Plasma Metabolomics Study on the Impact of Different CRF Levels on MetS Risk Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Cardiorespiratory Fitness Testing and Grouping
2.3. Blood Sample Collection
2.4. Metabolite Extraction
2.5. Protein Precipitation
2.6. Sample Labeling
2.7. Sample Mixture
2.8. Analysis Condition and Data Quality Control and Metabolite Identification Results
2.9. Statistical Analysis
3. Results
3.1. Subjects
3.2. PLS-DA
3.3. OPLS-DA
3.4. Volcano Plot Analysis
3.5. Venn Diagram Analysis
3.6. Metabolite Pathway Analysis
4. Discussion
4.1. Differences in Plasma Metabolites between CRF Levels and Different Degrees of Mets Risk Factors
4.2. Higher CRF Levels Reduce the Risk of MetS Risk Factors
4.3. Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marten, R.; McIntyre, D.; Travassos, C.; Shishkin, S.; Longde, W.; Reddy, S.; Vega, J. An Assessment of Progress towards Universal Health Coverage in Brazil, Russia, India, China, and South Africa (BRICS). Lancet 2014, 384, 2164–2171. [Google Scholar] [CrossRef]
- Bye, A.; Høydal, M.A.; Catalucci, D.; Langaas, M.; Kemi, O.J.; Beisvag, V.; Koch, L.G.; Britton, S.L.; Ellingsen, Ø.; Wisløff, U. Gene Expression Profiling of Skeletal Muscle in Exercise-Trained and Sedentary Rats with Inborn High and Low VO2max. Physiol. Genomics 2008, 35, 213–221. [Google Scholar] [CrossRef]
- Martin, S.D.; McGee, S.L. The Role of Mitochondria in the Aetiology of Insulin Resistance and Type 2 Diabetes. Biochim. Biophys. Acta 2014, 1840, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Heaney, L.M.; Deighton, K.; Suzuki, T. Non-Targeted Metabolomics in Sport and Exercise Science. J. Sport Sci. 2019, 37, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Wientzek, A.; Floegel, A.; Knüppel, S.; Vigl, M.; Drogan, D.; Adamski, J.; Pischon, T.; Boeing, H. Serum Metabolites Related to Cardiorespiratory Fitness, Physical Activity Energy Expenditure, Sedentary Time and Vigorous Activity. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 215–226. [Google Scholar] [CrossRef]
- Chorell, E.; Svensson, M.B.; Moritz, T.; Antti, H. Physical Fitness Level Is Reflected by Alterations in the Human Plasma Metabolome. Mol. BioSyst. 2012, 8, 1187. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Wientzek, A.; Bachlechner, U.; Jacobs, S.; Drogan, D.; Prehn, C.; Adamski, J.; Krumsiek, J.; Schulze, M.B.; Pischon, T.; et al. Linking Diet, Physical Activity, Cardiorespiratory Fitness and Obesity to Serum Metabolite Networks: Findings from a Population-Based Study. Int. J. Obes. 2014, 38, 1388–1396. [Google Scholar] [CrossRef] [PubMed]
- Okekunle, A.P.; Li, Y.; Liu, L.; Du, S.; Wu, X.; Chen, Y.; Li, Y.; Qi, J.; Sun, C.; Feng, R. Abnormal Circulating Amino Acid Profiles in Multiple Metabolic Disorders. Diabetes Res. Clin. Pract. 2017, 132, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Kujala, U.M.; Vaara, J.P.; Kainulainen, H.; Vasankari, T.; Vaara, E.; Kyröläinen, H. Associations of Aerobic Fitness and Maximal Muscular Strength with Metabolites in Young Men. JAMA Netw. Open 2019, 2, e198265. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.; Grada, C.O.; Ryan, M.; Roche, H.M.; De Vito, G.; Gibney, M.J.; Gibney, E.R.; Brennan, L. The Relationship between Aerobic Fitness Level and Metabolic Profiles in Healthy Adults. Mol. Nutr. Food Res. 2013, 57, 1246–1254. [Google Scholar] [CrossRef]
- Sardeli, A.V.; Castro, A.; Gadelha, V.B.; Santos, W.M.D.; Lord, J.M.; Cavaglieri, C.R.; Chacon-Mikahil, M.P.T. Metabolomic Response throughout 16 Weeks of Combined Aerobic and Resistance Exercise Training in Older Women with Metabolic Syndrome. Metabolites 2022, 12, 1041. [Google Scholar] [CrossRef] [PubMed]
- Aledo, J.C. Methionine in Proteins: The Cinderella of the Proteinogenic Amino Acids. Protein Sci. 2019, 28, 1785–1796. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Olsen, T.; Vinknes, K.J.; Refsum, H.; Gulseth, H.L.; Birkeland, K.I.; Drevon, C.A. Plasma Sulphur-Containing Amino Acids, Physical Exercise and Insulin Sensitivity in Overweight Dysglycemic and Normal Weight Normoglycemic Men. Nutrients 2018, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Ristow, M.; Zarse, K. How Increased Oxidative Stress Promotes Longevity and Metabolic Health: The Concept of Mitochondrial Hormesis (Mitohormesis). Exp. Gerontol. 2010, 45, 410–418. [Google Scholar] [CrossRef]
- Falone, S.; Mirabilio, A.; Pennelli, A.; Cacchio, M.; Di Baldassarre, A.; Gallina, S.; Passerini, A.; Amicarelli, F. Differential Impact of Acute Bout of Exercise on Redox- and Oxidative Damage-Related Profiles between Untrained Subjects and Amateur Runners. Physiol. Res. 2010, 59, 953–961. [Google Scholar] [CrossRef]
- Gong, L.; Yang, S.; Zhang, W.; Han, F.; Xuan, L.; Lv, Y.; Liu, H.; Liu, L. Targeted Metabolomics for Plasma Amino Acids and Carnitines in Patients with Metabolic Syndrome Using HPLC-MS/MS. Dis. Markers 2020, 2020, 8842320. [Google Scholar] [CrossRef] [PubMed]
- Azab, S.M.; De Souza, R.J.; Lamri, A.; Shanmuganathan, M.; Kroezen, Z.; Schulze, K.M.; Desai, D.; Williams, N.C.; Morrison, K.M.; Atkinson, S.A.; et al. Metabolite Profiles and the Risk of Metabolic Syndrome in Early Childhood: A Case-Control Study. BMC Med. 2021, 19, 292. [Google Scholar] [CrossRef]
- Yan, Y.; Song, G.; Zhu, W.G.; Pan, X.L. A Comparative Study on Blood Metabolomics Characteristics of People with Different Exercise Habits. J. Beijing Sport Univ. 2021, 44, 34–46. (In Chinese) [Google Scholar]
- Tian, J.; Dang, H.N.; Yong, J.; Chui, W.-S.; Dizon, M.P.G.; Yaw, C.K.Y.; Kaufman, D.L. Oral Treatment with γ-Aminobutyric Acid Improves Glucose Tolerance and Insulin Sensitivity by Inhibiting Inflammation in High Fat Diet-Fed Mice. PLoS ONE 2011, 6, e25338. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, P.; Jiang, Q.; Cai, X.; Wang, T.; Peng, W.; Sun, J.; Zhu, C.; Zhang, C.; Yue, D.; et al. Exercise-induced A-ketoglutaric Acid Stimulates Muscle Hypertrophy and Fat Loss through OXGR1-dependent Adrenal Activation. EMBO J. 2021, 40, e108434. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhu, C.; Wang, Y.; Sun, J.; Feng, L.; Ma, W.; Li, L.; Peng, T.; Yin, C.; Xu, L.; et al. alpha-Ketoglutaric acid ameliorates hyperglycemia in diabetes by inhibiting hepatic gluconeogenesis via serpina1e signaling. Sci. Adv. 2022, 8, eabn2879. [Google Scholar] [CrossRef]
- Liang, W.D.; Huang, P.J.; Xiong, L.H.; Zhou, S.; Ye, R.Y.; Liu, H.; Wei, H.; Lai, R.Y. Metabolomics and its application in the mechanism analysis on diabetic bone metabolic abnormality. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9591–9600. [Google Scholar] [PubMed]
- Leibowitz, A.; Klin, Y.; Gruenbaum, B.; Gruenbaum, S.; Kuts, R.; Dubilet, M.; Ohayon, S.; Boyko, M.; Sheiner, E.; Shapira, Y.; et al. Effects of Strong Physical Exercise on Blood Glutamate and Its Metabolite 2-Ketoglutarate Levels in Healthy Volunteers. Acta Neurobiol. Exp. 2012, 72, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Drohomirecka, A.; Waś, J.; Wiligórska, N.; Rywik, T.M.; Komuda, K.; Sokołowska, D.; Lutyńska, A.; Zieliński, T. L-Arginine and Its Derivatives Correlate with Exercise Capacity in Patients with Advanced Heart Failure. Biomolecules 2023, 13, 423. [Google Scholar] [CrossRef]
- Holz, O.; DeLuca, D.S.; Roepcke, S.; Illig, T.; Weinberger, K.M.; Schudt, C.; Hohlfeld, J.M. Smokers with COPD Show a Shift in Energy and Nitrogen Metabolism at Rest and during Exercise. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Monti, L.D.; Setola, E.; Lucotti, P.C.G.; Marrocco-Trischitta, M.M.; Comola, M.; Galluccio, E.; Poggi, A.; Mammì, S.; Catapano, A.L.; Comi, G.; et al. Effect of a Long-term Oral L-arginine Supplementation on Glucose Metabolism: A Randomized, Double-blind, Placebo-controlled Trial. Diabetes Obes. Metab. 2012, 14, 893–900. [Google Scholar] [CrossRef]
- Lucotti, P.; Setola, E.; Monti, L.D.; Galluccio, E.; Costa, S.; Sandoli, E.P.; Fermo, I.; Rabaiotti, G.; Gatti, R.; Piatti, P. Beneficial Effects of a Long-Term Oral L-Arginine Treatment Added to a Hypocaloric Diet and Exercise Training Program in Obese, Insulin-Resistant Type 2 Diabetic Patients. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E906–E912. [Google Scholar] [CrossRef]
- Shi, X.Y.; Hou, F.F.; Niu, H.X.; Wang, G.B.; Xie, D.; Guo, Z.J.; Zhou, Z.M.; Yang, F.; Tian, J.W.; Zhang, X. Advanced Oxidation Protein Products Promote Inflammation in Diabetic Kidney through Activation of Renal Nicotinamide Adenine Dinucleotide Phosphate Oxidase. Endocrinology 2008, 149, 1829–1839. [Google Scholar] [CrossRef]
- Vasilijević, A.; Buzadžić, B.; Korać, A.; Petrović, V.; Janković, A.; Korać, B. Beneficial Effects of L-arginine–Nitric Oxide-producing Pathway in Rats Treated with Alloxan. J. Physiol. 2007, 584, 921–933. [Google Scholar] [CrossRef]
- Palmnäs, M.S.A.; Kopciuk, K.A.; Shaykhutdinov, R.A.; Robson, P.J.; Mignault, D.; Rabasa-Lhoret, R.; Vogel, H.J.; Csizmadi, I. Serum Metabolomics of Activity Energy Expenditure and Its Relation to Metabolic Syndrome and Obesity. Sci. Rep. 2018, 8, 3308. [Google Scholar] [CrossRef]
- Batch, B.C.; Shah, S.H.; Newgard, C.B.; Turer, C.B.; Haynes, C.; Bain, J.R.; Muehlbauer, M.; Patel, M.J.; Stevens, R.D.; Appel, L.J.; et al. Branched Chain Amino Acids Are Novel Biomarkers for Discrimination of Metabolic Wellness. Metabolism 2013, 62, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Dubé, J.J.; Amati, F.; Toledo, F.G.S.; Stefanovic-Racic, M.; Rossi, A.; Coen, P.; Goodpaster, B.H. Effects of Weight Loss and Exercise on Insulin Resistance, and Intramyocellular Triacylglycerol, Diacylglycerol and Ceramide. Diabetologia 2011, 54, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Samuel, V.T.; Shulman, G.I. Mechanisms for Insulin Resistance: Common Threads and Missing Links. Cell 2012, 148, 852–871. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, J.; Fang, B.; Tian, X.; Feng, Y.; Cheng, Z.; Fu, Z.; Zhang, J.; Wu, J. Runners’ Metabolomic Changes Following Marathon. Nutr. Metab. 2020, 17, 19. [Google Scholar] [CrossRef] [PubMed]
- Zou, K.; Turner, K.; Zheng, D.; Hinkley, J.M.; Kugler, B.A.; Hornby, P.J.; Lenhard, J.; Jones, T.E.; Pories, W.J.; Dohm, G.L.; et al. Impaired Glucose Partitioning in Primary Myotubes from Severely Obese Women with Type 2 Diabetes. Am. J. Physiol. Cell Physiol. 2020, 319, C1011–C1019. [Google Scholar] [CrossRef] [PubMed]
- Altman, B.J.; Stine, Z.E.; Dang, C.V. From Krebs to Clinic: Glutamine Metabolism to Cancer Therapy. Nat. Rev. Cancer 2016, 16, 619–634. [Google Scholar] [CrossRef]
- Agostini, F.; Biolo, G. Effect of Physical Activity on Glutamine Metabolism. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, R.V.; Caperuto, É.C.; De Mello, M.T.; Batista, M.L., Jr.; Rosa, L.F. Effect of Exercise on Glutamine Synthesis and Transport in Skeletal Muscle from Rats. Clin. Exp. Pharma Physiol. 2009, 36, 770–775. [Google Scholar] [CrossRef]
- Alsoud, L.O.; Soares, N.C.; Al-Hroub, H.M.; Mousa, M.; Kasabri, V.; Bulatova, N.; Suyagh, M.; Alzoubi, K.H.; El-Huneidi, W.; Abu-Irmaileh, B.; et al. Identification of Insulin Resistance Biomarkers in Metabolic Syndrome Detected by UHPLC-ESI-QTOF-MS. Metabolites 2022, 12, 508. [Google Scholar] [CrossRef]
- Lu, S.C. Glutathione Synthesis. Biochim. Biophys. Acta 2013, 1830, 3143–3153. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Hruby, A.; Toledo, E.; Clish, C.B.; Martínez-González, M.A.; Salas-Salvadó, J.; Hu, F.B. Metabolomics in Prediabetes and Diabetes: A Systematic Review and Meta-Analysis. Diabetes Care 2016, 39, 833–846. [Google Scholar] [CrossRef] [PubMed]
- Laferrère, B.; Reilly, D.; Arias, S.; Swerdlow, N.; Gorroochurn, P.; Bawa, B.; Bose, M.; Teixeira, J.; Stevens, R.D.; Wenner, B.R.; et al. Differential Metabolic Impact of Gastric Bypass Surgery versus Dietary Intervention in Obese Diabetic Subjects Despite Identical Weight Loss. Sci. Transl. Med. 2011, 3, 80re2. [Google Scholar] [CrossRef] [PubMed]
- Stump, C.S.; Short, K.R.; Bigelow, M.L.; Schimke, J.M.; Nair, K.S. Effect of Insulin on Human Skeletal Muscle Mitochondrial ATP Production, Protein Synthesis, and mRNA Transcripts. Proc. Natl. Acad. Sci. USA 2003, 100, 7996–8001. [Google Scholar] [CrossRef] [PubMed]
Name | Conditions of Association |
---|---|
chromatograph | Agilent 1290 Ultra High Performance Liquid Chromatography−6546 Quadrupole-Time of Flight Mass Spectrometer |
column | Agilent eclipse plus reversed-phase C18 column (150 mm × 2.1 mm, 1.8 µm particle size) |
mobile phase A | 0.1% (v/v) Formic acid–water |
mobile phase B | 0.1% (v/v) Formic acid–acetonitrile |
Gradient elution | t = 0 min, 25% MPB; t = 10 min, 99% MPB; t = 13 min,99% MPB t = 15 min, 99% MPB; t = 15.1 min, 25% MPB; t = 18 min, 25% MPB |
Flow rate | 400 µL/min |
column temperature | 40 °C |
Scan range | m/z 220−1000 Da |
Variables | CRF Group | MS Group | |||
---|---|---|---|---|---|
LC (n = 26) | MC (n = 26) | HC (n = 27) | LM (n = 49) | HM (n = 41) | |
Age (year) | 54.19 ± 6.01 | 53.38 ± 6.33 * | 52.85 ± 6.66 | 53.63 ± 5.98 | 52.17 ± 6.55 |
Height (cm) | 160.94 ± 6.53 | 167 ± 8.09 | 168.63 ± 6.52 * | 163.12 ± 6.71 | 168.63 ± 7.59 & |
Weight (kg) | 61.42 ± 9.01 | 67.91 ± 15.63 | 76.58 ± 24.03 * | 61.26 ± 8.40 | 77.98 ± 20.88 & |
BMI (kg/m2) | 23.63 ± 2.38 | 24.11 ± 3.89 | 26.85 ± 8.33 | 22.96 ± 2.15 | 27.30 ± 6.82 & |
WC (cm) | 80.30 ± 6.93 | 85.98 ± 13.05 | 88.56 ± 8.96 * | 80.07 ± 7.00 | 90.08 ± 11.28 & |
SBP (mmHg) | 121.81 ± 17.90 | 126.69 ± 17.85 | 130.67 ± 17.70 | 122.45 ± 17.83 | 129.51 ± 15.87 |
DBP (mmHg) | 79.42 ± 12.27 | 78.42 ± 12.81 | 82.85 ± 12.61 | 77.88 ± 12.75 | 82.34 ± 10.83 |
FPG (mmol/L) | 5.39 ± 0.85 | 5.59 ± 1.43 | 5.26 ± 0.58 | 5.17 ± 0.73 | 5.67 ± 1.14 & |
TG (mmol/L) | 1.68 ± 1.07 | 1.65 ± 1.26 | 2.31 ± 2.00 | 1.30 ± 0.73 | 2.61 ± 1.78 & |
TC (mmol/L) | 5.33 ± 1.00 | 5.11 ± 1.49 | 5.01 ± 1.41 | 5.22 ± 1.25 | 4.99 ± 1.27 & |
HDL-C (mmol/L) | 1.21 ± 0.43 | 1.17 ± 0.33 | 0.92 ± 2.07 *# | 1.27 ± 0.37 | 0.88 ± 0.13 & |
LDL-C (mmol/L) | 3.57 ± 0.85 | 3.33 ± 1.27 | 3.41 ± 1.28 | 3.50 ± 1.15 | 3.29 ± 1.04 |
Hcy (μmmol/L) | 11.46 ± 4.35 | 13.41 ± 4.77 | 13.18 ± 2.33 | 11.90 ± 3.80 | 13.66 ± 4.10 & |
VO2max | 28.90 ± 1.37 | 35.78 ± 3.41 * | 43.18 ± 1.46 *# | 34.54 ± 6.21 | 38.04 ± 5.92 & |
Variables | CRF + MS Group | |||
---|---|---|---|---|
LCLM (n = 18) | LCHM (n = 8) | HCLM (n = 12) | HCHM (n = 15) | |
Age(year) | 53.39 ± 6.01 | 56.00 ± 6.00 | 54.17 ± 6.71 | 51.80 ± 6.65 |
Height(cm) | 158.78 ± 4.20 | 165.81 ± 8.38 | 168.26 ± 5.15 * | 168.93 ± 7.61 * |
Weight(kg) | 57.98 ± 6.65 | 69.16 ± 9.16 * | 67.72 ± 8.16 * | 83.66 ± 29.98 * |
BMI(kg/m2) | 22.97 ± 2.07 | 25.13 ± 2.47 * | 23.84 ± 1.82 | 29.25 ± 10.61 * |
WC(cm) | 78.54 ± 5.66 | 84.25 ± 8.24 * | 84.68 ± 7.28 * | 91.66 ± 9.18 *& |
SBP(mmHg) | 119.06 ± 18.59 | 128.00 ± 15.55 | 121.75 ± 17.92 | 137.80 ± 14.39 *& |
DBP(mmHg) | 79.17 ± 12.32 | 80.00 ± 13.00 | 77.67 ± 12.28 | 87.00 ± 11.63 |
FPG(mmol/L) | 5.44 ± 0.99 | 5.28 ± 0.43 | 4.99 ± 0.30 | 5.47 ± 0.66 & |
TG(mmol/L) | 1.44 ± 1.03 | 2.21 ± 1.02 | 1.25 ± 0.36 # | 3.15 ± 2.37 *& |
TC(mmol/L) | 5.56 ± 0.91 | 4.81 ± 1.06 | 4.95 ± 1.73 | 5.05 ± 1.16 |
HDL-C(mmol/L) | 1.33 ± 0.46 | 0.93 ± 0.08 * | 1.07 ± 0.23 | 0.82 ± 0.94 *#& |
LDL-C(mmol/L) | 3.74 ± 0.74 | 3.20 ± 1.01 | 3.50 ± 1.77 | 3.34 ± 0.77 |
Hcy(μmmol/L) | 10.74 ± 3.59 | 13.09 ± 5.67 | 13.03 ± 3.26 | 13.30 ± 1.31 * |
VO2max | 28.90 ± 1.38 | 28.90 ± 1.24 | 43.30 ± 1.71 *# | 43.08 ± 1.29 *# |
Group | R2X | R2Y | Q2 |
---|---|---|---|
LC vs. MC vs. HC | 0.144 | 0.481 | −0.063 |
LM vs.HM | 0.322 | 0.967 | 0.520 |
LCLM vs. HCLM | 0.249 | 0.981 | 0.557 |
LCHM vs. HCHM | 0.377 | 0.992 | 0.625 |
LCLM vs. LCHM | 0.365 | 0.992 | 0.715 |
HCLM vs. HCHM | 0.290 | 0.946 | 0.195 |
LCLM vs. HCHM | 0.368 | 0.997 | 0.813 |
LCHM vs. HCLM | 0.333 | 0.998 | 0.296 |
Group | R2X | R2Y | Q2 |
---|---|---|---|
LC vs. HC | 0.259 | 0.974 | 0.607 |
LC vs. MC | 0.162 | 0.930 | 0.310 |
MC vs. HC | 0.139 | 0.810 | −0.152 |
LM vs. HM | 0.415 | 0.998 | 0.520 |
LCLM vs. HCLM | 0.296 | 0.994 | 0.548 |
LCHM vs. HCHM | 0.262 | 0.979 | 0.520 |
LCLM vs. LCHM | 0.287 | 0.966 | 0.613 |
HCLM vs. HCHM | 0.321 | 0.989 | 0.028 |
LCLM vs. HCHM | 0.342 | 0.997 | 0.651 |
LCHM vs. HCLM | 0.192 | 0.958 | 0.459 |
Compounds | CRF Group | MS Group | CRF + MS Group | |||
---|---|---|---|---|---|---|
HC vs. LC | HM vs. LM | HCLM vs. LCLM | HCHM vs. LCHM | LCHM vs. LCLM | HCHM vs. LCLM | |
L-Methionine | 0.772 * | 1.446 ** | - | 0.457 * | 2.214 * | - |
γ-Aminobutyric acid | 1.284 * | 0.701 * | - | - | - | - |
2-Oxoglutaric acid | 2.204 ** | 0.824 * | 2.872 ** | 1.481 * | - | 1.784 * |
L-Arginine | 1.343 * | 0.787 * | - | 1.251 | 0.746 ** | 1.429 ** |
L-Serine | 1.268 * | 0.725 ** | - | - | 0.703 ** | 1.404 ** |
cis-Aconitic acid | 1.681 ** | 0.809 ** | 2.026 ** | - | - | 1.289 * |
L-Glutamine | 0.581 * | 1.227 * | - | 0.783 * | - | 0.824 * |
L-Valine | 0.804 * | 1.419 ** | - | 0.787 * | - | 0.759 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fei, X.; Huang, Q.; Lin, J. Plasma Metabolomics Study on the Impact of Different CRF Levels on MetS Risk Factors. Metabolites 2024, 14, 415. https://doi.org/10.3390/metabo14080415
Fei X, Huang Q, Lin J. Plasma Metabolomics Study on the Impact of Different CRF Levels on MetS Risk Factors. Metabolites. 2024; 14(8):415. https://doi.org/10.3390/metabo14080415
Chicago/Turabian StyleFei, Xiaoxiao, Qiqi Huang, and Jiashi Lin. 2024. "Plasma Metabolomics Study on the Impact of Different CRF Levels on MetS Risk Factors" Metabolites 14, no. 8: 415. https://doi.org/10.3390/metabo14080415
APA StyleFei, X., Huang, Q., & Lin, J. (2024). Plasma Metabolomics Study on the Impact of Different CRF Levels on MetS Risk Factors. Metabolites, 14(8), 415. https://doi.org/10.3390/metabo14080415