Metabolic Determinants of Systemic Inflammation Dynamics During Hemodialysis: Insights from the Systemic Immune–Inflammation Index in a Single-Center Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Design and Population
2.2. Laboratory Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CVD | Cardiovascular disease |
CKD | Chronic kidney disease |
ERSD | End-stage renal disease |
HD | Hemodialysis |
SII | Systemic immune–inflammation index |
AST | Aspartate transaminase |
ALT | Alanine transaminase |
GGT | Gamma-glutamyl transaminase |
TNF-α | Tumor necrosis factor α |
CRP | C-reactive protein |
IL-6 | Interleukin 6 |
IL-1β | Interleukin 1β |
References
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Sanada, F.; Taniyama, Y.; Muratsu, J.; Otsu, R.; Shimizu, H.; Rakugi, H.; Morishita, R. Source of Chronic Inflammation in Aging. Front. Cardiovasc. Med. 2018, 5, 12. [Google Scholar] [CrossRef]
- Arnold, N.; Koenig, W. Inflammation in atherosclerotic cardiovascular disease: From diagnosis to treatment. Eur. J. Clin. Investig. 2025, 55, e70020. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, S.; Xu, H.; Zhang, N.; Huang, M.; Liu, Z. Inflammation biomarkers are associated with the incidence of cardiovascular disease: A meta-analysis. Front. Cardiovasc. Med. 2023, 10, 1175174. [Google Scholar] [CrossRef]
- Shi, L.; Wang, J.; Wei, T.; Liang, Z.; Zhang, L.; Li, C.; Liu, T.; Fan, W.; Zhang, M. Analysis of research trends and hotspots in the primary treatment of end-stage renal disease. Int. Urol. Nephrol. 2025, 57, 1513–1531. [Google Scholar] [CrossRef]
- Dabravolski, S.A.; Orekhova, V.A.; Baig, M.S.; Bezsonov, E.E.; Starodubova, A.V.; Popkova, T.V.; Orekhov, A.N. The Role of Mitochondrial Mutations and Chronic Inflammation in Diabetes. Int. J. Mol. Sci. 2021, 22, 6733. [Google Scholar] [CrossRef] [PubMed]
- Fołta, J.; Rzepka, Z.; Wrześniok, D. The Role of Inflammation in Neurodegenerative Diseases: Parkinson’s Disease, Alzheimer’s Disease, and Multiple Sclerosis. Int. J. Mol. Sci. 2025, 26, 5177. [Google Scholar] [CrossRef]
- Miguel, V.; Shaw, I.W.; Kramann, R. Metabolism at the crossroads of inflammation and fibrosis in chronic kidney disease. Nat. Rev. Nephrol. 2025, 21, 39–56. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Grassi, D.; Desideri, G.; Ferri, C. Cardiovascular risk and endothelial dysfunction: The preferential route for atherosclerosis. Curr. Pharm. Biotechnol. 2011, 12, 1343–1353. [Google Scholar] [CrossRef]
- Desideri, G.; Bravi, M.C.; Tucci, M.; Croce, G.; Marinucci, M.C.; Santucci, A.; Alesse, E.; Ferri, C. Angiotensin II inhibits endothelial cell motility through an AT1-dependent oxidant-sensitive decrement of nitric oxide availability. Arter. Thromb. Vasc. Biol. 2003, 23, 1218–1223. [Google Scholar] [CrossRef]
- Kelly, D.M.; Kelleher, E.M.; Rothwell, P.M. The Kidney-Immune-Brain Axis: The Role of Inflammation in the Pathogenesis and Treatment of Stroke in Chronic Kidney Disease. Stroke 2025, 56, 1069–1081. [Google Scholar] [CrossRef]
- Wakamatsu, T.; Yamamoto, S.; Yoshida, S.; Narita, I. Indoxyl Sulfate-Induced Macrophage Toxicity and Therapeutic Strategies in Uremic Atherosclerosis. Toxins 2024, 16, 254. [Google Scholar] [CrossRef]
- Waheed, Y.A.; Liu, J.; Almayahe, S.; Sun, D. The role of hyperuricemia in the progression of end-stage kidney disease and its molecular prospective in inflammation and cardiovascular diseases: A general review. Ther. Apher. Dial. 2025. [Google Scholar] [CrossRef] [PubMed]
- Kadatane, S.P.; Satariano, M.; Massey, M.; Mongan, K.; Raina, R. The Role of Inflammation in CKD. Cells 2023, 12, 1581. [Google Scholar] [CrossRef] [PubMed]
- Lauxen, J.S.; Vondenhoff, S.; Junho, C.V.C.; Martin, P.; Fleig, S.; Schütt, K.; Schulze-Späte, U.; Soehnlein, O.; Prates-Roma, L.; Döring, Y.; et al. Neutrophil Function in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Acta Physiol. 2025, 241, e70057. [Google Scholar] [CrossRef]
- Desideri, G.; Panichi, V.; Paoletti, S.; Grassi, D.; Bigazzi, R.; Beati, S.; Bernabini, G.; Rosati, A.; Ferri, C.; Taddei, S.; et al. Soluble CD40 ligand is predictive of combined cardiovascular morbidity and mortality in patients on haemodialysis at a relatively short-term follow-up. Nephrol. Dial. Transpl. 2011, 26, 2983–2988. [Google Scholar] [CrossRef] [PubMed]
- Mihai, S.; Codrici, E.; Popescu, I.D.; Enciu, A.M.; Albulescu, L.; Necula, L.G.; Mambet, C.; Anton, G.; Tanase, C. Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction, Progression, and Outcome. J. Immunol. Res. 2018, 2018, 2180373. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, B.; Alexander, D.; Janessa, A.; Häring, H.U.; Lang, F.; Risler, T. Acute effects of hemodialysis on cytokine transcription profiles: Evidence for C-reactive protein-dependency of mediator induction. Kidney Int. 2006, 70, 2124–2130. [Google Scholar] [CrossRef]
- Hu, B.; Yang, X.R.; Xu, Y.; Sun, Y.F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.M.; Qiu, S.J.; Zhou, J.; et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef]
- Qin, Z.; Li, H.; Wang, L.; Geng, J.; Yang, Q.; Su, B.; Liao, R. Systemic Immune-Inflammation Index Is Associated With Increased Urinary Albumin Excretion: A Population-Based Study. Front. Immunol. 2022, 13, 863640. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Yuan, S.; Yuan, Y.; Yi, L. Prognostic and Clinicopathological Significance of the Systemic Immune-Inflammation Index in Patients With Renal Cell Carcinoma: A Meta-Analysis. Front. Oncol. 2021, 11, 735803. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, S.R.; Huang, X.P.; Liu, X.Q.; Liu, J.B.; Tian, G. Prognostic value of systemic immune-inflammation index in patients with urinary system cancers: A meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 1302–1310. [Google Scholar] [CrossRef]
- Karakaya, D.; Güngör, T.; Cakıcı, E.K.; Yazılıtaş, F.; Celikkaya, E.; Bulbul, M. Determining the effectiveness of the immature granulocyte percentage and systemic immune-inflammation index in predicting acute pyelonephritis. Postgrad. Med. 2023, 135, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Kocaaslan, R.; Dilli, D.; Çitli, R. Diagnostic Value of the Systemic Immune-Inflammation Index in Newborns with Urinary Tract Infection. Am. J. Perinatol. 2024, 41, e719–e727. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.; Xie, Y.; Zhao, X.; Xu, X.; Yu, S.; Lu, H.; Huang, H.; Li, Q.; Xu, J.Y.; Liu, J.; et al. Elevated systemic immune inflammation level increases the risk of total and cause-specific mortality among patients with chronic kidney disease: A large multi-center longitudinal study. Inflamm. Res. 2023, 72, 149–158. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, L. Inflammation and Cardiovascular Disease Associated With Hemodialysis for End-Stage Renal Disease. Front. Pharmacol. 2022, 13, 800950. [Google Scholar] [CrossRef]
- Guerrero, F.; Carmona, A.; Jiménez, M.J.; Ariza, F.; Obrero, T.; Berdud, I.; Carrillo-Carrión, C.; Rodríguez, M.; Soriano, S.; Muñoz-Castañeda, J.R.; et al. New biomarkers of inflammation associated with haemodialysis. Clin. Kidney J. 2025, 18, sfaf223. [Google Scholar] [CrossRef]
- Dheda, S.; Vesey, D.A.; Hawley, C.; Johnson, D.W.; Fahim, M. Effect of a Hemodialysis Session on Markers of Inflammation and Endotoxin. Int. J. Inflam. 2022, 2022, 8632245. [Google Scholar] [CrossRef]
- Cobo, G.; Lindholm, B.; Stenvinkel, P. Chronic inflammation in end-stage renal disease and dialysis. Nephrol. Dial. Transpl. 2018, 33, iii35–iii40. [Google Scholar] [CrossRef]
- Tarakçioğlu, M.; Erbağci, A.B.; Usalan, C.; Deveci, R.; Kocabaş, R. Acute effect of hemodialysis on serum levels of the proinflammatory cytokines. Mediat. Inflamm. 2003, 12, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Caglar, K.; Peng, Y.; Pupim, L.B.; Flakoll, P.J.; Levenhagen, D.; Hakim, R.M.; Ikizler, T.A. Inflammatory signals associated with hemodialysis. Kidney Int. 2002, 62, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Hu, T.; Wang, J.; Xiao, R.; Liao, X.; Liu, M.; Sun, Z. Systemic immune-inflammation index as a potential biomarker of cardiovascular diseases: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2022, 9, 933913. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Kong, S.; Ni, W.; Lu, Y.; Li, J.; Huang, Y.; Chen, J.; Lin, K.; Li, Y.; Ke, J.; et al. Association of the Systemic Immune-Inflammation Index with Outcomes in Acute Coronary Syndrome Patients with Chronic Kidney Disease. J. Inflamm. Res. 2023, 16, 1343–1356. [Google Scholar] [CrossRef]
- Ozdemir, A.; Kocak, S.Y.; Karabela, S.N.; Yılmaz, M. Can systemic immune inflammation index at admission predict in-hospital mortality in chronic kidney disease patients with SARS-CoV-2 infection? Nefrología 2022, 42, 549–558. [Google Scholar] [CrossRef]
Whole (n = 44) | Non-CM Etiologies (n = 24) | CM Etiologies (n = 20) | p | |
---|---|---|---|---|
Female (n, %) | 14, 31.8% | 8, 33.3% | 6, 30.0% | 0.813 |
Age (years, mean ± SD) | 66.1 ± 13.9 | 62.0 ± 13.4 | 71.0 ± 13.2 | 0.031 |
Smokers (n, %) | 3, 6.8% | 2, 8.3% | 1, 5.0% | 0.662 |
Diabetes (n, %) | 14, 31.8% | 3, 12.5% | 11, 55.0% | 0.003 |
Hypertension (n, %) | 36, 81.8% | 16, 66.7% | 20, 100% | 0.004 |
CVD (n, %) | 22, 55% | 10, 41.7% | 12, 60.0% | 0.226 |
Blood glucose (mg/dL, mean ± SD) | 112.4 ± 25.6 | 110.5 ± 22.8 | 114.8 ± 29.9 | 0.582 |
SBP (mmHg, median [IQR]) | 140.0 [130.0–160.0] | 132.5 [117.5–155.0] | 140.0 [130.0–160.0] | 0.114 |
DBP (mmHg, median [IQR]) | 70.0 [60.0–80.0] | 70.0 [63.5–85.0] | 75.0 [64.0–90.0] | 0.368 |
Creatinine (mg/dL, mean ± SD) | 8.2 ± 2.4 | 8.7 ± 2.2 | 7.6 ± 2.7 | 0.124 |
Urea (mg/dL, mean ± SD) | 114.4 ± 30.5 | 116.7 ± 29.9 | 111.6 ± 31.7 | 0.582 |
Total Cholesterol (mg/dL, mean ± SD) | 131.1 ± 37.9 | 126.9 ± 39.1 | 136.1 ± 36.8 | 0.428 |
Triglycerides (mg/dL, median [IQR]) | 116.0 [71.5–167.5] | 104.0 [78.5–140.0] | 116.0 [71.5–167.5] | 0.671 |
AST (UI/L, median [IQR]) | 13.0 [11.5–15.0] | 11.5 [10.0–17.5] | 13.0 [11.5–15.0] | 0.627 |
ALT (UI/L, median [IQR]) | 10.0 [5.0–12.5] | 8.5 [6.5–15.0] | 10.0 [5.0–12.5] | 0.705 |
GGT (UI/L, median [IQR]) | 22.0 [12.5–30.5] | 21.5 [17.0–27.5] | 22.0 [12.5–30.5] | 0.705 |
Etiologies causing end-stage renal disease | ||||
Connective tissue disease (n, %) | 1, 2.3% | 1, 4.2% | - | - |
Phenylketonuria (n, %) | 1, 2.3% | 1, 4.2% | - | - |
Retroperitoneal fibrosis (n, %) | 1, 2.3% | 1, 4.2% | - | - |
Kidney transplantation failure (n, %) | 1, 2.3% | 1, 4.2% | - | - |
Urosepsis (n, %) | 1, 2.3% | 1, 4.2% | - | - |
Glomerulonephritis (n,%) | 4, 9.1% | 4, 16.7% | - | - |
Diabetic nephropathy (n, %) | 15, 34.1% | 15, 62.5% | - | - |
Nephroangiosclerosis (n,%) | 9, 20.5% | - | 9, 45.0% | - |
Polycystic kidney (n, %) | 11, 25.0% | - | 11, 55.0% | - |
Variable | Mean Change in SII Relative Variation | Standard Error | 95% Confidence Interval | p | |
---|---|---|---|---|---|
Male gender | 4.004 | 6.381 | −8.503 | 16.512 | 0.530 |
NC etiologies | 4.657 | 6.695 | −8.466 | 17.780 | 0.487 |
Age (per year) | 0.280 | 0.248 | −0.205 | 0.765 | 0.258 |
Total Cholesterol (per 1% increase) | 0.262 | 0.084 | 0.097 | 0.428 | 0.002 |
GGT (per mg/dL) | 0.543 | 0.259 | 0.036 | 1.051 | 0.036 |
Blood glucose (per 1 mg/dL) | −0.309 | 0.137 | −0.578 | −0.041 | 0.024 |
Mean Blood Pressure (per 1 mmHg) | −0.256 | 0.240 | −0.727 | 0.214 | 0.286 |
Basal SII (per 1 mg/dL) | −0.001 | 0.007 | −0.014 | 0.013 | 0.901 |
Time in HD (months) | −0.024 | 0.040 | −0.103 | 0.056 | 0.557 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancinelli, M.; Moscucci, F.; Cofini, V.; De Nino, A.L.; Bocale, R.; Savoia, C.; Baratta, F.; Desideri, G. Metabolic Determinants of Systemic Inflammation Dynamics During Hemodialysis: Insights from the Systemic Immune–Inflammation Index in a Single-Center Observational Study. Metabolites 2025, 15, 651. https://doi.org/10.3390/metabo15100651
Mancinelli M, Moscucci F, Cofini V, De Nino AL, Bocale R, Savoia C, Baratta F, Desideri G. Metabolic Determinants of Systemic Inflammation Dynamics During Hemodialysis: Insights from the Systemic Immune–Inflammation Index in a Single-Center Observational Study. Metabolites. 2025; 15(10):651. https://doi.org/10.3390/metabo15100651
Chicago/Turabian StyleMancinelli, Martina, Federica Moscucci, Vincenza Cofini, Anna Luisa De Nino, Raffaella Bocale, Carmine Savoia, Francesco Baratta, and Giovambattista Desideri. 2025. "Metabolic Determinants of Systemic Inflammation Dynamics During Hemodialysis: Insights from the Systemic Immune–Inflammation Index in a Single-Center Observational Study" Metabolites 15, no. 10: 651. https://doi.org/10.3390/metabo15100651
APA StyleMancinelli, M., Moscucci, F., Cofini, V., De Nino, A. L., Bocale, R., Savoia, C., Baratta, F., & Desideri, G. (2025). Metabolic Determinants of Systemic Inflammation Dynamics During Hemodialysis: Insights from the Systemic Immune–Inflammation Index in a Single-Center Observational Study. Metabolites, 15(10), 651. https://doi.org/10.3390/metabo15100651