, L.; et al. Tensor-valued diffusion MRI detects brain microstructural abnormalities in HIV infected individuals with cognitive impairment. Sci. Rep. 2024, 14, 28839. [Google Scholar] [CrossRef] [PubMed]
- Bogner, W.; Otazo, R.; Henning, A. Accelerated MR spectroscopic imaging—A review of current and emerging techniques. NMR Biomed. 2021, 34, e4314. [Google Scholar] [CrossRef]
- Posse, S.; Otazo, R.; Dager, S.R.; Alger, J. MR spectroscopic imaging: Principles and recent advances. J. Magn. Reson. Imaging 2013, 37, 1301–1325. [Google Scholar] [CrossRef]
- Saucedo, A.; Thomas, M.A. Single-shot diffusion trace spectroscopic imaging using radial echo planar trajectories. Magn. Reson. Med. 2024, 92, 926–944. [Google Scholar] [CrossRef]
- Ahmed-Leitao, F.; Du Plessis, S.; Konkiewitz, E.C.; Spies, G.; Seedat, S. Altered white matter integrity in the corpus callosum in adults with HIV: A systematic review of diffusion tensor imaging studies. Psychiatry Res. Neuroimaging 2022, 326, 111543. [Google Scholar] [CrossRef]
- Ances, B.; Wright, P.; Fernandez, R.; Meyerhoff, D.; Price, R.; Robertson, K.; Lee, E.; Rutlin, J.; Shimony, J.; Spudich, S. Effects of Primary and Chronic HIV Infection on White Matter Integrity Using Diffusion Tensor Imaging (P06. 175). Neurology 2013, 80. [Google Scholar] [CrossRef]
- Cilliers, K.; Muller, C.J. Effect of human immunodeficiency virus on the brain: A review. Anat. Record. 2021, 304, 1389–1399. [Google Scholar] [CrossRef]
- Mina, Y.; Wu, T.; Hsieh, H.-C.; Hammoud, D.A.; Shah, S.; Lau, C.-Y.; Ham, L.; Snow, J.; Horne, E.; Ganesan, A.; et al. Association of white matter hyperintensities with HIV status and vascular risk factors. Neurology 2021, 96, e1823–e1834. [Google Scholar] [CrossRef]
- O’Connor, E.E.; Jaillard, A.; Renard, F.; Zeffiro, T.A. Reliability of white matter microstructural changes in HIV infection: Meta-analysis and confirmation. Am. J. Neuroradiol. 2017, 38, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Sarma, M.K.; Pal, A.; Keller, M.A.; Welikson, T.; Ventura, J.; Michalik, D.E.; Nielsen-Saines, K.; Deville, J.; Kovacs, A.; Operskalski, E.; et al. White matter of perinatally HIV infected older youths shows low frequency fluctuations that may reflect glial cycling. Sci. Rep. 2021, 11, 3086. [Google Scholar] [CrossRef] [PubMed]
- Wright, P.W.; Vaida, F.F.; Fernández, R.J.; Rutlin, J.; Price, R.W.; Lee, E.; Peterson, J.; Fuchs, D.; Shimony, J.S.; Robertson, K.R.; et al. Cerebral white matter integrity during primary HIV infection. AIDS 2015, 29, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Joy, A.; Nagarajan, R.; Daar, E.S.; Paul, J.; Saucedo, A.; Yadav, S.K.; Guerrero, M.; Haroon, E.; Macey, P.; Thomas, M.A. Alterations of gray and white matter volumes and cortical thickness in treated HIV-positive patients. Magn. Reson. Imaging 2023, 95, 27–38. [Google Scholar] [CrossRef]
- Joy, A.; Saucedo, A.; Carmichael, R.; Daar, E.; Macey, P.; Emir, U.; Thomas, M.A. Apparent Diffusion Coefficient Measures of Metabolite in HIV: A pilot study. In Proceedings of the 32nd Annual Meeting of ISMRM, Singapore, 4–9 May 2024. [Google Scholar]
- Chelala, L.; O’Connor, E.E.; Barker, P.B.; Zeffiro, T.A. Meta-analysis of brain metabolite differences in HIV infection. NeuroImage Clin. 2020, 28, 102436. [Google Scholar] [CrossRef]
- Chaganti, J.; Brew, B.J. MR spectroscopy in HIV associated neurocognitive disorder in the era of cART: A review. AIDS Res. Ther. 2021, 18, 65. [Google Scholar] [CrossRef]
- Marques, D.; Carecho, R.; Carregosa, D.; dos Santos, C.N. The Potential of Low Molecular Weight (Poly) phenol Metabolites for Attenuating Neuroinflammation and Treatment of Neurodegenerative Diseases. Recent Adv. Polyphen. Res. 2023, 8, 95–138. [Google Scholar]
- De Graaf, R.A.; Braun, K.P.; Nicolay, K. Single-shot diffusion trace 1H NMR spectroscopy. Magn. Reson. Med. 2001, 45, 741–748. [Google Scholar] [CrossRef]
- Valette, J.; Giraudeau, C.; Marchadour, C.; Djemai, B.; Geffroy, F.; Ghaly, M.A.; Le Bihan, D.; Hantraye, P.; Lebon, V.; Lethimonnier, F. A new sequence for single-shot diffusion-weighted NMR spectroscopy by the trace of the diffusion tensor. Magn. Reson. Med. 2012, 68, 1705–1712. [Google Scholar] [CrossRef]
- Davies-Jenkins, C.W.; Döring, A.; Fasano, F.; Kleban, E.; Mueller, L.; Evans, C.J.; Afzali, M.; Jones, D.K.; Ronen, I.; Branzoli, F.; et al. Practical considerations of diffusion-weighted MRS with ultra-strong diffusion gradients. Front. Neurosci. 2023, 17, 1258408. [Google Scholar] [CrossRef] [PubMed]
- Reese, T.G.; Heid, O.; Weisskoff, R.; Wedeen, V. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn. Reson. Med. 2003, 49, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Fessler, J.A.; Sutton, B.P. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans. Signal Process. 2003, 51, 560–574. [Google Scholar] [CrossRef]
- Simple method for adaptive gradient-delay compensation in radial MRI. In Proceedings of the 19th Annual Meeting of ISMRM, Montreal, QC, Canada, 7–13 May 2011.
- Feng, L.; Axel, L.; Chandarana, H.; Block, K.T.; Sodickson, D.K.; Otazo, R. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn. Reson. Med. 2016, 75, 775–788. [Google Scholar] [CrossRef]
- Stehning, C.; Börnert, P.; Nehrke, K.; Eggers, H.; Stuber, M. Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn. Reson. Med. 2005, 54, 476–480. [Google Scholar] [CrossRef]
- Welch, E.B.; Rossman, P.J.; Felmlee, J.P.; Manduca, A. Self-navigated motion correction using moments of spatial projections in radial MRI. Magn. Reson. Med. 2004, 52, 337–345. [Google Scholar] [CrossRef]
- Klose, U. In vivo proton spectroscopy in presence of eddy currents. Magn. Reson. Med. 1990, 14, 26–30. [Google Scholar] [CrossRef]
- Cabanes, E.; Confort-Gouny, S.; Le Fur, Y.; Simond, G.; Cozzone, P. Optimization of residual water signal removal by HLSVD on simulated short echo time proton MR spectra of the human brain. J. Magn. Reson. 2001, 150, 116–125. [Google Scholar] [CrossRef]
- Provencher, S.W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 1993, 30, 672–679. [Google Scholar] [CrossRef]
- Xu, F.; Ma, J.; Wang, W.; Li, H. A longitudinal study of the brain structure network changes in HIV patients with ANI: Combined VBM with SCN. Front. Neurol. 2024, 15, 1388616. [Google Scholar] [CrossRef]
- Zhou, Z.; Gong, W.; Hu, H.; Wang, F.; Li, H.; Xu, F.; Li, H.; Wang, W. Functional and Structural Network Alterations in HIV-Associated Asymptomatic Neurocognitive Disorders: Evidence for Functional Disruptions Preceding Structural Changes. Neuropsychiatr. Dis. Treat. 2025, ume 21, 689–709. [Google Scholar] [CrossRef]
- Leite, S.C.; Corrêa, D.G.; Doring, T.M.; Kubo, T.T.; Netto, T.M.; Ferracini, R.; Ventura, N.; Bahia, P.R.; Gasparetto, E.L. Diffusion tensor MRI evaluation of the corona radiata, cingulate gyri, and corpus callosum in HIV patients. J. Magn. Reson. Imaging 2013, 38, 1488–1493. [Google Scholar] [CrossRef] [PubMed]
- Gelman, B.B.; Lisinicchia, J.G.; Morgello, S.; Masliah, E.; Commins, D.; Achim, C.L.; Fox, H.S.; Kolson, D.L.; Grant, I.; Singer, E.; et al. Neurovirological correlation with HIV-associated neurocognitive disorders and encephalitis in a HAART-era cohort. JAIDS J. Acquir. Immune Defic. Syndr. 2013, 62, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Robertson, K.; Liner, J.; Heaton, R. Neuropsychological assessment of HIV-infected populations in international settings. Neuropsychol. Rev. 2009, 19, 232–249. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, E.; Vezzoli, M.; Pegoraro, S.; Facchin, A.; Strina, V.; Daini, R. Teleneuropsychology: Normative data for the assessment of memory in online settings. Neurol. Sci. 2023, 44, 529–538. [Google Scholar] [CrossRef]
- Brown, T.; Zakzanis, K.K. A review of the reliability of remote neuropsychological assessment. Appl. Neuropsychol. Adult 2025, 32, 1536–1542. [Google Scholar] [CrossRef]
- Wärn, E.; Andersson, L.; Berginström, N. Remote Neuropsychological Testing as an Alternative to Traditional Methods—A Convergent Validity Study. Arch. Clin. Neuropsychol. 2025, 40, 1123–1132. [Google Scholar] [CrossRef]
- Shura, R.D.; Rowland, J.A.; Miskey, H.M. Auditory consonant trigrams: A psychometric update. Arch. Clin. Neuropsychol. 2016, 31, 47–57. [Google Scholar] [CrossRef]
- Wechsler, D. Manual for the Wechsler adult intelligence scale; Psychological Corporation: New York, NY, USA, 1955. [Google Scholar]
- Blair, J.R.; Spreen, O. Predicting premorbid IQ: A revision of the National Adult Reading Test. Clin. Neuropsychol. 1989, 3, 129–136. [Google Scholar] [CrossRef]
- Axelrod, B.N.; Lamberty, G.J. The oral trail making test. In The Quantified Process Approach to Neuropsychological Assessment; Psychology Press: Hove, UK, 2012; pp. 45–51. [Google Scholar]
- Blackstone, K.; Moore, D.; Franklin, D.; Clifford, D.; Collier, A.; Marra, C.; Gelman, B.B.; McArthur, J.C.; Morgello, S.; Simpson, D.M.; et al. Defining neurocognitive impairment in HIV: Deficit scores versus clinical ratings. Clin. Neuropsychol. 2012, 26, 894–908. [Google Scholar] [CrossRef]
- Day, R.; Quinn, G. Comparisons of treatments after an analysis of variance in ecology. Ecol. Monogr. 1989, 59, 433–463. [Google Scholar] [CrossRef]
- Janušonis, S. Comparing two small samples with an unstable, treatment-independent baseline. J. Neurosci. Methods 2009, 179, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Ercan, A.E.; Techawiboonwong, A.; Versluis, M.J.; Webb, A.G.; Ronen, I. Diffusion-weighted chemical shift imaging of human brain metabolites at 7T. Magn. Reson. Med. 2015, 73, 2053–2061. [Google Scholar] [CrossRef] [PubMed]
- Hetherington, H.P.; Pan, J.W.; Mason, G.F.; Adams, D.; Vaughn, M.J.; Twieg, D.B.; Pohost, G.M. Quantitative 1H spectroscopic imaging of human brain at 4.1 T using image segmentation. Magn. Reson. Med. 1996, 36, 21–29. [Google Scholar] [CrossRef]
- Schuff, N.; Ezekiel, F.; Gamst, A.C.; Amend, D.L.; Capizzano, A.A.; Maudsley, A.A.; Weiner, M. Region and tissue differences of metabolites in normally aged brain using multislice 1H magnetic resonance spectroscopic imaging. Magn. Reson. Med. 2001, 45, 899–907. [Google Scholar] [CrossRef]
- Chong, W.; Paley, M.; Wilkinson, I.; Hall-Craggs, M.; Sweeney, B.; Harrison, M.; Miller, R.F.; E Kendall, B. Localized cerebral proton MR spectroscopy in HIV infection and AIDS. Am. J. Neuroradiol. 1994, 15, 21–25. [Google Scholar]
- Cloak, C.; Chang, L.; Ernst, T. Increased frontal white matter diffusion is associated with glial metabolites and psychomotor slowing in HIV. J. Neuroimmunol. 2004, 157, 147–152. [Google Scholar] [CrossRef]
- López-Villegas, D.; Lenkinski, R.E.; Frank, I. Biochemical changes in the frontal lobe of HIV-infected individuals detected by magnetic resonance spectroscopy. Proc. Natl. Acad. Sci. USA 1997, 94, 9854–9859. [Google Scholar] [CrossRef] [PubMed]
- Helenius, J.; Soinne, L.; Perkiö, J.; Salonen, O.; Kangasmäki, A.; Kaste, M.; Carano, R.A.D.; Aronen, H.J.; Tatlisumak, T. Diffusion-weighted MR imaging in normal human brains in various age groups. Am. J. Neuroradiol. 2002, 23, 194–199. [Google Scholar] [PubMed]
- Kan, H.E.; Techawiboonwong, A.; Van Osch, M.J.; Versluis, M.J.; Deelchand, D.K.; Henry, P.G.; Marjańska, M.; van Buchem, M.A.; Webb, A.G.; Ronen, I. Differences in apparent diffusion coefficients of brain metabolites between grey and white matter in the human brain measured at 7 T. Magn. Reson. Med. 2012, 67, 1203–1209. [Google Scholar] [CrossRef] [PubMed]
- Sener, R.N. Diffusion MRI: Apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Comput. Med. Imaging Graph. 2001, 25, 299–326. [Google Scholar] [CrossRef]
- Hua, X.; Boyle, C.P.; Harezlak, J.; Tate, D.F.; Yiannoutsos, C.T.; Cohen, R.; Schifitto, G.; Gongvatana, A.; Zhong, J.; Zhu, T.; et al. Disrupted cerebral metabolite levels and lower nadir CD4+ counts are linked to brain volume deficits in 210 HIV-infected patients on stable treatmentpatients on stable treatment. NeuroImage: Clin. 2013, 3, 132–142. [Google Scholar] [CrossRef]
- Law-Ye, B.; de Truchis, P.; Peyrassou, D.; Force, G.; Carlier, R.-Y. Elevation of brain ADC (apparent diffusion coefficient) in HIV-associated neurocognitive disorders and evolution after treatment: A pilot study. J. Neurol. Sci. 2022, 442, 120446. [Google Scholar] [CrossRef]
- Dahmani, S.; Kaliss, N.; VanMeter, J.W.; Moore, D.J.; Ellis, R.J.; Jiang, X. Alterations of brain metabolites in adults with HIV: A systematic meta-analysis of magnetic resonance spectroscopy studies. Neurology 2021, 97, e1085–e1096. [Google Scholar] [CrossRef]
- Ernst, T.; Chang, L.; Arnold, S. Increased glial metabolites predict increased working memory network activation in HIV brain injury. NeuroImage 2003, 19, 1686–1693. [Google Scholar] [CrossRef]
- Harezlak, J.; Buchthal, S.; Taylor, M.; Schifitto, G.; Zhong, J.; Daar, E.; Alger, J.; Singer, E.; Campbell, T.; Yiannoutsos, C.; et al. Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS 2011, 25, 625–633. [Google Scholar] [CrossRef]
- McConnell, J.R.; Swindells, S.; Ong, C.S.; Gmeiner, W.H.; Chuw, K.; Brown, D.K.; Gendelman, H.E. Prospective utility of cerebral proton magnetic resonance spectroscopy in monitoring HIV infection and its associated neurological impairment. AIDS Res. Hum. Retroviruses 1994, 10, 977–982. [Google Scholar] [CrossRef]
- Meyerhoff, D.J.; MacKay, S.; Bachman, L.; Poole, N.; Dillon, W.; Weiner, M.; Fein, G. Reduced brain N-acetylaspartate suggests neuronal loss in cognitively impaired human immunodeficiency virus-seropositive individuals: In vivo 1H magnetic resonance spectroscopic imaging. Neurology 1993, 43, 509. [Google Scholar] [CrossRef]
- Meyerhoff, D.J.; MacKay, S.; Poole, N.; Dillon, W.P.; Weiner, M.W.; Fein, G. N-acetylaspartate reductions measured by 1H MRSI in cognitively impaired HIV-seropositive individuals. Magn. Reson. Imaging 1994, 12, 653–659. [Google Scholar] [CrossRef]
HIV+ | Healthy Controls | p-Value 4 | |
---|---|---|---|
N | 16 | 15 | N/A2 |
Age (Mean ± SD 1) | 52.5 ± 10.5 | 37.6 ± 12.6 | 0.012 |
Gender (Male/Female) | 15/1 | 12/3 | 0.33 |
CD4+ count cells/µL (Mean ± SD) | 822.93 ± 319 | N/A | N/A |
CD4+ count > 200 cells/µL (%) | 88 (n = 14) | N/A | N/A |
viral count (HIV RNA PCR) | <20 (n = 9) >20 (n = 3) Undetectable (n = 4) | N/A | |
Estimated duration of HIV infection (years, Mean ± SD) | 24.18 ± 7.67 | N/A | N/A |
Percentage of years receiving cART 3 | 96 | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joy, A.; Saucedo, A.; Wright, M.J.; Vallabhu, P.; Gupta, N.; Sayre, J.; Chien, A.; Emir, U.; Macey, P.M.; Daar, E.S.; et al. Association of Intracellular Microstructural and Neuropsychological Changes in HIV: A Pilot Validation of Trace Diffusion-Weighted Magnetic Resonance Spectroscopic Imaging Using Radial Trajectories. Metabolites 2025, 15, 669. https://doi.org/10.3390/metabo15100669
Joy A, Saucedo A, Wright MJ, Vallabhu P, Gupta N, Sayre J, Chien A, Emir U, Macey PM, Daar ES, et al. Association of Intracellular Microstructural and Neuropsychological Changes in HIV: A Pilot Validation of Trace Diffusion-Weighted Magnetic Resonance Spectroscopic Imaging Using Radial Trajectories. Metabolites. 2025; 15(10):669. https://doi.org/10.3390/metabo15100669
Chicago/Turabian StyleJoy, Ajin, Andres Saucedo, Matthew J. Wright, Pranathi Vallabhu, Neha Gupta, James Sayre, Aichi Chien, Uzay Emir, Paul M. Macey, Eric S. Daar, and et al. 2025. "Association of Intracellular Microstructural and Neuropsychological Changes in HIV: A Pilot Validation of Trace Diffusion-Weighted Magnetic Resonance Spectroscopic Imaging Using Radial Trajectories" Metabolites 15, no. 10: 669. https://doi.org/10.3390/metabo15100669
APA StyleJoy, A., Saucedo, A., Wright, M. J., Vallabhu, P., Gupta, N., Sayre, J., Chien, A., Emir, U., Macey, P. M., Daar, E. S., & Thomas, M. A. (2025). Association of Intracellular Microstructural and Neuropsychological Changes in HIV: A Pilot Validation of Trace Diffusion-Weighted Magnetic Resonance Spectroscopic Imaging Using Radial Trajectories. Metabolites, 15(10), 669. https://doi.org/10.3390/metabo15100669