Disturbances in Muscle Energy Metabolism in Patients with Amyotrophic Lateral Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Sample Preparation
2.3. NMR Data Acquisition
2.4. Data Analysis
3. Results
4. Discussion
Multivariate Analyzes
- (i)
- Our study had some limitations. Due to the rarity of ALS, we used a small patient cohort. The diagnosis of this disease is challenging, with an average diagnostic delay of one year. The patients included in this study have full-blown disease, and the rate of progression and length of survival with this disease is mainly individual. We also cannot determine the impact of medication on metabolic changes.
- (ii)
- NMR metabolomics covers the relatively small number of endogenous molecules related to the number of genes, RNA species, or proteins. It is obvious that in the identification of potential low molecular biomarkers, some overlap between different pathologies can occur. Therefore, and also based on the biology described above, we cannot exclude that the molecules found in this work as potential biomarkers in combination overlap with other disorders, including muscle atrophy and spasticity.
- (iii)
- The injury of one organ can lead to compensatory effects or secondary injury. Although the observed metabolomic changes in plasma could be ascribed to the muscle energy metabolism, the systematic metabolic finding is always the result of the complex mutual biochemical pathways in the comprehensive inter-organ metabolic exchange and communication.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Longinetti, E.; Fang, F. Epidemiology of Amyotrophic Lateral Sclerosis: An Update of Recent Literature. Curr. Opin. Neurol. 2019, 32, 771–776. [Google Scholar] [CrossRef]
- McCombe, P.A.; Henderson, R.D. Effects of Gender in Amyotrophic Lateral Sclerosis. Gend. Med. 2010, 7, 557–570. [Google Scholar] [CrossRef] [PubMed]
- Manjaly, Z.R.; Scott, K.M.; Abhinav, K.; Wijesekera, L.; Ganesalingam, J.; Goldstein, L.H.; Janssen, A.; Dougherty, A.; Willey, E.; Stanton, B.R.; et al. The Sex Ratio in Amyotrophic Lateral Sclerosis: A Population Based Study. Amyotroph. Lateral Scler. 2010, 11, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Salucci, S.; Bartoletti Stella, A.; Battistelli, M.; Burattini, S.; Bavelloni, A.; Cocco, L.I.; Gobbi, P.; Faenza, I. How Inflammation Pathways Contribute to Cell Death in Neuro-Muscular Disorders. Biomolecules 2021, 11, 1109. [Google Scholar] [CrossRef] [PubMed]
- Michalska, P.; León, R. When It Comes to an End: Oxidative Stress Crosstalk with Protein Aggregation and Neuroinflammation Induce Neurodegeneration. Antioxidants 2020, 9, 740. [Google Scholar] [CrossRef] [PubMed]
- Gordon, P.H. Amyotrophic Lateral Sclerosis: Pathophysiology, Diagnosis and Management. CNS Drugs 2011, 25, 1–15. [Google Scholar] [CrossRef]
- Chiò, A.; Moglia, C.; Canosa, A.; Manera, U.; Vasta, R.; Brunetti, M.; Barberis, M.; Corrado, L.; D’Alfonso, S.; Bersano, E.; et al. Cognitive Impairment across ALS Clinical Stages in a Population-Based Cohort. Neurology 2019, 93, e984–e994. [Google Scholar] [CrossRef]
- Crockford, C.; Newton, J.; Lonergan, K.; Chiwera, T.; Booth, T.; Chandran, S.; Colville, S.; Heverin, M.; Mays, I.; Pal, S.; et al. ALS-Specific Cognitive and Behavior Changes Associated with Advancing Disease Stage in ALS. Neurology 2018, 91, e1370–e1380. [Google Scholar] [CrossRef] [PubMed]
- Dubbioso, R.; Provitera, V.; Pacella, D.; Santoro, L.; Manganelli, F.; Nolano, M. Autonomic Dysfunction Is Associated with Disease Progression and Survival in Amyotrophic Lateral Sclerosis: A Prospective Longitudinal Cohort Study. J. Neurol. 2023, 270, 4968–4977. [Google Scholar] [CrossRef]
- Nolano, M.; Provitera, V.; Caporaso, G.; Fasolino, I.; Borreca, I.; Stancanelli, A.; Iuzzolino, V.V.; Senerchia, G.; Vitale, F.; Tozza, S.; et al. Skin Innervation across Amyotrophic Lateral Sclerosis Clinical Stages: New Prognostic Biomarkers. Brain 2024, 147, 1740–1750. [Google Scholar] [CrossRef]
- Vandoorne, T.; De Bock, K.; Van Den Bosch, L. Energy Metabolism in ALS: An Underappreciated Opportunity? Acta Neuropathol. 2018, 135, 489–509. [Google Scholar] [CrossRef] [PubMed]
- Stanga, S.; Caretto, A.; Boido, M.; Vercelli, A. Mitochondrial Dysfunctions: A Red Thread across Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 3719. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, X.; Huo, Z.; Chen, Y.; Liu, J.; Zhao, Z.; Meng, F.; Su, Q.; Bao, W.; Zhang, L.; et al. The Impact of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2022, 11, 2049. [Google Scholar] [CrossRef] [PubMed]
- Genin, E.C.; Abou-Ali, M.; Paquis-Flucklinger, V. Mitochondria, a Key Target in Amyotrophic Lateral Sclerosis Pathogenesis. Genes 2023, 14, 1981. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.J.; Jolivet, R.; Attwell, D. Synaptic Energy Use and Supply. Neuron 2012, 75, 762–777. [Google Scholar] [CrossRef]
- Sheng, Z.-H. The Interplay of Axonal Energy Homeostasis and Mitochondrial Trafficking and Anchoring. Trends Cell Biol. 2017, 27, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Gray, E.; Larkin, J.R.; Claridge, T.D.W.; Talbot, K.; Sibson, N.R.; Turner, M.R. The Longitudinal Cerebrospinal Fluid Metabolomic Profile of Amyotrophic Lateral Sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2015, 16, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wuolikainen, A.; Trupp, M.; Jonsson, P.; Marklund, S.L.; Andersen, P.M.; Forsgren, L.; Öhman, A. NMR Analysis of the CSF and Plasma Metabolome of Rigorously Matched Amyotrophic Lateral Sclerosis, Parkinson’s Disease and Control Subjects. Metabolomics 2016, 12, 101. [Google Scholar] [CrossRef]
- Germeys, C.; Vandoorne, T.; Bercier, V.; Van Den Bosch, L. Existing and Emerging Metabolomic Tools for ALS Research. Genes 2019, 10, 1011. [Google Scholar] [CrossRef]
- Kumar, A.; Bala, L.; Kalita, J.; Misra, U.K.; Singh, R.L.; Khetrapal, C.L.; Babu, G.N. Metabolomic Analysis of Serum by (1) H NMR Spectroscopy in Amyotrophic Lateral Sclerosis. Clin. Chim. Acta 2010, 411, 563–567. [Google Scholar] [CrossRef]
- Goutman, S.A.; Boss, J.; Guo, K.; Alakwaa, F.M.; Patterson, A.; Kim, S.; Savelieff, M.G.; Hur, J.; Feldman, E.L. Untargeted Metabolomics Yields Insight into ALS Disease Mechanisms. J. Neurol. Neurosurg. Psychiatry 2020, 91, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Marino, C.; Grimaldi, M.; Sommella, E.M.; Ciaglia, T.; Santoro, A.; Buonocore, M.; Salviati, E.; Trojsi, F.; Polverino, A.; Sorrentino, P.; et al. The Metabolomic Profile in Amyotrophic Lateral Sclerosis Changes According to the Progression of the Disease: An Exploratory Study. Metabolites 2022, 12, 837. [Google Scholar] [CrossRef] [PubMed]
- Goutman, S.A.; Guo, K.; Savelieff, M.G.; Patterson, A.; Sakowski, S.A.; Habra, H.; Karnovsky, A.; Hur, J.; Feldman, E.L. Metabolomics Identifies Shared Lipid Pathways in Independent Amyotrophic Lateral Sclerosis Cohorts. Brain 2022, 145, 4425–4439. [Google Scholar] [CrossRef] [PubMed]
- Urbi, B.; Broadley, S.; Bedlack, R.; Russo, E.; Sabet, A. Study Protocol for a Randomised, Double-Blind, Placebo-Controlled Study Evaluating the Efficacy of Cannabis-Based Medicine Extract in Slowing the Disease pRogression of Amyotrophic Lateral Sclerosis or Motor Neurone Disease: The EMERALD Trial. BMJ Open 2019, 9, e029449. [Google Scholar] [CrossRef] [PubMed]
- Cedarbaum, J.M.; Stambler, N.; Malta, E.; Fuller, C.; Hilt, D.; Thurmond, B.; Nakanishi, A. The ALSFRS-R: A Revised ALS Functional Rating Scale That Incorporates Assessments of Respiratory Function. BDNF ALS Study Group (Phase III). J. Neurol. Sci. 1999, 169, 13–21. [Google Scholar] [CrossRef]
- Nagana Gowda, G.A.; Gowda, Y.N.; Raftery, D. Expanding the Limits of Human Blood Metabolite Quantitation Using NMR Spectroscopy. Anal. Chem. 2015, 87, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The Human Metabolome Database for 2018. Nucleic Acids Res 2018, 46, D608–D617. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the Gap between Raw Spectra and Functional Insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Liu, M.; Tang, H.; Nicholson, J.K.; Lindon, J.C. Use of 1H NMR-Determined Diffusion Coefficients to Characterize Lipoprotein Fractions in Human Blood Plasma. Magn. Reson. Chem. 2002, 40, S83–S88. [Google Scholar] [CrossRef]
- Hendriks, M.M.W.B.; van Eeuwijk, F.A.; Jellema, R.H.; Westerhuis, J.A.; Reijmers, T.H.; Hoefsloot, H.C.J.; Smilde, A.K. Data-Processing Strategies for Metabolomics Studies. TrAC Trends Anal. Chem. 2011, 30, 1685–1698. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-6848-6. [Google Scholar]
- Chicco, D.; Tötsch, N.; Jurman, G. The Matthews Correlation Coefficient (MCC) Is More Reliable than Balanced Accuracy, Bookmaker Informedness, and Markedness in Two-Class Confusion Matrix Evaluation. BioData Min. 2021, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- Sinaki, M.; Mulder, D.W. Amyotrophic Lateral Sclerosis: Relationship between Serum Creatine Kinase Level and Patient Survival. Arch. Phys. Med. Rehabil. 1986, 67, 169–171. [Google Scholar] [CrossRef] [PubMed]
- Lawton, K.A.; Cudkowicz, M.E.; Brown, M.V.; Alexander, D.; Caffrey, R.; Wulff, J.E.; Bowser, R.; Lawson, R.; Jaffa, M.; Milburn, M.V.; et al. Biochemical Alterations Associated with ALS. Amyotroph. Lateral Scler. 2012, 13, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Lawton, K.A.; Brown, M.V.; Alexander, D.; Li, Z.; Wulff, J.E.; Lawson, R.; Jaffa, M.; Milburn, M.V.; Ryals, J.A.; Bowser, R.; et al. Plasma Metabolomic Biomarker Panel to Distinguish Patients with Amyotrophic Lateral Sclerosis from Disease Mimics. Amyotroph. Lateral Scler. Front. Degener. 2014, 15, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, J.; King, R.M.; Jackson, C.E.; Bedlack, R.S.; Barohn, R.J.; Dick, A.; Phillips, L.H.; Chapin, J.; Gelinas, D.F.; Lou, J.-S. Creatine Monohydrate in ALS: Effects on Strength, Fatigue, Respiratory Status and ALSFRS. Amyotroph. Lateral Scler. 2008, 9, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Shefner, J.M.; Cudkowicz, M.E.; Schoenfeld, D.; Conrad, T.; Taft, J.; Chilton, M.; Urbinelli, L.; Qureshi, M.; Zhang, H.; Pestronk, A.; et al. A Clinical Trial of Creatine in ALS. Neurology 2004, 63, 1656–1661. [Google Scholar] [CrossRef] [PubMed]
- Ellis, A.C.; Rosenfeld, J. The Role of Creatine in the Management of Amyotrophic Lateral Sclerosis and Other Neurodegenerative Disorders. CNS Drugs 2004, 18, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Corbett, A.J.; Griggs, R.C.; Moxley, R.T. Skeletal Muscle Catabolism in Amyotrophic Lateral Sclerosis and Chronic Spinal Muscular Atrophy. Neurology 1982, 32, 550–552. [Google Scholar] [CrossRef]
- Hayamizu, K. Amino Acids and Energy Metabolism; Elsevier: Amsterdam, The Netherlands, 2017; pp. 339–349. [Google Scholar]
- Mann, G.; Mora, S.; Madu, G.; Adegoke, O.A.J. Branched-Chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-Body Metabolism. Front. Physiol. 2021, 12, 702826. [Google Scholar] [CrossRef]
- Tumani, H.; Shen, G.; Peter, J.B.; Brück, W. Glutamine Synthetase in Cerebrospinal Fluid, Serum, and Brain: A Diagnostic Marker for Alzheimer Disease? Arch. Neurol. 1999, 56, 1241–1246. [Google Scholar] [CrossRef]
- Ouyang, H.; Gao, X.; Zhang, J. Impaired Expression of BCAT1 Relates to Muscle Atrophy of Mouse Model of Sarcopenia. BMC Musculoskelet. Disord. 2022, 23, 450. [Google Scholar] [CrossRef]
- Holecek, M. Effect of Starvation on Branched-Chain Alpha-Keto Acid Dehydrogenase Activity in Rat Heart and Skeletal Muscle. Physiol. Res. 2001, 50, 19–24. [Google Scholar] [CrossRef] [PubMed]
- The Italian ALS Study Group. Branched-Chain Amino Acids and Amyotrophic Lateral Sclerosis. Neurology 1993, 43, 2466. [Google Scholar] [CrossRef] [PubMed]
- Tandan, R.; Bromberg, M.B.; Forshew, D.; Fries, T.J.; Badger, G.J.; Carpenter, J.; Krusinski, P.B.; Betts, E.F.; Arciero, K.; Nau, K. A Controlled Trial of Amino Acid Therapy in Amyotrophic Lateral Sclerosis. Neurology 1996, 47, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Testa, D.; Caraceni, T.; Fetoni, V. Branched-Chain Amino Acids in the Treatment of Amyotrophic Lateral Sclerosis. J. Neurol. 1989, 236, 445–447. [Google Scholar] [CrossRef]
- Yoo, H.-S.; Shanmugalingam, U.; Smith, P.D. Potential Roles of Branched-Chain Amino Acids in Neurodegeneration. Nutrition 2022, 103–104, 111762. [Google Scholar] [CrossRef]
- De Felice, A.; Confaloni, A.; Crestini, A.; De Simone, R.; Malchiodi-Albedi, F.; Martire, A.; Matteucci, A.; Minghetti, L.; Popoli, P.; Venerosi, A.; et al. Branched Chain Amino Acids in Experimental Models of Amyotrophic Lateral Sclerosis. In Branched Chain Amino Acids in Clinical Nutrition; Humana Press: New York, NY, USA, 2015; ISBN 978-1-4939-1922-2. [Google Scholar]
- Conn, A.R.; Steele, R.D. Transport of Alpha-Keto Analogues of Amino Acids across Blood-Brain Barrier in Rats. Am. J. Physiol. -Endocrinol. Metab. 1982, 243, E272–E277. [Google Scholar] [CrossRef]
- Hui, S.; Ghergurovich, J.M.; Morscher, R.J.; Jang, C.; Teng, X.; Lu, W.; Esparza, L.A.; Reya, T.; Zhan, L.; Guo, J.Y.; et al. Glucose Feeds the TCA Cycle via Circulating Lactate. Nature 2017, 551, 115–118. [Google Scholar] [CrossRef]
- Xia, J.; Broadhurst, D.I.; Wilson, M.; Wishart, D.S. Translational Biomarker Discovery in Clinical Metabolomics: An Introductory Tutorial. Metabolomics 2013, 9, 280–299. [Google Scholar] [CrossRef]
- Chang, K.-H.; Lin, C.-N.; Chen, C.-M.; Lyu, R.-K.; Chu, C.-C.; Liao, M.-F.; Huang, C.-C.; Chang, H.-S.; Ro, L.-S.; Kuo, H.-C. Altered Metabolic Profiles of the Plasma of Patients with Amyotrophic Lateral Sclerosis. Biomedicines 2021, 9, 1944. [Google Scholar] [CrossRef]
- Jia, R.; Chen, Q.; Zhou, Q.; Zhang, R.; Jin, J.; Hu, F.; Liu, X.; Qin, X.; Kang, L.; Zhao, S.; et al. Characteristics of Serum Metabolites in Sporadic Amyotrophic Lateral Sclerosis Patients Based on Gas Chromatography-Mass Spectrometry. Sci. Rep. 2021, 11, 20786. [Google Scholar] [CrossRef] [PubMed]
- López-López, Á.; López-Gonzálvez, Á.; Barker-Tejeda, T.C.; Barbas, C. A Review of Validated Biomarkers Obtained through Metabolomics. Expert Rev. Mol. Diagn. 2018, 18, 557–575. [Google Scholar] [CrossRef] [PubMed]
Gender | Age | Diagnostic Delay (Months) | Duration (Month) | ALSFRS Score | ΔFS | Medication | Symptoms | Onset of Symptoms | |
---|---|---|---|---|---|---|---|---|---|
1 | male | 42 | 7 | 7 | 42 | 0.85 | Riluzole Coenzyme Q10 Milgamma N | Left lower limb weakness, stiffness, motor problem, spastic-paretic gait | Spinal |
2 | female | 50 | 13 | 13 | 43 | 0.38 | Riluzole Coenzyme Q10 | Difficulty speaking, dry mouth in the evening and at night, swollen tongue, dysarthric, nasolabial speech | Bulbar |
3 | male | 43 | 38 | 38 | 38 | 0.26 | No medication | Difficulty speaking, dry mouth in the evening and at night, swollen tongue, dysarthric, nasolabial speech | Spinal |
4 | female | 63 | 12 | 12 | 33 | 1.25 | No medication | Gradually progressive weakness of the limbs, predominantly on the left, clumsiness, problems with walking | Spinal |
5 | female | 68 | 23 | 23 | 35 | 0.56 | Milgamma N | Mixed quadriparesis | Spinal |
6 | male | 81 | 9 | 9 | 33 | 1.6 | No medication | Weakness of the right lower limb, gradually also of the left lower limb, generalized fasciculations on the trunk limbs, dysphonia | Spinal |
7 | female | 74 | 7 | 7 | 35 | 1.85 | No medication | Impaired speech, difficulty swallowing, problems with fine motor skills | Bulbar |
8 | male | 60 | 16 | 16 | 41 | 0.43 | No medication | Weakness in the proximal muscles of the left upper limb | Spinal |
9 | male | 54 | 36 | 36 | 37 | 0.30 | No medication | Speech impairment, weakness, and wasting of upper limb muscles are more pronounced on the left | Spinal |
10 | male | 67 | 20 | 20 | 28 | 1 | No medication | Weakness of the left upper and lower limbs; walking with support | Spinal |
11 | female | 54 | 15 | 16 | 22 | 1.62 | Riluzole | Progressive weakness of all limbs, more left side | Spinal |
12 | male | 68 | 15 | 15 | 38 | 0.6 | No medication | Muscle twitching in the upper and lower limbs, progressive weakness of the upper limbs | Spinal |
13 | female | 72 | 12 | 12 | 31 | 1.41 | No medication | Weakness of the arm muscles with predominance on the right, weakness of the legs—only a short walk | Spinal |
14 | male | 62 | 17 | 17 | 38 | 0.58 | No medication | Mixed quadriparesis of moderate severity with marked muscle atrophy accentuated distally in the upper limbs, generalized fasciculations | Spinal |
15 | female | 69 | 4 | 4 | 45 | 0.75 | No medication | Progressive deterioration of articulation, progressive swallowing difficulties and weight loss, mixed paresis of the upper and lower limbs | Bulbar |
16 | male | 71 | 12 | 12 | 35 | 1.08 | No medication | Weakness of the upper limbs, especially in the shoulder muscles, is gradually associated with impaired swallowing and articulation | Spinal |
17 | female | 46 | 8 | 8 | 39 | 1.12 | Milgamma N | Weakness and stiffness of the lower limbs | Spinal |
18 | female | 50 | 9 | 26 | 12 | 1.0 | Riluzole | Immobile without the possibility of verbal communication | Spinal |
19 | Male | 78 | 12 | 12 | 39 | 0.75 | No medication | Weakness of the lower limbs, progressive weakness of the upper limbs, muscle wasting | Spinal |
20 | Male | 60 | 10 | 18 | 30 | 1.0 | Riluzole Coenzyme Q10 | Upper limb weakness, significant lower limb weakness, wheelchair mobility | Spinal |
21 | female | 64 | 13 | 13 | 37 | 0.84 | Riluzole Coenzyme Q10 Milgama N | Monoparesis of the right upper limb | Spinal |
22 | female | 75 | 11 | 11 | 37 | 1.0 | No medication | Problem with speech, articulation, difficulty swallowing | Bulbar |
23 | male | 59 | 12 | 16 | 29 | 1.58 | Riluzole | Weakness of the right upper limb, gradually also weakness of the right lower limb, breathing problems | Spinal |
24 | male | 68 | 11 | 11 | 35 | 1.18 | No medication | Speech problems, difficulty swallowing, fine motor problems | Bulbar |
25 | male | 57 | 12 | 15 | 30 | 1.5 | Riluzole Coenzyme Q10 | Upper limb weakness, lower limb weakness, difficulty breathing | Spinal |
ALS Patients | Control Subjects, N = 25 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Biochemical Parameters with the Reference Range | N Total/N Missing | Median | IQR | Minimum | Maximum | Median | IQR | |
Na mmol/L (136–146) | 25/1 | 140.8 | 2.7 | 130 | 143 | 138 | 2 | 0.0062 |
Cl mmol/L (101–109) | 25/2 | 105 | 4 | 90 | 108 | 103 | 2 | 0.0057 |
K mmol/L (3.5–5.1) | 25/2 | 4.2 | 0.53 | 3.4 | 4.8 | 4.1 | 0.3 | 0.6399 |
CK (male ≤ 2.85 µkat/L female ≤ 2.42 µkat/L) | 25/8 | 3.37 # | 7.985 | 0.98 | 19.04 | |||
GMT (male: <0.92 µkat/L female: <0.63 µkat/L) | 25/4 | 0.43 | 0.725 | 0.15 | 4.63 | 0.29 | 0.22 | 0.1139 |
Albumin g/L (35–52) | 25/4 | 37.7 | 3.4 | 20.56 | 42.3 | |||
Total protein g/L (66–83) | 25/5 | 65.65 | 1.35 | 57.7 | 71.1 | 71.9 | 4.5 | <0.0001 |
Total bilirubin umol/(5–21) | 25/2 | 12.4 | 4.72 | 6.9 | 36.3 | 11.2 | 7.5 | 0.3644 |
AST ukat/L (0.1–0.85) | 25/4 | 0.5 | 0.275 | 0.22 | 1.12 | 0.37 | 0.06 | 0.0021 |
ALT ukat/L (0.1–0.85) | 25/1 | 0.53 | 0.4275 | 0.17 | 1.9 | 0.3 | 0.18 | 0.0014 |
ALP ukat/L (0.5–2.15) | 25/8 | 0.96 | 0.295 | 0.71 | 2.12 | |||
Creatinine umol/L (59–104) | 25/1 | 60.63 | 27.75 | 6.8 | 77 | 74 | 15 | <0.0001 |
Urea mmol/L (2.8–7.2) | 25/2 | 4.8 | 2.5 | 1.6 | 8.2 | 4.7 | 1.3 | 0.8179 |
Glucose mmol/L (4.1–5.9) | 25/1 | 5.05 | 0.95 | 4.3 | 12.4 | 5.1 | 0.4 | 0.8000 |
CRP mg/L (0–5) | 25/7 | 1.8 | 6 | 0.3 | 68.4 | 1.6 | 2.6 | 0.4239 |
WBC (4–10 × 109) | 25/1 | 6 | 2.325 | 3.4 | 10.3 | 5.18 | 2.41 | 0.3478 |
RCB (4.1–6 × 1012) | 25/1 | 4.625 | 0.558 | 3.18 | 5.74 | 4.75 | 0.59 | 0.1613 |
Hemoglobin g/L (140–179) | 25/1 | 137 # | 18.5 | 95 | 171 | 144 | 16 | 0.0707 |
HCT (0.4–0.5) | 25/1 | 0.41 | 0.0475 | 0.29 | 0.51 | 40.4 | 5.3 | <0.0001 |
MCV (82–89 fL) | 25/1 | 90.7 # | 4.17 | 82.1 | 96.8 | 86.5 | 4.7 | 0.0007 |
MCH (28–34 pg) | 25/1 | 30.55 | 2 | 27.4 | 32.5 | 30.5 | 1.5 | 0.8003 |
MCHC (320–360 g/L) | 25/1 | 335 | 12.3 | 33 | 355 | 352 | 7 | <0.0001 |
RDW (10–15.2%) | 25/1 | 13.65 | 1.28 | 12.3 | 15.7 | 11.9 | 4.2 | <0.0001 |
PLT (150–400 × 109) | 25/1 | 191 | 75.7 | 115 | 352 | 251 | 66 | 0.0048 |
MPV (7.8–12.8 fL) | 25/1 | 9.05 | 1.325 | 6.8 | 10.9 | 8.9 | 1.4 | 0.9723 |
PDW (9–17 fL) | 25/1 | 16.85 | 1.05 | 15.3 | 18.2 | 16.4 | 0.6 | 0.1149 |
Fibrinogen (1.8–3.5 g/L) | 25/4 | 3.35 | 1.325 | 2.58 | 5.63 | |||
PT (75–120%) | 25/5 | 92 | 8.75 | 67 | 108 | |||
INR (0.8–1.2) | 25/4 | 1.05 | 0.09 | 0.95 | 1.32 | |||
APTT (23–35 s) | 25/5 | 30 | 2.77 | 22.7 | 31.7 | |||
APTTr (0.84–1.2) | 25/5 | 1.03 | 0.09 | 0.78 | 1.09 | |||
TT (<21 s) | 25/5 | 14.5 | 1.5 | 11.5 | 17.1 | |||
Neutrofiles (1.4–6.5 × 109/L) | 25/8 | 3.75 | 2.485 | 1.46 | 6.9 | 2.79 | 1.11 | 0.0427 |
Lymphocytes (1.2–3.4 × 109/L) | 25/8 | 1.8 | 0.51 | 1.3 | 3.54 | 1.85 | 0.75 | 0.6254 |
Eosinofiles (0.05–0.25 × 109/L) | 25/8 | 0.11 | 0.115 | 0.06 | 0.175 | 0.13 | 0.13 | 0.0360 |
Monocites(0.3–0.5 × 109/L) | 25/8 | 0.5 | 0.335 | 0.33 | 0.98 | 0.36 | 0.15 | 0.0009 |
Basofiles (0.0–0.1 × 109/L) | 25/8 | 0.03 | 0.02 | 0 | 0.04 | 0.02 | 0.01 | 0.2320 |
Neutrofiles % (60–70) | 25/8 | 60.1 | 13.8 | 43.4 | 72.6 | 55.60 | 12 | 0.1173 |
Lymphocytes % (20–30) | 25/8 | 29.1 | 11.8 | 18 | 44.1 | 33.2 | 12.8 | 0.0469 |
Eosinofiles % (0–5) | 25/8 | 1.7 | 1.6 | 0.5 | 3.3 | 2.8 | 1.8 | 0.0007 |
Monocites % (0–1) | 25/8 | 7.9 # | 3.5 | 5.9 | 12.8 | 6.6 | 2.9 | 0.0057 |
Basofiles % (0–1) | 25/8 | 0.4 | 0.4 | 0.2 | 0.9 | 0.4 | 0.2 | 0.5284 |
Variable Used for Discriminatory Performance | AUC | OOB | MCC |
---|---|---|---|
Creatinine | 0.85 | 0.12 | 0.76 |
Creatine | 0.81 | 0.12 | 0.76 |
Glutamine | 0.75 | 0.18 | 0.64 |
Ketoleucine | 0.72 | 0.18 | 0.64 |
Ketoisoleucine | 0.67 | 0.20 | 0.60 |
Ketovaline | 0.72 | 0.18 | 0.64 |
Creatinine, Creatine | 0.86 | 0.12 | 0.76 |
Creatinine, Creatine, Glutamine, BCKAs, 3-hydroxybutyrate, Pyruvate | 0.92 | 0.08 | 0.84 |
Metabolite | p-Value | The Relative Level of a Metabolite in ALS against Control | Change |
---|---|---|---|
Lactate | 0.2237 | 1.394 | 0.394 |
Alanine | 0.8626 | 0.9997 | −0.0003 |
Valine | >0.9999 | 0.9983 | −0.0017 |
Glucose | 0.1698 | 1.022 | 0.022 |
Leucine | 0.4526 | 0.9260 | −0.074 |
Isoleucine | 0.7292 | 0.9125 | −0.0875 |
Pyruvate | 0.020 | 1.208 | 0.208 |
Citrate | 0.441 | 1.015 | 0.015 |
Phenylalanine | 0.6581 | 0.9939 | −0.0061 |
Tyrosine | 0.8026 | 1.016 | 0.016 |
Glutamine | 0.0019 | 1.111 | 0.111 |
Lysine | 0.335 | 1.019 | 0.019 |
Lipoproteins | 0.1035 | 0.9035 | −0.0965 |
3-OH-butyrate | 0.6721 | 1.052 | 0.052 |
Ketoleucine | 0.017 | 0.9079 | −0.0925 |
Ketoisoleucine | 0.0353 | 0.9018 | −0.0982 |
Ketovaline | 0.008 | 0.8479 | −0.1521 |
Creatine | 0.0002 | 1.599 | 0.599 |
Creatinine | <0.0001 | 0.7575 | −0.2425 |
Proline | 0.1522 | 1.028 | 0.028 |
Histidine | 0.4185 | 0.9252 | −0.0748 |
Succinate | 0.1888 | 0.9024 | −0.0976 |
Tryptophan | 0.0994 | 0.8901 | −0.1099 |
Glycine | 0.2389 | 1.213 | 0.213 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parvanovova, P.; Hnilicova, P.; Kolisek, M.; Tatarkova, Z.; Halasova, E.; Kurca, E.; Holubcikova, S.; Koprusakova, M.T.; Baranovicova, E. Disturbances in Muscle Energy Metabolism in Patients with Amyotrophic Lateral Sclerosis. Metabolites 2024, 14, 356. https://doi.org/10.3390/metabo14070356
Parvanovova P, Hnilicova P, Kolisek M, Tatarkova Z, Halasova E, Kurca E, Holubcikova S, Koprusakova MT, Baranovicova E. Disturbances in Muscle Energy Metabolism in Patients with Amyotrophic Lateral Sclerosis. Metabolites. 2024; 14(7):356. https://doi.org/10.3390/metabo14070356
Chicago/Turabian StyleParvanovova, Petra, Petra Hnilicova, Martin Kolisek, Zuzana Tatarkova, Erika Halasova, Egon Kurca, Simona Holubcikova, Monika Turcanova Koprusakova, and Eva Baranovicova. 2024. "Disturbances in Muscle Energy Metabolism in Patients with Amyotrophic Lateral Sclerosis" Metabolites 14, no. 7: 356. https://doi.org/10.3390/metabo14070356
APA StyleParvanovova, P., Hnilicova, P., Kolisek, M., Tatarkova, Z., Halasova, E., Kurca, E., Holubcikova, S., Koprusakova, M. T., & Baranovicova, E. (2024). Disturbances in Muscle Energy Metabolism in Patients with Amyotrophic Lateral Sclerosis. Metabolites, 14(7), 356. https://doi.org/10.3390/metabo14070356