Natural Products and Derivatives Targeting Metabolic Reprogramming in Colorectal Cancer: A Comprehensive Review
Abstract
:1. Introduction
2. Natural Products Regulate Multiple Metabolisms in CRC
2.1. Natural Products Regulate Glucose Metabolism
2.1.1. Natural Products Regulate Glycolysis
2.1.2. Natural Products Regulate the TCA Cycle and Oxidative Phosphorylation
2.1.3. Natural Products Regulate Pentose Phosphate Pathway
Chemical Class | Bioactive Compounds | Medicinal Plant | Cancer Model | IC50 | Metabolic Regulation | Targets | Potential Mechanisms | References |
---|---|---|---|---|---|---|---|---|
Flavonoids | Wogonin | Scutellaria baicalensis Georgi. | HT-29, HCT116 | - | Glycolysis | GLUT1, PGM, HK2, PDHK1, LDHA | Increased the expression of p53 and downregulates key glycolytic enzymes to inhibit colorectal cancer glycolysis | [38] |
Flavonoids | Apple Polyphenol Phloretin | Malus pumila Mill. | HT29, COLO205, xenograft mouse model | - | Glucose metabolism | GLUT2 | Inhibited GLUT2 protein expression and induces Hepatocyte nuclear factor 6 (HNF6) to activate GLUT2 and p53 | [41] |
Flavonoids | Silybin | Silybum marianum(L.) Gaertn. | LoVo WT LoVo DOX | - | Glucose metabolism | GLUT1 | Targeted GLUTs to increase doxorubicin sensitivity and elude drug resistance | [102] |
Flavonoids | Kaempferol | Kaempferia galanga L. | HCT116, DLD1 | HCT116: 63.0 ± 12.9 μM DLD1: 98.3 ± 15.9 μM | Glycolysis | PKM2, hnRNPA1 | Inhibited glycolysis and colon cancer growth by modulating miR-339-5p-hnRNPA1/PTBP1-PKM2 axis | [53] |
Flavonoids | Apigenin | Thymus mongolicus Ronniger | HCT116, HT29, DLD1 | HCT116: 27.9 ± 2.45 μM HT29: 48.2 ± 3.01 μM DLD1: 89.5 ± 4.89 μM | Glycolysis | PKM2 | Bonded to PKM2 and inhibited PKM2 activity, and reduced PKM2/PKM1 by blocking β-catenin/c-Myc/PTBP1 signaling pathway | [58] |
Flavonoids | Xanthohumol | Humulus lupulus L. | HCT116, HT29, SW620, SW480, LOVO, Xenograft mouse model | Glycolysis | HK2 | Reduced Akt activity, and inhibited HK2 expression and glycolysis | [67] | |
Flavonoids | Quercetin | Crataegus pinnatifida Bge. | HCT15, RKO | HCT15:142.7 μM RKO:121.9 μM NCM460: >200 μM | Glycolysis | MCT1, MCT4 | Decreased glucose consumption and lactate acid generation by inhibiting MCT, and enhanced the cytotoxicity of 5-FU | [103] |
Isoflavonoid | Diaminobutoxy-substituted Isoflavonoid (DBI-1) | semisynthetic derivatives | LS174T Pt2377 Xenograft mouse model | LS174T: 1.2 μM Pt2377: 1.4 μM | TCA cycle | GLUT1 mitochondrial complex I | Inhibits mitochondrial complex I, and combined with GLUT1 inhibitor, BAY-876, synergistically inhibited colorectal cancer | [94] |
Steroidal saponins | Saponin monomer 13 of the dwarf lilyturf tuber (DT13) | Liriope muscari (Decne.) | HCT15,HT29, COLO205, HCT116, SW480,SW620 Orthotopic implantation mouse model, C57BL/6J APCmin mice model | HCT15: 7.53 ± 0.15 μM HT29: 9.05 ± 1.65 μM COLO205: 8.36 ± 0.04 μM HCT116: 8.75 ± 1.58 μM SW480: 27.72 ± 10.96 μM SW620: 22.39 ± 15.17 μM | Glycolysis | GLUT1 | Downregulated GLUT1 and activated AMPK to inhibit glycolysis, and inhibited the phosphorylation of p-mTOR, p-P70S6K, and p-4EBP1 | [15] |
Steroidal saponins | Diosgenin | Dioscorea opposita Thunb. | SW1116, RKO, xenograft mouse model | SW1116: 21.15 ± 0.43 μM RKO: 24.06 ± 1.37 μM NCM460: 69.76 ± 1.28 μM | Glycolysis | GLUT2,3,4, PC | Disturbed the aerobic glycolysis and reduce ATP generation | [40] |
Steroidal saponins | Dioscin | Dioscorea opposita Thunb. | HT29, HCT116, SW620, xenograft mouse model | - | Glycolysis | HK2 | Induced Cdh1-mediated Skp2 degradation, thereby inhibiting HK2 expression and glycolysis | [64] |
Steroidal saponins | Dioscin | Dioscorea opposita Thunb. | HCT116, HT29 | - | Glycolysis | HK2 | Inhibited glycolysis by restraining HK2, which relates to FBW-7-mediated c-myc degradation | [65] |
Alkaloids | Matrine | Sophora flavescens Aiton | HCT116, SW620, xenograft mouse model | HCT116: 6.1 μM SW620: 4.9 μM | Glycolysis | GLUT1, HK2, LDHA | Inhibited expression of HIF-1α and its downstream targets to downregulate glycolysis | [47] |
Alkaloids | Oxymatrine | Sophora flavescens Aiton | HT29, HCT116, hepatic metastasis mouse model of colorectal cancer | - | Glycolysis | PKM2, GLUT1 | Double inhibition of PKM2 and downregulation of GLUT1 expression to block aerobic glycolysis | [48] |
Alkaloids | Berberine | Coptis chinensis Franch. | HCT116 | 63.6 ± 3 μM | Glycolysis | PKM2 | Inhibited PKM2 enzyme activity | [57] |
Alkaloids | Lycorine | Lycoris radiata (L’Hér.) Herb. | HCT116, HT29, xenograft mouse model | - | TCA cycle | IDH1 | Promoted the acetylation of IDH1 to drive the imbalance of mitochondrial dynamics | [77] |
Alkaloid derivatives | Halofuginone | Dichroa febrifuga Lour. | SW480, HCT116, xenograft mouse model | SW480: 24.83 nM HCT116: 5.82 nM | PPP | G6PD | Inhibited the activity of G6PD and reduced the level of NADPH by regulating Akt/mTORC1 signaling pathway, thereby inhibiting glucose uptake and glycolysis in CRC cells | [101] |
Quinones | Curcumin | Curcuma longa L. | HCT116, HT29 | - | Glycolysis | HK2 | Inhibited glycolysis and induces mitochondrial-mediated apoptosis through the regulation of HK2 | [24] |
Polyphenols | Tannic acid | Rhus chinensis Mill. | HCT116, DLD1 | DLD1: 53.6 μM HCT116: 43.1 μM FHC: >100 μM | Glycolysis | PKM2 | Selectively inhibited the pyruvate kinase activity of PKM2 | [55] |
Non-flavonoid phenolic compounds | Resveratrol | Polygonum cuspidatum Siebold & Zucc. | DLD1 | DLD1: 75 ± 4.54 μM | Glycolysis | PKM2 | Inhibited PKM2 expression by upregulating miR-326 | [62] |
Non-flavonoid phenolic compounds | Resveratrol | Polygonum cuspidatum Siebold & Zucc. | HCT116, Caco2 | HCT116: 50 μM Caco2: 131 μM | Glycolysis | PK | Decreased glucose consumption and the expression of glycolytic enzymes to induce cell apoptosis | [63] |
Non-flavonoid phenolic compounds | Resveratrol | Polygonum cuspidatum Siebold & Zucc. | Caco2, HCT116 | - | TCA cycle | PDH | Targeted the PDH complex, leading to enhanced PDH activity | [86] |
Non-flavonoid phenolic compounds | Resveratrol | Polygonum cuspidatum Siebold & Zucc. | HT29 | - | PPP | G6PD, TKT, PGD | Regulated TKT, G6PD to inhibit pentose phosphate pathway | [100] |
Polyphenols | Epicatechin gallate(ECG) | Acacia catechu (L. f.) Willd. | HT29 | - | PPP, fatty acid metabolism | TKT, G6PD | Regulated de novo synthesis of fatty acids and the PPP way. Inhibited key enzymes | [99] |
Sesquiterpenes | Parthenolide derivatives | Tanacetum parthenium (L.) | HT29, SW480, HCT116 | HT29: 0.66 μM SW480: 0.22 μM HCT116: 1 μM NCM460: 2 μM | Glycolysis | PKM2 | Impeded the nuclear translocation of PKM2, fostering a metabolic shift from aerobic glycolysis to oxidative phosphorylation | [50] |
Sesquiterpene lactones | Xanthatin | Xanthium strumarium L. | HT29, HCT116 | - | Glycolysis | GLUT1, MCT4 | Reduced Glut1 and MCT4 mRNA and protein levels by inhibiting the phosphorylation of mTOR, 4E-binding protein 1 (4E-BP1) and c-myc | [78] |
Sesquiterpene lactones | Hemistepsin A e | Hemisteptia lyrata (Bunge) Fisch. & C.A.Mey. | DLD1, CT26, murine allograft model | DLD1: 10.31 ± 0.5536 μM CT26: 9.27 ± 1.497 μM Detroit 551: 52.72 ± 9.042 μM | TCA cycle | PDK1 | Inhibited PDK1 activity and decreased lactate production, thus promoting and switching metabolic patterns from glycolysis to OXPHOS | [93] |
Diterpenes | Oridonin | Isodon rubescens (Hemsl.) | HCT15, COLO205, HCT116, RKO, SW480, SW620, xenograft mouse model | HCT15: 14.105 μM COLO205: 10.272 μM HCT116: 32.977 μM RKO:20.552 μM SW480: 13.373 μM SW620: 11.774 μM | Glycolysis | GLUT1, MCT1 | Altered energy homeostasis in cancer cells through downregulating GLUT1 and MCT1 by inhibiting AMPK | [72] |
Triterpenoids | Rhus chinensis triterpenoids extract | Rhus chinensis Mill. | SW620, HCT116 | SW620: 112.3 μg/mL HCT116: 89.6 μg/ml | Glycolysis | GLUT1, LDHA, PKM2, MCT1 | Inhibited the expression of glucose metabolism enzymes to mediate lactate transport, and affect the ASIC2-mediated calcineurin/NFAT1 pathway | [73] |
Bicyclic sesquiterpenoids | β-caryophyllene | yzygium aromaticum (L.) Merr. & L.M.Perry | CT26, xenograft mouse model | - | Glycolysis | ART1 | Inhibited ART1-induced glycolysis through AKT/mTOR pathway | [79] |
Quinones | Thymoquinone | Nigella sativa L. | HCT116, SW480 | HCT116: 21.71 μM SW480: 20.53 μM | Glycolysis | HK2 | Inhibited HK2-mediated glycolytic metabolism via the PI3K-AKT/HK2 pathway | [71] |
water extracts | Myristica fragrans Houtt. | HT29 | 31.8 ± 1.8 μg/mL | Glycolysis | LDHA | Downregulated LDHA enzyme activity, thereby decreasing lactate production and glucose uptake | [80] | |
Alcoholic extract | Withania somnifera (L.) Dunal | Azoxymethane-induced colon cancer animals | - | TCA cycle | ICDH, SDH, MDH,α-KGDH | Increased activities of TCA cycle key enzymes and four electron transport chain complex enzymes | [92] |
2.2. Natural Products Regulate Amino Acid Metabolism
2.3. Natural Products Regulate Lipid Metabolism
Medicinal Plant | Bioactive Compounds | Medicinal Plant | Cancer Model | IC50 | Metabolic Regulation | Targets | Potential Mechanisms | References |
---|---|---|---|---|---|---|---|---|
Flavonoids | Oroxylin A | Scutellaria baicalensis Georgi | HCT116, Xenograft mouse model | - | Lipid metabolism | HIF1α, FASN, SREBP, CPT | Inactivated HIF1α and regulates fatty acid metabolism, by blocking the Wnt signaling pathway | [132] |
Flavonoids | Onion Flavonoids | Allium cepa L. | Hyperlipidemia-subcutaneously heterotopic colorectal cancer orthotopic transplant model | - | Cholesterol metabolism | apoB TC | Regulated lipid metabolism, and decreased levels of apoB and TC | [135] |
Flavonoids | Kaempferol | Kaempferia galanga L. | ApcMin/+ mice | - | BAs metabolism | CYP27A1, CYP8B1 | Increased the protein content of liver CYP27A1 and CYP8B1. Upregulated the expression of BSEP to regulate the BA homeostasis, and inhibited the Wnt/β-catenin pathway by increasing the protein expression of FXR. | [52] |
Alkaloids | Berberine | Coptis chinensis Franch. | DLD-1, Caco-2, Xenograft mouse model | - | Fatty acid synthesis | ACC, ACL, FASN | Downregulated the expression of key enzymes of lipogenesis and inhibited lipid synthesis through the SCAP/SREBP-1 pathway, which is related to the Wnt/β-catenin pathway. | [121] |
Saponins | Ginsenoside Compound K(GCK) | Panax ginseng C. A. Mey. | SW480, HT29, HCT116, LOVO, Xenograft mouse model | SW480: 46.07 μM HT29: 43.8 μM LOVO: 19.72 μM | Lipid metabolism | PLA2G16 | Inhibited the protein expression of PLA2G16 to correct the abnormal lipid metabolism, and regulated the biosynthesis of FFA | [125] |
Sesquiterpenes | Trichothecin (TCN) | endophytic fungus of Maytenus hookeri Loes | HCT116, LOVO, Xenograft mouse model | - | monounsaturated FA (MUFA) biosynthesis | SCD-1, SREBP1, FAs | Reduced production of unsaturated FAs by blocking SCD-1 activity | [126] |
Diterpenoids | Oridonin | Isodon rubescens (Hemsl.) H.Hara | SW480, SW620 | SW480: 20.79 μM SW620: 37.02 μM | Fatty acid synthesis | FAS | Inhibited the mRNA and protein expression of FAS and SREBP1 and reduced the level of cellular fatty acids | [119] |
Glycosides | RA-XII | Rubia yunnanensis Diels | HCT116 | - | Fatty acid synthesis | SREBP1, FASN, SCD | Reduced fatty acid levels by decreasing the expression of SREBP1 and inhibiting the expressions of de novo fatty acid synthesis proteins FASN and SCD | [120] |
Polysaccharides | EPS1-1 | Rhizopus stolonifer (Ehrenb.) Vuill. | AOM/DSS-induced mice | - | Lipid metabolism | SCFAs | Modulated gut microbiota, increased the concentration of total SCFAs | [128] |
Mirabilite extract | Mirabilite | APCmin/+ mice model | - | Lipid metabolism | Mirabilite influences six lipid metabolic pathways | [131] |
2.4. Natural Products Regulate Nucleotide Metabolism
2.5. Natural Products Regulate Multiple Metabolism
3. Natural Products Regulate Metabolism Related Genes and Pathways
3.1. p53
3.2. c-Myc
3.3. HIF1α
3.4. PI3K/AKT/mTOR Signaling Pathway
3.5. AMP-Activated Protein Kinase (AMPK) Signaling Pathway
4. Synergistic Effect of Natural Products and Chemotherapy Medicine
5. Classification and Role of Natural Products Targeting CRC Metabolic Reprogramming
6. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Warburg, O. On Respiratory Impairment in Cancer Cells. Science 1956, 124, 269–270. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Shi, R.; Tang, Y.-Q.; Miao, H. Metabolism in Tumor Microenvironment: Implications for Cancer Immunotherapy. MedComm 2020, 1, 47–68. [Google Scholar] [CrossRef]
- Brown, R.E.; Short, S.P.; Williams, C.S. Colorectal Cancer and Metabolism. Curr. Color. Cancer Rep. 2018, 14, 226–241. [Google Scholar] [CrossRef]
- DeBerardinis, R.J.; Chandel, N.S. Fundamentals of Cancer Metabolism. Sci. Adv. 2016, 2, e1600200. [Google Scholar] [CrossRef]
- Noordhuis, P.; Holwerda, U.; Van der Wilt, C.L.; Van Groeningen, C.J.; Smid, K.; Meijer, S.; Pinedo, H.M.; Peters, G.J. 5-Fluorouracil Incorporation into RNA and DNA in Relation to Thymidylate Synthase Inhibition of Human Colorectal Cancers. Ann. Oncol. 2004, 15, 1025–1032. [Google Scholar] [CrossRef]
- Choe, S.; Wang, H.; DiNardo, C.D.; Stein, E.M.; de Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Watts, J.M.; Pollyea, D.A.; et al. Molecular Mechanisms Mediating Relapse Following Ivosidenib Monotherapy in IDH1-Mutant Relapsed or Refractory AML. Blood Adv. 2020, 4, 1894–1905. [Google Scholar] [CrossRef]
- Chen, X.-X.; Khyeam, S.; Zhang, Z.-J.; Zhang, K.Y.-B. Granatin B and Punicalagin from Chinese Herbal Medicine Pomegranate Peels Elicit Reactive Oxygen Species-Mediated Apoptosis and Cell Cycle Arrest in Colorectal Cancer Cells. Phytomedicine 2022, 97, 153923. [Google Scholar] [CrossRef]
- Chen, S.; Nishi, M.; Morine, Y.; Shimada, M.; Tokunaga, T.; Kashihara, H.; Takasu, C.; Yamada, S.; Wada, Y. Epigallocatechin-3-gallate Hinders Metabolic Coupling to Suppress Colorectal Cancer Malignancy through Targeting Aerobic Glycolysis in Cancer-associated Fibroblasts. Int. J. Oncol. 2022, 60, 19. [Google Scholar] [CrossRef]
- Castro, M.; Preto, M.; Vasconcelos, V.; Urbatzka, R. Obesity: The Metabolic Disease, Advances on Drug Discovery and Natural Product Research. Curr. Top. Med. Chem. 2016, 16, 2577–2604. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Li, Z.; Wang, Y.; Zhang, B.; Liu, G.; Liu, J. Network Pharmacology and Metabolomics Study on the Intervention of Traditional Chinese Medicine Huanglian Decoction in Rats with Type 2 Diabetes Mellitus. J. Ethnopharmacol. 2020, 258, 112842. [Google Scholar] [CrossRef]
- Mishra, S.; Kumar, S.; Ramdas; Khare, S.; Shukla, A.; Shanker, K.; Pal, A.; Khan, F.; Darokar, M.P. Quebrachitol from Putranjiva roxburghii Wall. (Putranjivaceae) a Potent Antimalarial: Pre-Clinical Efficacy and Its Interaction with PfLDH. Parasitol. Int. 2023, 92, 102675. [Google Scholar] [CrossRef]
- Wei, X.; Mao, T.; Li, S.; He, J.; Hou, X.; Li, H.; Zhan, M.; Yang, X.; Li, R.; Xiao, J.; et al. DT-13 Inhibited the Proliferation of Colorectal Cancer via Glycolytic Metabolism and AMPK/mTOR Signaling Pathway. Phytomedicine 2019, 54, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Huang, W.; Sang, X.; Wu, X.; Shan, Q.; Tang, D.; Xu, X.; Cao, G. Atractylenolide I Inhibits Colorectal Cancer Cell Proliferation by Affecting Metabolism and Stemness via AKT/mTOR Signaling. Phytomedicine 2020, 68, 153191. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, J.; Yin, P.; Xu, K.; Wang, Y.; Shi, F.; Gao, J.; Fu, X. New Strategies for Targeting Glucose Metabolism-Mediated Acidosis for Colorectal Cancer Therapy. J. Cell. Physiol. 2019, 234, 348–368. [Google Scholar] [CrossRef] [PubMed]
- Devic, S. Warburg Effect—A Consequence or the Cause of Carcinogenesis? J. Cancer 2016, 7, 817–822. [Google Scholar] [CrossRef]
- Ghanem, N.; El-Baba, C.; Araji, K.; El-Khoury, R.; Usta, J.; Darwiche, N. The Pentose Phosphate Pathway in Cancer: Regulation and Therapeutic Opportunities. Chemotherapy 2021, 66, 179–191. [Google Scholar] [CrossRef]
- Paul, S.; Ghosh, S.; Kumar, S. Tumor Glycolysis, an Essential Sweet Tooth of Tumor Cells. Semin. Cancer Biol. 2022, 86, 1216–1230. [Google Scholar] [CrossRef]
- Kooshki, L.; Mahdavi, P.; Fakhri, S.; Akkol, E.K.; Khan, H. Targeting Lactate Metabolism and Glycolytic Pathways in the Tumor Microenvironment by Natural Products: A Promising Strategy in Combating Cancer. Biofactors 2022, 48, 359–383. [Google Scholar] [CrossRef] [PubMed]
- Blanco, A.; Blanco, G. (Eds.) Chapter 14—Carbohydrate Metabolism. In Medical Biochemistry; Academic Press: Cambridge, MA, USA, 2017; pp. 283–323. ISBN 978-0-12-803550-4. [Google Scholar]
- Mathupala, S.P.; Ko, Y.H.; Pedersen, P.L. Hexokinase II: Cancer’s Double-Edged Sword Acting as Both Facilitator and Gatekeeper of Malignancy When Bound to Mitochondria. Oncogene 2006, 25, 4777–4786. [Google Scholar] [CrossRef]
- Wang, K.; Fan, H.; Chen, Q.; Ma, G.; Zhu, M.; Zhang, X.; Zhang, Y.; Yu, J. Curcumin Inhibits Aerobic Glycolysis and Induces Mitochondrial-Mediated Apoptosis through Hexokinase II in Human Colorectal Cancer Cells in Vitro. Anticancer Drugs 2015, 26, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, D. Insunn Muscle Glucos Uptake, and Hexokinase Revisiting Road Not Taken. Physiology 2022, 37, 115–127. [Google Scholar] [CrossRef]
- Webb, B.A.; Forouhar, F.; Szu, F.-E.; Seetharaman, J.; Tong, L.; Barber, D.L. Structures of Human Phosphofructokinase-1 and Atomic Basis of Cancer-Associated Mutations. Nature 2015, 523, 111–114. [Google Scholar] [CrossRef]
- Li, T.; Han, J.; Jia, L.; Hu, X.; Chen, L.; Wang, Y. PKM2 Coordinates Glycolysis with Mitochondrial Fusion and Oxidative Phosphorylation. Protein Cell 2019, 10, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Ancey, P.-B.; Contat, C.; Meylan, E. Glucose Transporters in Cancer—From Tumor Cells to the Tumor Microenvironment. FEBS J. 2018, 285, 2926–2943. [Google Scholar] [CrossRef]
- Long, W.; Cheeseman, C.I. Structure of, and Functional Insight into the GLUT Family of Membrane Transporters. Cell Health Cytoskelet. 2015, 7, 167–183. [Google Scholar] [CrossRef]
- Schwartz, L.; Supuran, C.T.; Alfarouk, K.O. The Warburg Effect and the Hallmarks of Cancer. Anticancer Agents Med. Chem. 2017, 17, 164–170. [Google Scholar] [CrossRef]
- Gould, G.W.; Holman, G.D. The Glucose Transporter Family: Structure, Function and Tissue-Specific Expression. Biochem. J. 1993, 295 Pt 2, 329–341. [Google Scholar] [CrossRef]
- Valvona, C.J.; Fillmore, H.L.; Nunn, P.B.; Pilkington, G.J. The Regulation and Function of Lactate Dehydrogenase A: Therapeutic Potential in Brain Tumor. Brain Pathol. 2016, 26, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Xiong, Y.; Qiao, T.; Li, X.; Jia, L.; Han, Y. Lactate Dehydrogenase A: A Key Player in Carcinogenesis and Potential Target in Cancer Therapy. Cancer Med. 2018, 7, 6124–6136. [Google Scholar] [CrossRef] [PubMed]
- Felmlee, M.A.; Jones, R.S.; Rodriguez-Cruz, V.; Follman, K.E.; Morris, M.E. Monocarboxylate Transporters (SLC16): Function, Regulation, and Role in Health and Disease. Pharmacol. Rev. 2020, 72, 466–485. [Google Scholar] [CrossRef]
- Halestrap, A.P. The SLC16 Gene Family—Structure, Role and Regulation in Health and Disease. Mol. Asp. Med. 2013, 34, 337–349. [Google Scholar] [CrossRef]
- Payen, V.L.; Mina, E.; Van Hée, V.F.; Porporato, P.E.; Sonveaux, P. Monocarboxylate Transporters in Cancer. Mol. Metab. 2019, 33, 48–66. [Google Scholar] [CrossRef]
- He, L.; Lu, N.; Dai, Q.; Zhao, Y.; Zhao, L.; Wang, H.; Li, Z.; You, Q.; Guo, Q. Wogonin Induced G1 Cell Cycle Arrest by Regulating Wnt/β-Catenin Signaling Pathway and Inactivating CDK8 in Human Colorectal Cancer Carcinoma Cells. Toxicology 2013, 312, 36–47. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, L.; Wu, Y.; Dai, Q.; Zhou, Y.; Li, Z.; Yang, L.; Guo, Q.; Lu, N. Selective Anti-Tumor Activity of Wogonin Targeting the Warburg Effect through Stablizing P53. Pharmacol. Res. 2018, 135, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shen, X.; Yan, Y.; Li, H. Pyruvate Dehydrogenase Kinases (PDKs): An Overview toward Clinical Applications. Biosci. Rep. 2021, 41, BSR20204402. [Google Scholar] [CrossRef]
- Li, S.-Y.; Shang, J.; Mao, X.-M.; Fan, R.; Li, H.-Q.; Li, R.-H.; Shen, D.-Y. Diosgenin Exerts Anti-Tumor Effects through Inactivation of cAMP/PKA/CREB Signaling Pathway in Colorectal Cancer. Eur. J. Pharmacol. 2021, 908, 174370. [Google Scholar] [CrossRef]
- Lin, S.-T.; Tu, S.-H.; Yang, P.-S.; Hsu, S.-P.; Lee, W.-H.; Ho, C.-T.; Wu, C.-H.; Lai, Y.-H.; Chen, M.-Y.; Chen, L.-C. Apple Polyphenol Phloretin Inhibits Colorectal Cancer Cell Growth via Inhibition of the Type 2 Glucose Transporter and Activation of P53-Mediated Signaling. J. Agric. Food Chem. 2016, 64, 6826–6837. [Google Scholar] [CrossRef]
- Lanmao Materia Medica of South Yunnan. Yunnan Science and Technology Press: Kunming, China, 2004; p. 977. ISBN 7-5416-1497-1.
- Yu, J.; Yang, S.; Wang, X.; Gan, R. Matrine Improved the Function of Heart Failure in Rats via Inhibiting Apoptosis and Blocking Β3-Adrenoreceptor/Endothelial Nitric Oxide Synthase Pathway. Mol. Med. Rep. 2014, 10, 3199–3204. [Google Scholar] [CrossRef]
- Pu, J.; Fang, F.-F.; Li, X.-Q.; Shu, Z.-H.; Jiang, Y.-P.; Han, T.; Peng, W.; Zheng, C.-J. Matrine Exerts a Strong Anti-Arthritic Effect on Type II Collagen-Induced Arthritis in Rats by Inhibiting Inflammatory Responses. Int. J. Mol. Sci. 2016, 17, 1410. [Google Scholar] [CrossRef] [PubMed]
- Ruan, H.; Wang, Y.; Hou, Y.; Zhang, J.; Wu, J.; Zhang, F.; Sui, M.; Luo, J.; Yang, M. Zearalenone-14-Glucoside Is Hydrolyzed to Zearalenone by β-Glucosidase in Extracellular Matrix to Exert Intracellular Toxicity in KGN Cells. Toxins 2022, 14, 458. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-D.; Zhang, H.-P.; Cao, J.; Li, G.-Z.; Wang, S.-R. Effects of Matrine on ATP Binding Cassette Transporter A1 and Cholesterol in Monocyte Cells. Basic Clin. Med. 2007, 27, 996–1000. [Google Scholar] [CrossRef]
- Hong, X.; Zhong, L.; Xie, Y.; Zheng, K.; Pang, J.; Li, Y.; Yang, Y.; Xu, X.; Mi, P.; Cao, H.; et al. Matrine Reverses the Warburg Effect and Suppresses Colon Cancer Cell Growth via Negatively Regulating HIF-1α. Front. Pharmacol. 2019, 10, 1437. [Google Scholar] [CrossRef]
- Li, X.; Sun, J.; Xu, Q.; Duan, W.; Yang, L.; Wu, X.; Lu, G.; Zhang, L.; Zheng, Y. Oxymatrine Inhibits Colorectal Cancer Metastasis via Attenuating PKM2-Mediated Aerobic Glycolysis. Cancer Manag. Res. 2020, 12, 9503–9513. [Google Scholar] [CrossRef]
- Wang, M.; Li, Q. Parthenolide Could Become a Promising and Stable Drug with Anti-Inflammatory Effects. Nat. Prod. Res. 2015, 29, 1092–1101. [Google Scholar] [CrossRef]
- Liu, X.; Wang, C.; Li, S.; Qu, L.; Yin, F.; Lu, D.; Luo, H.; Chen, X.; Luo, Z.; Cui, N.; et al. Parthenolide Derivatives as PKM2 Activators Showing Potential in Colorectal Cancer. J. Med. Chem. 2021, 64, 17304–17325. [Google Scholar] [CrossRef]
- Choi, J.-B.; Kim, J.-H.; Lee, H.; Pak, J.-N.; Shim, B.S.; Kim, S.-H. Reactive Oxygen Species and P53 Mediated Activation of P38 and Caspases Is Critically Involved in Kaempferol Induced Apoptosis in Colorectal Cancer Cells. J. Agric. Food Chem. 2018, 66, 9960–9967. [Google Scholar] [CrossRef]
- Li, X.; Khan, I.; Huang, G.; Lu, Y.; Wang, L.; Liu, Y.; Lu, L.; Hsiao, W.L.W.; Liu, Z. Kaempferol Acts on Bile Acid Signaling and Gut Microbiota to Attenuate the Tumor Burden in ApcMin/+ Mice. Eur. J. Pharmacol. 2022, 918, 174773. [Google Scholar] [CrossRef]
- Wu, H.; Cui, M.; Li, C.; Li, H.; Dai, Y.; Cui, K.; Li, Z. Kaempferol Reverses Aerobic Glycolysis via miR-339-5p-Mediated PKM Alternative Splicing in Colon Cancer Cells. J. Agric. Food Chem. 2021, 69, 3060–3068. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; Xiaolan, C.; Yu, C.; Feng, Q.; Haifeng, Y. Pharmacological Effects and Mechanisms of Tannic Acid. Biomed. Pharmacother. 2022, 154, 113561. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Ding, G.-B.; Liu, W.; Fu, R.; Sajid, A.; Li, Z. Tannic Acid Directly Targets Pyruvate Kinase Isoenzyme M2 to Attenuate Colon Cancer Cell Proliferation. Food Funct. 2018, 9, 5547–5559. [Google Scholar] [CrossRef] [PubMed]
- Samadi, P.; Sarvarian, P.; Gholipour, E.; Asenjan, K.S.; Aghebati-Maleki, L.; Motavalli, R.; Hojjat-Farsangi, M.; Yousefi, M. Berberine: A Novel Therapeutic Strategy for Cancer. IUBMB Life 2020, 72, 2065–2079. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, H.; Lu, Y.; Yang, P.; Li, Z. Berberine Inhibited the Proliferation of Cancer Cells by Suppressing the Activity of Tumor Pyruvate Kinase M2. Nat. Prod. Commun. 2017, 12, 1934578X1701200909. [Google Scholar] [CrossRef]
- Shan, S.; Shi, J.; Yang, P.; Jia, B.; Wu, H.; Zhang, X.; Li, Z. Apigenin Restrains Colon Cancer Cell Proliferation via Targeted Blocking of Pyruvate Kinase M2-Dependent Glycolysis. J. Agric. Food Chem. 2017, 65, 8136–8144. [Google Scholar] [CrossRef]
- Li, X.; Wu, B.; Wang, L.; Li, S. Extractable Amounts of Trans-Resveratrol in Seed and Berry Skin in Vitis Evaluated at the Germplasm Level. J. Agric. Food Chem. 2006, 54, 8804–8811. [Google Scholar] [CrossRef]
- Ji, M.; Li, Q.; Ji, H.; Lou, H. Investigation of the Distribution and Season Regularity of Resveratrol in Vitis Amurensis via HPLC–DAD–MS/MS. Food Chem. 2014, 142, 61–65. [Google Scholar] [CrossRef]
- Amiri, A.; Mahjoubin-Tehran, M.; Asemi, Z.; Shafiee, A.; Hajighadimi, S.; Moradizarmehri, S.; Mirzaei, H.; Mirzaei, H. Role of Resveratrol in Modulating microRNAs in Human Diseases: From Cancer to Inflammatory Disorder. Curr. Med. Chem. 2021, 28, 360–376. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Y.; Wu, C.; Yang, P.; Li, H.; Li, Z. Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial Fission. J. Agric. Food Chem. 2016, 64, 9356–9367. [Google Scholar] [CrossRef]
- Fouad, M.; Agha, A.; Merzabani, M.A.; Shouman, S. Resveratrol Inhibits Proliferation, Angiogenesis and Induces Apoptosis in Colon Cancer Cells: Calorie Restriction Is the Force to the Cytotoxicity. Hum. Exp. Toxicol. 2013, 32, 1067–1080. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yu, X.; Li, M.; Gong, G.; Liu, W.; Li, T.; Zuo, H.; Li, W.; Gao, F.; Liu, H. Cdh1-Mediated Skp2 Degradation by Dioscin Reprogrammes Aerobic Glycolysis and Inhibits Colorectal Cancer Cells Growth. EBioMedicine 2020, 51, 102570. [Google Scholar] [CrossRef]
- Wu, Z.; Han, X.; Tan, G.; Zhu, Q.; Chen, H.; Xia, Y.; Gong, J.; Wang, Z.; Wang, Y.; Yan, J. Dioscin Inhibited Glycolysis and Induced Cell Apoptosis in Colorectal Cancer via Promoting C-Myc Ubiquitination and Subsequent Hexokinase-2 Suppression. Onco-Targets Ther. 2020, 13, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jin, L.; Ma, Y.; Jiang, Z.; Tang, H.; Tong, X. Xanthohumol Inhibits Non-Small Cell Lung Cancer by Activating PUMA-Mediated Apoptosis. Toxicology 2022, 470, 153141. [Google Scholar] [CrossRef]
- Liu, W.; Li, W.; Liu, H.; Yu, X. Xanthohumol Inhibits Colorectal Cancer Cells via Downregulation of Hexokinases II-Mediated Glycolysis. Int. J. Biol. Sci. 2019, 15, 2497–2508. [Google Scholar] [CrossRef]
- Kohandel, Z.; Farkhondeh, T.; Aschner, M.; Samarghandian, S. Anti-Inflammatory Effects of Thymoquinone and Its Protective Effects against Several Diseases. Biomed. Pharmacother. 2021, 138, 111492. [Google Scholar] [CrossRef]
- Mahmoud, Y.K.; Abdelrazek, H.M.A. Cancer: Thymoquinone Antioxidant/pro-Oxidant Effect as Potential Anticancer Remedy. Biomed. Pharmacother. 2019, 115, 108783. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, P.; Reeta, K.H.; Maulik, S.K.; Dinda, A.K.; Gupta, Y.K. Protective Effect of Thymoquinone against High-Fructose Diet-Induced Metabolic Syndrome in Rats. Eur. J. Nutr. 2015, 54, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- Karim, S.; Burzangi, A.S.; Ahmad, A.; Siddiqui, N.A.; Ibrahim, I.M.; Sharma, P.; Abualsunun, W.A.; Gabr, G.A. PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 2305. [Google Scholar] [CrossRef]
- Yao, Z.; Xie, F.; Li, M.; Liang, Z.; Xu, W.; Yang, J.; Liu, C.; Li, H.; Zhou, H.; Qu, L.-H. Oridonin Induces Autophagy via Inhibition of Glucose Metabolism in P53-Mutated Colorectal Cancer Cells. Cell Death Dis. 2017, 8, e2633. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.-Z.; Yu, Y.; Wang, J.-J. Inhibitory ASIC2-Mediated Calcineurin/NFAT against Colorectal Cancer by Triterpenoids Extracted from Rhus Chinensis Mill. J. Ethnopharmacol. 2019, 235, 255–267. [Google Scholar] [CrossRef]
- Saltan Çitoğlu, G.; Bahadır Acıkara, Ö.; Sever Yılmaz, B.; Özbek, H. Evaluation of Analgesic, Anti-Inflammatory and Hepatoprotective Effects of Lycorine from Sternbergia Fisheriana (Herbert) Rupr. Fitoterapia 2012, 83, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, Z.; Wang, R.; Zhang, Z.-R.; Zhang, Y.-N.; Deng, C.-L.; Zhang, B.; Shang, L.-Q.; Ye, H.-Q. In Vitro Inhibition of Alphaviruses by Lycorine. Virol. Sin. 2021, 36, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, S.; Zhou, C.; Sun, Z.; Wang, Q.; Sun, C. In Vitro and in Vivo Anticancer Activity of Lycorine in Prostate Cancer by Inhibiting NF-κB Signaling Pathway. J. Cancer 2022, 13, 3151–3159. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, F.; Li, L.; Liu, T.; Liang, X.; Yang, Z.; Zheng, Y.; Luo, Q.; Lu, J.; Liu, D.; Zeng, K.; et al. Lycorine Promotes IDH1 Acetylation to Induce Mitochondrial Dynamics Imbalance in Colorectal Cancer Cells. Cancer Lett. 2023, 573, 216364. [Google Scholar] [CrossRef]
- Li, L.; Liu, P.; Xie, Y.; Liu, Y.; Chen, Z.; Geng, Y.; Zhang, L. Xanthatin Inhibits Human Colon Cancer Cells Progression via mTOR Signaling Mediated Energy Metabolism Alteration. Drug Dev. Res. 2022, 83, 119–130. [Google Scholar] [CrossRef]
- Zhou, L.; Zhan, M.; Tang, Y.; Xiao, M.; Li, M.; Li, Q.; Yang, L.; Li, X.; Chen, W.; Wang, Y. Effects of β-Caryophyllene on Arginine ADP-Ribosyltransferase 1-Mediated Regulation of Glycolysis in Colorectal Cancer under High-Glucose Conditions. Int. J. Oncol. 2018, 53, 1613–1624. [Google Scholar] [CrossRef]
- Kim, E.; Choi, H.; Park, M.; Jung, Y.; Lee, S.; Kim, K.; Choi, J.; Chung, T.; Ha, K. Myristica Fragrans Suppresses Tumor Growth and Metabolism by Inhibiting Lactate Dehydrogenase A. Am. J. Chin. Med. 2016, 44, 1063–1079. [Google Scholar] [CrossRef]
- Kang, W.; Suzuki, M.; Saito, T.; Miyado, K. Emerging Role of TCA Cycle-Related Enzymes in Human Diseases. Int. J. Mol. Sci. 2021, 22, 13057. [Google Scholar] [CrossRef]
- Grimm, M.; Calgéer, B.; Teriete, P.; Biegner, T.; Munz, A.; Reinert, S. Targeting Thiamine-Dependent Enzymes for Metabolic Therapies in Oral Squamous Cell Carcinoma? Clin. Transl. Oncol. 2016, 18, 196–205. [Google Scholar] [CrossRef]
- Vercellino, I.; Sazanov, L.A. The Assembly, Regulation and Function of the Mitochondrial Respiratory Chain. Nat. Rev. Mol. Cell Biol. 2022, 23, 141–161. [Google Scholar] [CrossRef]
- Stacpoole, P.W.; McCall, C.E. The Pyruvate Dehydrogenase Complex: Life’s Essential, Vulnerable and Druggable Energy Homeostat. Mitochondrion 2023, 70, 59–102. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Tao, K.; Cai, X. Pan-Cancer Analysis Reveals PDK Family as Potential Indicators Related to Prognosis and Immune Infiltration. Sci. Rep. 2024, 14, 5665. [Google Scholar] [CrossRef] [PubMed]
- Saunier, E.; Antonio, S.; Regazzetti, A.; Auzeil, N.; Laprévote, O.; Shay, J.W.; Coumoul, X.; Barouki, R.; Benelli, C.; Huc, L.; et al. Resveratrol Reverses the Warburg Effect by Targeting the Pyruvate Dehydrogenase Complex in Colon Cancer Cells. Sci. Rep. 2017, 7, 6945. [Google Scholar] [CrossRef]
- Bhat, J.A.; Akther, T.; Najar, R.A.; Rasool, F.; Hamid, A. Withania somnifera (L.) Dunal (Ashwagandha); Current Understanding and Future Prospect as a Potential Drug Candidate. Front. Pharmacol. 2022, 13, 1029123. [Google Scholar] [CrossRef]
- Dar, P.A.; Mir, S.A.; Bhat, J.A.; Hamid, A.; Singh, L.R.; Malik, F.; Dar, T.A. An Anti-Cancerous Protein Fraction from Withania Somnifera Induces ROS-Dependent Mitochondria-Mediated Apoptosis in Human MDA-MB-231 Breast Cancer Cells. Int. J. Biol. Macromol. 2019, 135, 77–87. [Google Scholar] [CrossRef]
- Bisht, P.; Rawat, V. Antibacterial Activity of Withania Somnifera against Gram-Positive Isolates from Pus Samples. AYU (Int. Q. J. Res. Ayurveda) 2014, 35, 330–332. [Google Scholar] [CrossRef]
- Pawar, P.; Gilda, S.; Sharma, S.; Jagtap, S.; Paradkar, A.; Mahadik, K.; Ranjekar, P.; Harsulkar, A. Rectal Gel Application of Withania Somnifera Root Extract Expounds Anti-Inflammatory and Muco-Restorative Activity in TNBS-Induced Inflammatory Bowel Disease. BMC Complement. Altern. Med. 2011, 11, 34. [Google Scholar] [CrossRef]
- Ojha, S.K.; Arya, D.S. Withania Somnifera Dunal (Ashwagandha): A Promising Remedy for Cardiovascular Diseases. World J. Med. Sci. 2009, 4, 156–158. [Google Scholar]
- Muralikrishnan, G.; Amanullah, S.; Basha, M.I.; Dinda, A.K.; Shakeel, F. Modulating Effect of Withania Somnifera on TCA Cycle Enzymes and Electron Transport Chain in Azoxymethane-Induced Colon Cancer in Mice. Immunopharmacol. Immunotoxicol. 2010, 32, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Kim, E.; Chung, T.; Han, C.; Park, S.; Han, J.; Bae, S.; Lee, J.; Kim, Y.; Jang, S.; et al. Hemistepsin A Suppresses Colorectal Cancer Growth through Inhibiting Pyruvate Dehydrogenase Kinase Activity. Sci. Rep. 2020, 10, 21940. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhang, W.; Xie, Y.; Chen, X.; Olmstead, E.E.; Lian, M.; Zhang, B.; Zaytseva, Y.Y.; Evers, B.M.; Spielmann, H.P.; et al. Diaminobutoxy-Substituted Isoflavonoid (DBI-1) Enhances the Therapeutic Efficacy of GLUT1 Inhibitor BAY-876 by Modulating Metabolic Pathways in Colon Cancer Cells. Mol. Cancer Ther. 2022, 21, 740–750. [Google Scholar] [CrossRef]
- Rashida, Z.; Laxman, S. The Pentose Phosphate Pathway and Organization of Metabolic Networks Enabling Growth Programs. Curr. Opin. Syst. Biol. 2021, 28, 100390. [Google Scholar] [CrossRef]
- Stincone, A.; Prigione, A.; Cramer, T.; Wamelink, M.M.C.; Campbell, K.; Cheung, E.; Olin-Sandoval, V.; Grüning, N.-M.; Krüger, A.; Tauqeer Alam, M.; et al. The Return of Metabolism: Biochemistry and Physiology of the Pentose Phosphate Pathway. Biol. Rev. Camb. Philos. Soc. 2015, 90, 927–963. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Zhang, L.; Gao, W.; Huang, C.; Huber, P.E.; Zhou, X.; Li, C.; Shen, G.; Zou, B. NAD+ Metabolism: Pathophysiologic Mechanisms and Therapeutic Potential. Signal Transduct. Target. Ther. 2020, 5, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhao, L.; Liu, S.; Li, Y.; Xia, S.; Chen, D.; Wang, M.; Wu, S.; Dai, Q.; Vu, H.; et al. γ-6-Phosphogluconolactone, a Byproduct of the Oxidative Pentose Phosphate Pathway, Contributes to AMPK Activation through Inhibition of PP2A. Mol. Cell 2019, 76, 857–871. [Google Scholar] [CrossRef]
- Sánchez-Tena, S.; Alcarraz-Vizán, G.; Marín, S.; Torres, J.L.; Cascante, M. Epicatechin Gallate Impairs Colon Cancer Cell Metabolic Productivity. J. Agric. Food Chem. 2013, 61, 4310–4317. [Google Scholar] [CrossRef]
- Vanamala, J.; Radhakrishnan, S.; Reddivari, L.; Bhat, V.B.; Ptitsyn, A. Resveratrol Suppresses Human Colon Cancer Cell Proliferation and Induces Apoptosis via Targeting the Pentose Phosphate and the Talin-FAK Signaling Pathways-A Proteomic Approach. Proteome Sci. 2011, 9, 49. [Google Scholar] [CrossRef]
- Chen, G.-Q.; Tang, C.-F.; Shi, X.-K.; Lin, C.-Y.; Fatima, S.; Pan, X.-H.; Yang, D.-J.; Zhang, G.; Lu, A.-P.; Lin, S.-H.; et al. Halofuginone Inhibits Colorectal Cancer Growth through Suppression of Akt/mTORC1 Signaling and Glucose Metabolism. Oncotarget 2015, 6, 24148–24162. [Google Scholar] [CrossRef]
- Catanzaro, D.; Gabbia, D.; Cocetta, V.; Biagi, M.; Ragazzi, E.; Montopoli, M.; Carrara, M. Silybin Counteracts Doxorubicin Resistance by Inhibiting GLUT1 Expression. Fitoterapia 2018, 124, 42–48. [Google Scholar] [CrossRef]
- Amorim, R.; Pinheiro, C.; Miranda-Gonçalves, V.; Pereira, H.; Moyer, M.P.; Preto, A.; Baltazar, F. Monocarboxylate Transport Inhibition Potentiates the Cytotoxic Effect of 5-Fluorouracil in Colorectal Cancer Cells. Cancer Lett. 2015, 365, 68–78. [Google Scholar] [CrossRef]
- Vettore, L.; Westbrook, R.L.; Tennant, D.A. New Aspects of Amino Acid Metabolism in Cancer. Br. J. Cancer 2020, 122, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Shao, N.; Liu, J.; Zhao, J.; Chen, C.; Li, Q.; He, Z.; Zhao, X.; Xu, L. Amino Acid Metabolism in Tumor: New Shine in the Fog? Clin. Nutr. 2023, 42, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- Hensley, C.T.; Wasti, A.T.; DeBerardinis, R.J. Glutamine and Cancer: Cell Biology, Physiology, and Clinical Opportunities. J. Clin. Investig. 2013, 123, 3678–3684. [Google Scholar] [CrossRef]
- Le, A.; Lane, A.N.; Hamaker, M.; Bose, S.; Gouw, A.; Barbi, J.; Tsukamoto, T.; Rojas, C.J.; Slusher, B.S.; Zhang, H.; et al. Glucose-Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in B Cells. Cell Metab. 2012, 15, 110–121. [Google Scholar] [CrossRef]
- Kodama, M.; Oshikawa, K.; Shimizu, H.; Yoshioka, S.; Takahashi, M.; Izumi, Y.; Bamba, T.; Tateishi, C.; Tomonaga, T.; Matsumoto, M.; et al. A Shift in Glutamine Nitrogen Metabolism Contributes to the Malignant Progression of Cancer. Nat. Commun. 2020, 11, 1320. [Google Scholar] [CrossRef]
- Abu Aboud, O.; Habib, S.L.; Trott, J.; Stewart, B.; Liang, S.; Chaudhari, A.J.; Sutcliffe, J.; Weiss, R.H. Glutamine Addiction in Kidney Cancer Suppresses Oxidative Stress and Can Be Exploited for Real-Time Imaging. Cancer Res. 2017, 77, 6746–6758. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Yin, G.; Wang, G.; Liu, T.; Liang, L.; Yang, X.; Zhang, W.; Tang, D. Degradation of HIF-1α Induced by Curcumol Blocks Glutaminolysis and Inhibits Epithelial-Mesenchymal Transition and Invasion in Colorectal Cancer Cells. Cell Biol. Toxicol. 2023, 39, 1957–1978. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, M.; Wang, Z.; Zhang, J.; Cui, W.; Li, J.; Zhu, X.; Zhang, H.; Yang, D.; Xu, X. Curcumin Reverses Doxorubicin Resistance in Colon Cancer Cells at the Metabolic Level. J. Pharm. Biomed. Anal. 2021, 201, 114129. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Zhang, T.; Wei, P.; Li, N.; Zhang, W.; Ding, X.; Li, J. 1H NMR-Based Metabolomics Reveals the Antitumor Mechanisms of Triptolide in BALB/c Mice Bearing CT26 Tumors. Front. Pharmacol. 2019, 10, 1175. [Google Scholar] [CrossRef]
- He, W.; Tao, W.; Zhang, F.; Jie, Q.; He, Y.; Zhu, W.; Tan, J.; Shen, W.; Li, L.; Yang, Y.; et al. Lobetyolin Induces Apoptosis of Colon Cancer Cells by Inhibiting Glutamine Metabolism. J. Cell. Mol. Med. 2020, 24, 3359–3369. [Google Scholar] [CrossRef] [PubMed]
- Cockcroft, S. Mammalian Lipids: Structure, Synthesis and Function. Essays Biochem. 2021, 65, 813–845. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhou, X.; Yan, P.; Yang, C.; Li, Y.; Han, L.; Ren, X. Lipid Metabolism Reprogramming in Colorectal Cancer. J. Cell Biochem. 2023, 124, 3–16. [Google Scholar] [CrossRef]
- Broadfield, L.A.; Pane, A.A.; Talebi, A.; Swinnen, J.V.; Fendt, S.-M. Lipid Metabolism in Cancer: New Perspectives and Emerging Mechanisms. Dev. Cell 2021, 56, 1363–1393. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, L.; Qiu, Z.; Deng, W.; Wang, W. Key Molecules of Fatty Acid Metabolism in Gastric Cancer. Biomolecules 2022, 12, 706. [Google Scholar] [CrossRef] [PubMed]
- Alannan, M.; Fayyad-Kazan, H.; Trézéguet, V.; Merched, A. Targeting Lipid Metabolism in Liver Cancer. Biochemistry 2020, 59, 3951–3964. [Google Scholar] [CrossRef]
- Kwan, H.-Y.; Yang, Z.; Fong, W.-F.; Hu, Y.-M.; Yu, Z.-L.; Hsiao, W.-L.W. The Anticancer Effect of Oridonin Is Mediated by Fatty Acid Synthase Suppression in Human Colorectal Cancer Cells. J. Gastroenterol. 2013, 48, 182–192. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, D.; He, J.; Song, L.; Chen, H.; Zhang, Z.; Tan, N. Inhibition of Fatty Acid Synthesis Arrests Colorectal Neoplasm Growth and Metastasis: Anti-Cancer Therapeutical Effects of Natural Cyclopeptide RA-XII. Biochem. Biophys. Res. Commun. 2019, 512, 819–824. [Google Scholar] [CrossRef]
- Liu, Y.; Hua, W.; Li, Y.; Xian, X.; Zhao, Z.; Liu, C.; Zou, J.; Li, J.; Fang, X.; Zhu, Y. Berberine Suppresses Colon Cancer Cell Proliferation by Inhibiting the SCAP/SREBP-1 Signaling Pathway-Mediated Lipogenesis. Biochem. Pharmacol. 2020, 174, 113776. [Google Scholar] [CrossRef]
- Park, E.-K.; Shin, Y.-W.; Lee, H.-U.; Kim, S.-S.; Lee, Y.-C.; Lee, B.-Y.; Kim, D.-H. Inhibitory Effect of Ginsenoside Rbl and Compound K on NO and Prostaglandin E2 Biosyntheses of RAW264.7 Cells Induced by Lipopolysaccharide. Biol. Pharm. Bull. 2005, 28, 652–656. [Google Scholar] [CrossRef]
- Dong, X.; Han, H.; Shi, H.; Wang, T.; Zhao, J. Compound K, a Metabolite of Ginseng Saponin, Induces Apoptosis of Hepatocellular Carcinoma Cells through the Mitochondria-Mediated Caspase-Dependent Pathway. Int. J. Clin. Exp. Med. 2017, 10, 11146–11156. [Google Scholar]
- Park, J.-S.; Shin, J.A.; Jung, J.-S.; Hyun, J.-W.; Van Le, T.K.; Kim, D.-H.; Park, E.-M.; Kim, H.-S. Anti-Inflammatory Mechanism of Compound K in Activated Microglia and Its Neuroprotective Effect on Experimental Stroke in Mice. J. Pharmacol. Exp. Ther. 2012, 341, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zheng, L.; Xie, X.; Luo, J.; Yu, J.; Zhang, L.; Meng, W.; Zhou, Y.; Chen, L.; Ouyang, D.; et al. Targeting PLA2G16, a Lipid Metabolism Gene, by Ginsenoside Compound K to Suppress the Malignant Progression of Colorectal Cancer. J. Adv. Res. 2022, 36, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Li, M.; Li, X.; Li, N.; Zhao, X.; Wang, X.; Song, Y.; Quan, J.; Cheng, C.; Liu, J.; et al. Trichothecin Inhibits Invasion and Metastasis of Colon Carcinoma Associating with SCD-1-Mediated Metabolite Alteration. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2020, 1865, 158540. [Google Scholar] [CrossRef]
- Chu, G.; Miao, Y.; Huang, K.; Song, H.; Liu, L. Role and Mechanism of Rhizopus Nigrum Polysaccharide EPS1-1 as Pharmaceutical for Therapy of Hepatocellular Carcinoma. Front. Bioeng. Biotechnol. 2020, 8, 509. [Google Scholar] [CrossRef]
- Yu, Z.; Song, G.; Liu, J.; Wang, J.; Zhang, P.; Chen, K. Beneficial Effects of Extracellular Polysaccharide from Rhizopus Nigricans on the Intestinal Immunity of Colorectal Cancer Mice. Int. J. Biol. Macromol. 2018, 115, 718–726. [Google Scholar] [CrossRef]
- Cai, H.; Du, J.; Luo, C.; Li, S. External Application of Mirabilite before Surgery Can Reduce the Inflammatory Response and Accelerate Recovery in Mild Acute Biliary Pancreatitis. BMC Gastroenterol. 2023, 23, 264. [Google Scholar] [CrossRef]
- Pan, W.; Cai, S.; Latour, J.M.; Zhong, M.; Lv, M.; Li, J.; Zhang, X.; Zhang, Y. External Use of Mirabilite Combined with Lactulose Improves Postoperative Gastrointestinal Mobility among Older Patients Undergoing Abdominal Surgery. J. Adv. Nurs. 2021, 77, 755–762. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, A.; Zhou, X.; Sun, H.; Wang, X.; Liang, L.; Wang, X. High-Throughput Lipidomics Reveal Mirabilite Regulating Lipid Metabolism as Anticancer Therapeutics. RSC Adv. 2018, 8, 35600–35610. [Google Scholar] [CrossRef]
- Ni, T.; He, Z.; Dai, Y.; Yao, J.; Guo, Q.; Wei, L. Oroxylin A Suppresses the Development and Growth of Colorectal Cancer through Reprogram of HIF1α-Modulated Fatty Acid Metabolism. Cell Death Dis. 2017, 8, e2865. [Google Scholar] [CrossRef]
- Galeone, C.; Pelucchi, C.; Levi, F.; Negri, E.; Franceschi, S.; Talamini, R.; Giacosa, A.; La Vecchia, C. Onion and Garlic Use and Human Cancer. Am. J. Clin. Nutr. 2006, 84, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Y.; Mai, Y.; Li, H.; Wang, Z.; Xu, J.; He, X. Health Benefits of the Flavonoids from Onion: Constituents and Their Pronounced Antioxidant and Anti-Neuroinflammatory Capacities. J. Agric. Food Chem. 2020, 68, 799–807. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Jin, H.; Gong, W.; Zhang, C.; Zhou, A. Effect of Onion Flavonoids on Colorectal Cancer with Hyperlipidemia: An in Vivo Study. Onco Targets Ther. 2014, 7, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Lane, A.N.; Fan, T.W.-M. Regulation of Mammalian Nucleotide Metabolism and Biosynthesis. Nucleic Acids Res. 2015, 43, 2466–2485. [Google Scholar] [CrossRef]
- Mullen, N.J.; Singh, P.K. Nucleotide Metabolism: A Pan-Cancer Metabolic Dependency. Nat. Rev. Cancer 2023, 23, 275–294. [Google Scholar] [CrossRef]
- Li, Y.; Luo, W.; Zhang, H.; Wang, C.; Yu, C.; Jiang, Z.; Zhang, W. Antitumor Mechanism of Hydroxycamptothecin via the Metabolic Perturbation of Ribonucleotide and Deoxyribonucleotide in Human Colorectal Carcinoma Cells. Molecules 2021, 26, 4902. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, S.; Zhang, Y.; Yang, Z.; Wang, W.; Meng, M.; Feng, J.; Zhang, P.; Xiao, L.; Lee, M.; et al. 3,3′-Diindolylmethane Enhances Fluorouracil Sensitivity via Inhibition of Pyrimidine Metabolism in Colorectal Cancer. Metabolites 2022, 12, 410. [Google Scholar] [CrossRef]
- Watanabe, M.; Yamada, Y.; Kurumida, Y.; Kameda, T.; Sukeno, M.; Iizuka-Ohashi, M.; Sowa, Y.; Iizumi, Y.; Takakura, H.; Miyamoto, S.; et al. Rabdosianone I, a Bitter Diterpene from an Oriental Herb, Suppresses Thymidylate Synthase Expression by Directly Binding to ANT2 and PHB2. Cancers 2021, 13, 982. [Google Scholar] [CrossRef]
- Zheng, Z.; Xu, L.; Zhang, S.; Li, W.; Tou, F.; He, Q.; Rao, J.; Shen, Q. Peiminine Inhibits Colorectal Cancer Cell Proliferation by Inducing Apoptosis and Autophagy and Modulating Key Metabolic Pathways. Oncotarget 2017, 8, 47619–47631. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Yu, Y.; Wang, J.; Yin, P.; Xu, K. Triterpenoids Extracted from Rhus Chinensis Mill Act Against Colorectal Cancer by Inhibiting Enzymes in Glycolysis and Glutaminolysis: Network Analysis and Experimental Validation. Nutr. Cancer-Int. J. 2020, 72, 293–319. [Google Scholar] [CrossRef]
- Sharma, S.H.; Thulasingam, S.; Chellappan, D.R.; Chinnaswamy, P.; Nagarajan, S. Morin and Esculetin Supplementation Modulates C-Myc Induced Energy Metabolism and Attenuates Neoplastic Changes in Rats Challenged with the Procarcinogen 1,2-Dimethylhydrazine. Eur. J. Pharmacol. 2017, 796, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Wang, Y.; Xie, W.; Yang, T.; Jiang, Y.; Guo, Y.; Guan, J.; Liu, H. Metabolomics Study on the Antitumor Effect of Marine Natural Compound Flexibilide in HCT-116 Colon Cancer Cell Line. J. Chromatogr. B 2016, 1014, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Wang, C.; Yu, C.; Qiu, Y.; Wen, X.; Zhang, C.; Yuan, C.; Jia, W. Metabonomic Profiling Reveals Cancer Chemopreventive Effects of American Ginseng on Colon Carcinogenesis in ApcMin/+ Mice. J. Proteome Res. 2015, 14, 3336–3347. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, A.; Zhang, H.; Zhou, X.; Wang, X.; Liu, L.; Wang, X. Ultra-Performance Liquid Chromatography/Mass Spectrometry Technology and High-Throughput Metabolomics for Deciphering the Preventive Mechanism of Mirabilite on Colorectal Cancer via the Modulation of Complex Metabolic Networks. RSC Adv. 2019, 9, 35356–35363. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, B.; Cong, W.; Zhang, M.; Li, Z.; Li, Y.; Liang, S.; Chen, K.; Yang, D.; Wu, Z. Amelioration of AOM/DSS-Induced Murine Colitis-Associated Cancer by Evodiamine Intervention Is Primarily Associated with Gut Microbiota-Metabolism-Inflammatory Signaling Axis. Front. Pharmacol. 2021, 12, 797605. [Google Scholar] [CrossRef]
- Chen, X.; Shi, B.; Qi, R.; Chang, X.; Zheng, H. Ultra-Performance Liquid Chromatography/Mass Spectrometry-Based Metabolomics for Discovering Potential Biomarkers and Metabolic Pathways of Colorectal Cancer in Mouse Model (ApcMin/plus) and Revealing the Effect of Honokiol. Front. Oncol. 2021, 11, 671014. [Google Scholar] [CrossRef]
- Jansson, A.; Gentile, M.; Sun, X.F. P53 Mutations Are Present in Colorectal Cancer with Cytoplasmic P53 Accumulation. Int. J. Cancer 2001, 92, 338–341. [Google Scholar] [CrossRef]
- Zhao, K.; Zhou, Y.; Qiao, C.; Ni, T.; Li, Z.; Wang, X.; Guo, Q.; Lu, N.; Wei, L. Oroxylin A Promotes PTEN-Mediated Negative Regulation of MDM2 Transcription via SIRT3-Mediated Deacetylation to Stabilize P53 and Inhibit Glycolysis in Wt-P53 Cancer Cells. J. Hematol. Oncol. 2015, 8, 41. [Google Scholar] [CrossRef]
- Tang, H.-Y.; Goldman, A.R.; Zhang, X.; Speicher, D.W.; Dang, C.V. Measuring MYC-Mediated Metabolism in Tumorigenesis. Methods Mol. Biol. 2021, 2318, 231–239. [Google Scholar] [CrossRef]
- Guo, H.; Wan, B.; Wang, J.; Zhang, J.; Yao, W.; Shen, Z. Astragalus Saponins Inhibit Cell Growth, Aerobic Glycolysis and Attenuate the Inflammatory Response in a DSS-Induced Colitis Model. Int. J. Mol. Med. 2019, 43, 1041–1048. [Google Scholar] [CrossRef]
- Shi, J.; Shan, S.; Zhou, G.; Li, H.; Song, G.; Li, Z.; Yang, D. Bound Polyphenol from Foxtail Millet Bran Exhibits an Antiproliferative Activity in HT-29 Cells by Reprogramming miR-149-Mediated Aerobic Glycolysis. J. Funct. Foods 2019, 56, 246–254. [Google Scholar] [CrossRef]
- Hayashi, Y.; Yokota, A.; Harada, H.; Huang, G. Hypoxia/Pseudohypoxia-Mediated Activation of Hypoxia-Inducible Factor-1 in Cancer. Cancer Sci. 2019, 110, 1510–1517. [Google Scholar] [CrossRef]
- Ji, L.; Shen, W.; Zhang, F.; Qian, J.; Jiang, J.; Weng, L.; Tan, J.; Li, L.; Chen, Y.; Cheng, H.; et al. Worenine Reverses the Warburg Effect and Inhibits Colon Cancer Cell Growth by Negatively Regulating HIF-1α. Cell Mol. Biol. Lett. 2021, 26, 19. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Chen, Q.; Gong, K.; Xu, X.; Xie, Y.; Zhang, W.; Cao, H.; Hu, T.; Hong, X.; Zhan, Y.-Y. Berberine Decelerates Glucose Metabolism via Suppression of mTOR-dependent HIF-1α Protein Synthesis in Colon Cancer Cells. Oncol. Rep. 2018, 39, 2436–2442. [Google Scholar] [CrossRef] [PubMed]
- Noorolyai, S.; Shajari, N.; Baghbani, E.; Sadreddini, S.; Baradaran, B. The Relation between PI3K/AKT Signalling Pathway and Cancer. Gene 2019, 698, 120–128. [Google Scholar] [CrossRef]
- Revathidevi, S.; Munirajan, A.K. Akt in Cancer: Mediator and More. Semin. Cancer Biol. 2019, 59, 80–91. [Google Scholar] [CrossRef]
- Hoxhaj, G.; Manning, B.D. The PI3K-AKT Network at the Interface of Oncogenic Signalling and Cancer Metabolism. Nat. Rev. Cancer 2020, 20, 74–88. [Google Scholar] [CrossRef]
- Long, F.; Lin, H.; Zhang, X.; Zhang, J.; Xiao, H.; Wang, T. Atractylenolide-I Suppresses Tumorigenesis of Breast Cancer by Inhibiting Toll-Like Receptor 4-Mediated Nuclear Factor-κB Signaling Pathway. Front. Pharmacol. 2020, 11, 598939. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, L.; Zhu, L.-T.; Wang, Y.; Pan, D.; Yao, J.; You, Q.-D.; Guo, Q.-L. Wogonin Reverses Hypoxia Resistance of Human Colon Cancer HCT116 Cells via Downregulation of HIF-1α and Glycolysis, by Inhibiting PI3K/Akt Signaling Pathway. Mol. Carcinog. 2014, 53 (Suppl. S1), E107–E118. [Google Scholar] [CrossRef]
- Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMPK: A Nutrient and Energy Sensor That Maintains Energy Homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13, 251–262. [Google Scholar] [CrossRef]
- Chen, G.-Q.; Gong, R.-H.; Yang, D.-J.; Zhang, G.; Lu, A.-P.; Yan, S.-C.; Lin, S.-H.; Bian, Z.-X. Halofuginone Dually Regulates Autophagic Flux through Nutrient-Sensing Pathways in Colorectal Cancer. Cell Death Dis. 2017, 8, e2789. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Digel, M.; Küch, E.-M.; Stremmel, W.; Füllekrug, J. Silybin and Dehydrosilybin Decrease Glucose Uptake by Inhibiting GLUT Proteins. J. Cell. Biochem. 2011, 112, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Abouzeid, A.H.; Patel, N.R.; Rachman, I.M.; Senn, S.; Torchilin, V.P. Anti-Cancer Activity of Anti-GLUT1 Antibody-Targeted Polymeric Micelles Co-Loaded with Curcumin and Doxorubicin. J. Drug Target. 2013, 21, 994–1000. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, H.; Huang, L.; Duan, B.; Dai, S.; Cai, W.; Sun, M.; Jiang, Z.; Lu, R.; Jiang, Y.; et al. ATB0,+-Targeted Nanoparticles Initiate Autophagy Suppression to Overcome Chemoresistance for Enhanced Colorectal Cancer Therapy. Int. J. Pharm. 2023, 641, 123082. [Google Scholar] [CrossRef]
- Yh, K.; Js, L.; Nh, L.; Sh, K.; Cs, S.; Cg, S. Coptidis Rhizoma Extract Reverses 5-Fluorouracil Resistance in HCT116 Human Colorectal Cancer Cells via Modulation of Thymidylate Synthase. Molecules 2021, 26, 1856. [Google Scholar] [CrossRef]
- Wei, J.; Yang, P.; Li, W.; Hei, F.; Zeng, S.; Zhang, T.; Zhong, J.; Huang, D.; Chen, Z.; Wang, C.; et al. Gambogic Acid Potentiates the Chemosensitivity of Colorectal Cancer Cells to 5-Fluorouracil by Inhibiting Proliferation and Inducing Apoptosis. Exp. Ther. Med. 2017, 13, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Oyeniran, O.H.; Ademiluyi, A.O.; Oboh, G. Phenolic Constituents and Inhibitory Effects of the Leaf of Rauvolfia Vomitoria Afzel on Free Radicals, Cholinergic and Monoaminergic Enzymes in Rat’s Brain in Vitro. J. Basic. Clin. Physiol. Pharmacol. 2020, 32, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Zhan, G.; Miao, R.; Zhang, F.; Hao, Y.; Zhang, Y.; Zhang, Y.; Khurm, M.; Zhang, X.; Guo, Z. Peraksine Derivatives with Potential Anti-Inflammatory Activities from the Stems of Rauvolfia Vomitoria. Fitoterapia 2020, 146, 104704. [Google Scholar] [CrossRef]
- Cui, W.-L.; Guo, D.-X.; Wang, N.; Wang, Z.-F.; Ji, J.-B.; Wang, X.; Yang, C.-G.; Lin, Y.-Q.; Wang, S.-Q. Identification of Chemosensitizing Agents of Colorectal Cancer in Rauvolfia Vomitoria Using an NMR-Based Chemometric Approach. Front. Chem. 2022, 10, 1069591. [Google Scholar] [CrossRef]
- Wang, Z.; Kong, W.; Wang, N.; You, Y.; Wang, J.; Wang, S. A Serum Metabolomics Study Based on LC-MS: Chemosensitization Effects of Rauvolfia Vomitoria Afzel. Combined with 5-Fluorouracil on Colorectal Cancer Mice. J. Pharm. Biomed. Anal. 2022, 221, 115074. [Google Scholar] [CrossRef]
- Song, Y.; Liu, J.; Zhang, F.; Zhang, J.; Shi, T.; Zeng, Z. Antioxidant Effect of Quercetin against Acute Spinal Cord Injury in Rats and Its Correlation with the p38MAPK/iNOS Signaling Pathway. Life Sci. 2013, 92, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yao, J.; Zhou, B.; Yang, J.; Chaudry, M.T.; Wang, M.; Xiao, F.; Li, Y.; Yin, W. Bacteriostatic Effect of Quercetin as an Antibiotic Alternative In Vivo and Its Antibacterial Mechanism In Vitro. J. Food Prot. 2018, 81, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Dhanya, R.; Arya, A.D.; Nisha, P.; Jayamurthy, P. Quercetin, a Lead Compound against Type 2 Diabetes Ameliorates Glucose Uptake via AMPK Pathway in Skeletal Muscle Cell Line. Front. Pharmacol. 2017, 8, 336. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ma, J.; Li, X.; Wu, Y.; Shi, H.; Chen, Y.; Lu, G.; Shen, H.; Lu, G.; Zhou, J. Quercetin Induces P53-independent Cancer Cell Death through Lysosome Activation by the Transcription Factor EB and Reactive Oxygen Species-dependent Ferroptosis. Br. J. Pharmacol. 2021, 178, 1133–1148. [Google Scholar] [CrossRef]
- Yu, C.; Liu, S.-L.; Qi, M.-H.; Zou, X. Cinnamaldehyde/Chemotherapeutic Agents Interaction and Drug-Metabolizing Genes in Colorectal Cancer. Mol. Med. Rep. 2014, 9, 669–676. [Google Scholar] [CrossRef]
- Loo, T.W.; Clarke, D.M. Recent Progress in Understanding the Mechanism of P-Glycoprotein-Mediated Drug Efflux. J. Membr. Biol. 2005, 206, 173–185. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Paini, M.; Casazza, A.A.; Perego, P. Effect of Encapsulating Agent on Physical-Chemical Characteristics of Olive Pomace Polyphenols-Rich Extracts. Chem. Eng. Trans. 2015, 43, 97–102. [Google Scholar] [CrossRef]
- Shakeri, F.; Kiani, S.; Rahimi, G.; Boskabady, M.H. Anti-Inflammatory, Antioxidant, and Immunomodulatory Effects of Berberis Vulgaris and Its Constituent Berberine, Experimental and Clinical, a Review. Phytother. Res. 2024, 38, 1882–1902. [Google Scholar] [CrossRef]
- Tan, X.-S.; Ma, J.-Y.; Feng, R.; Ma, C.; Chen, W.-J.; Sun, Y.-P.; Fu, J.; Huang, M.; He, C.-Y.; Shou, J.-W.; et al. Tissue Distribution of Berberine and Its Metabolites after Oral Administration in Rats. PLoS ONE 2013, 8, e77969. [Google Scholar] [CrossRef]
- Wang, F.; Liang, L.; Yu, M.; Wang, W.; Badar, I.H.; Bao, Y.; Zhu, K.; Li, Y.; Shafi, S.; Li, D.; et al. Advances in Antitumor Activity and Mechanism of Natural Steroidal Saponins: A Review of Advances, Challenges, and Future Prospects. Phytomedicine 2024, 128, 155432. [Google Scholar] [CrossRef]
- Xu, D.; Shao, F.; Bian, X.; Meng, Y.; Liang, T.; Lu, Z. The Evolving Landscape of Noncanonical Functions of Metabolic Enzymes in Cancer and Other Pathologies. Cell Metab. 2021, 33, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Smit, T.; Calitz, C.; Willers, C.; Svitina, H.; Hamman, J.; Fey, S.J.; Gouws, C.; Wrzesinski, K. Characterization of an Alginate Encapsulated LS180 Spheroid Model for Anti-Colorectal Cancer Compound Screening. ACS Med. Chem. Lett. 2020, 11, 1014–1021. [Google Scholar] [CrossRef]
- Ekawati, M.M.; Nasution, M.A.F.; Siregar, S.; Rizki, I.F.; Tambunan, U.S.F. Pharmacophore-Based Virtual Screening and Molecular Docking Simulation of Terpenoid Compounds as the Inhibitor of Sonic Hedgehog Protein for Colorectal Cancer Therapy. In Proceedings of the 13th Joint Conference on Chemistry (13th JCC), Semarang, Indonesia, 7–8 September 2018; IoP Publishing Ltd.: Bristol, UK, 2019; Volume 509, p. 012075. [Google Scholar]
- Martínez-Reyes, I.; Cardona, L.R.; Kong, H.; Vasan, K.; McElroy, G.S.; Werner, M.; Kihshen, H.; Reczek, C.R.; Weinberg, S.E.; Gao, P.; et al. Mitochondrial Ubiquinol Oxidation Is Necessary for Tumour Growth. Nature 2020, 585, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Stine, Z.E.; Schug, Z.T.; Salvino, J.M.; Dang, C. Targeting Cancer Metabolism in the Era of Precision Oncology. Nat. Rev. Drug Discov. 2022, 21, 141–162. [Google Scholar] [CrossRef]
- Kaweesa, E.N.; Padhi, A.; Davis, G.N.; Mcmillan, R.P.; Brown, D.A.; Nain, A.S.; Loesgen, S. Combination of the Natural Product Mensacarcin with Vemurafenib (Zelboraf) Combats BRAF Mutant and Chemo-Resistant Melanoma in Vitro by Affecting Cell Metabolism and Cellular Migration. Adv. Cancer Biol.-Metastasis 2022, 6, 100070. [Google Scholar] [CrossRef]
- Jain, H.; Chella, N. Methods to Improve the Solubility of Therapeutical Natural Products: A Review. Environ. Chem. Lett. 2021, 19, 111–121. [Google Scholar] [CrossRef]
- Alshawwa, S.Z.; Kassem, A.A.; Farid, R.M.; Mostafa, S.K.; Labib, G.S. Nanocarrier Drug Delivery Systems: Characterization, Limitations, Future Perspectives and Implementation of Artificial Intelligence. Pharmaceutics 2022, 14, 883. [Google Scholar] [CrossRef]
Medicinal Plant | Bioactive Compounds | Medicinal Plant | Cancer Model | IC50 | Metabolic Regulation | Targets | Potential Mechanisms | References |
---|---|---|---|---|---|---|---|---|
Quinones | Curcumin | Curcuma longa L. | SW620, Dox-selected P-gp overexpresseSW620/Ad300 cells | - | spermine synthesis and D-glutamine metabolism | ODC | Inhibited the biosynthesis of spermidine by decreasing the expression of ODC and suppressed D-glutamine metabolism, thereby reducing the antioxidative stress ability and P-gp transport activity | [111] |
Sesquiterpenes | Curcumol | Curcuma longa L. | patient-derived orthotopic xenograft (PDOX) CRC mouse model | - | Glutamine metabolism | GLS1, HIF1A | Inhibited GLS1-mediated glutaminolysis, related to stimulate HIF-1α degradation | [110] |
Diterpenoids | Triptolide | Tripterygium wilfordii Hook. f. | Xenograft mouse model | - | Amid acid metabolism | Regulated branched-chain amino acid metabolism, serine/glycine/methionine biosynthesis, and ketone body metabolism to inhibit CRC | [112] | |
Polyacetylenes | Lobetyolin | Codonopsis pilosula (Franch.) Nannf. | HCT116, Xenograft mouse model | - | Glutamine metabolism | ASCT2 | Induced apoptosis and inhibited glutamine metabolism through the ASCT2 signaling pathway. | [113] |
Medicinal Plant | Bioactive Compounds | Medicinal Plant | Cancer Model | IC50 | Metabolic Regulation | Targets | Potential Mechanisms | References |
---|---|---|---|---|---|---|---|---|
Alkaloids | Hydroxycamptothecin | Camptotheca acuminata Decne. | HCT116 | 2.33 ± 0.14 μM | synthesis of DNA and RNA | RNR | Regulated the expression of RNR, to disturb RNs and dRNs metabolism, thus changing the synthesis of DNA and RNA. | [138] |
Alkaloids | 3,3’-Diindolylmethane (DIM) | Cruciferous vegetables | DLD1, HCT116 | - | Pyrimidine synthesis and catabolism | CAD, DHODH, UMPS, NME1, RNR, CTPS, UPP1 | Inhibited the expression of CAD, DHODH, UMPS, NME1, RNR, and CTPS, while increasing expression of UPP1, thereby decreasing the total contents of UTP and CTP, and blocking DHODH to disrupt pyrimidine synthesis | [139] |
Diterpenoids | Rabdosianone I | Isodon japonicus (Burm. f.) H. Hara | HT29, HCT116 | - | DNA synthesis | TS, ANT2, PHB2 | Targeted two mitochondrial inner proteins ANT2 and PHB2, and reduced mRNA and protein of TS | [140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Qu, L.; Du, X.; Song, P.; Ng, J.P.L.; Wong, V.K.W.; Law, B.Y.K.; Fu, X. Natural Products and Derivatives Targeting Metabolic Reprogramming in Colorectal Cancer: A Comprehensive Review. Metabolites 2024, 14, 490. https://doi.org/10.3390/metabo14090490
Wang M, Qu L, Du X, Song P, Ng JPL, Wong VKW, Law BYK, Fu X. Natural Products and Derivatives Targeting Metabolic Reprogramming in Colorectal Cancer: A Comprehensive Review. Metabolites. 2024; 14(9):490. https://doi.org/10.3390/metabo14090490
Chicago/Turabian StyleWang, Mengyu, Liqun Qu, Xinying Du, Peng Song, Jerome P. L. Ng, Vincent Kam Wai Wong, Betty Yuen Kwan Law, and Xianjun Fu. 2024. "Natural Products and Derivatives Targeting Metabolic Reprogramming in Colorectal Cancer: A Comprehensive Review" Metabolites 14, no. 9: 490. https://doi.org/10.3390/metabo14090490
APA StyleWang, M., Qu, L., Du, X., Song, P., Ng, J. P. L., Wong, V. K. W., Law, B. Y. K., & Fu, X. (2024). Natural Products and Derivatives Targeting Metabolic Reprogramming in Colorectal Cancer: A Comprehensive Review. Metabolites, 14(9), 490. https://doi.org/10.3390/metabo14090490