Can Daily Dietary Choices Have a Cardioprotective Effect? Food Compounds in the Prevention and Treatment of Cardiometabolic Diseases
Abstract
:1. Introduction
2. Methods
3. Food Compounds in Cardiometabolic Prevention
3.1. Plant Sterols and Stanols
3.2. Omega-3 Fatty Acids
- Positive impact on the structure and function of cell membranes through the positive effects of EPA on the thickness of cell membranes, increasing their fluidity and inhibiting the formation of cholesterol domains;
- Reduction of inflammation that significantly contributes to atherosclerosis by EPA creating a competition for arachidonic acid in metabolic changes, leading to less inflammatory and chemotactic metabolic products;
- Lowering blood pressure, with this effect being significantly more likely to be seen in hypertensive patients. The mechanism is based on reducing the activity of angiotensin-converting enzyme and the vagus nerve, improved vasodilatory response and arterial wall compliance;
- Antithrombotic and anti-inflammatory effects that reduce the risk of thrombosis responsible for stroke and myocardial infarction by reducing thromboxane A2 production in favor of increased synthesis of thromboxane A3;
- Improved cardiac contractility by stabilizing increased myocyte activity;
- Beneficial effects on the lipid profile by lowering triglyceride levels through a mechanism involving the reduction of hepatic lipogenesis [22].
3.3. Coenzyme Q10
3.4. Dietary Fiber
3.5. Probiotics
3.6. Vitamins C and E
3.7. Vitamin B9 and B12
3.8. Arginine
3.9. Allicin
3.10. Polyphenols
3.11. Lycopene
4. Food with Limited Salt and Sugar: The Importance of Harmful Food Compounds Elimination
5. CVD Dietary Therapy and Prevention Strategy for Individuals with Metabolic Syndrome: Nutritional Patterns and Practical Implementation Aspects
6. The Importance of Physical Activity and Stress Management in the Context of Cardiometabolic Disorders
7. Conclusions
- Lipid metabolism;
- Myocardial function;
- Anti-inflammatory effect;
- Glucose metabolism;
- Blood circulation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dyrcz, D.; Przywara-Chowaniec, B. Ocena predyspozycji młodych dorosłych do wystąpienia chorób układu krążenia. Forum Med. Rodz. 2019, 13, 36–44. [Google Scholar]
- Główny Urząd Statystyczny. Umieralność w I Półroczu 2021 r. 31.01.2022 r. Zgony Według Przyczyny—Dane Wstępne. Umieralność w I Półroczu 2021 Roku 31.01.2022 r. Zgony Według Przyczyny—Dane Wstępne. Available online: https://stat.gov.pl/obszary-tematyczne/ludnosc/statystyka-przyczyn-zgonow/umielalnosc-w-2021-roku-zgony-wedlug-przyczyn-dane-wstepne,10,3.html (accessed on 13 August 2023).
- Sedaghat, Z.; Khodakarim, S.; Nejadghaderi, S.A.; Sabour, S. Association between metabolic syndrome and myocardial infarction among patients with excess body weight: A systematic review and meta-analysis. BMC Public Health 2024, 24, 444. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhai, Y.; Zhao, J.; He, H.; Li, Y.; Liu, Y.; Feng, A.; Li, L.; Huang, T.; Xu, A.; et al. Impact of Metabolic Syndrome and It’s Components on Prognosis in Patients With Cardiovascular Diseases: A Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 704145. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, P.; Izzo, C.; Carrizzo, A. Editorial: The role of metabolic syndrome and disorders in cardiovascular disease. Front. Endocrinol. 2023, 14, 1327394. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, J.; Zhu, L.; Jiao, S.; Chen, Y.; Sun, Y. Metabolic disorders and risk of cardiovascular diseases: A two-sample mendelian randomization study. BMC Cardiovasc. Disord. 2023, 23, 529. [Google Scholar] [CrossRef] [PubMed]
- Guembe, M.J.; Fernandez-Lazaro, C.I.; Sayon-Orea, C.; Toledo, E.; Moreno-Iribas, C. RIVANA Study Investigators. Risk for cardiovascular disease associated with metabolic syndrome and its components: A 13-year prospective study in the RIVANA cohort. Cardiovasc. Diabetol. 2020, 19, 195. [Google Scholar] [CrossRef]
- Barkas, F.; Nomikos, T.; Liberopoulos, E.; Panagiotakos, D. Diet and Cardiovascular Disease Risk Among Individuals with Familial Hypercholesterolemia: Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Pan, X.F.; Chen, J.; Cao, A.; Xia, L.; Zhang, Y.; Wang, J.; Li, H.; Liu, G.; Pan, A. Combined lifestyle factors, all-cause mortality and cardiovascular disease: A systematic review and meta-analysis of prospective cohort studies. J. Epidemiol. Community Health 2021, 75, 92–99. [Google Scholar] [CrossRef]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Kardiol. Pol. 2016, 11, 1234–1318. [Google Scholar] [CrossRef]
- Topolska, K.; Florkiewicz, A.; Filipiak-Florkiewicz, A. Functional Food-Consumer Motivations and Expectations. Int. J. Environ. Res. Public Health 2021, 18, 5327. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Stoian, A.P.; Vrablik, M.; Al Rasadi, K.; Banach, M.; Toth, P.P.; Rizzo, M. Nutraceuticals in the Management of Dyslipidemia: Which, When, and for Whom? Could Nutraceuticals Help Low-Risk Individuals with Non-optimal Lipid Levels? Curr. Atheroscler. Rep. 2021, 23, 57. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Myrie, S.B. Association of Dietary Phytosterols with Cardiovascular Disease Biomarkers in Humans. Lipids 2020, 55, 569–584. [Google Scholar] [CrossRef] [PubMed]
- Weingartner, O.; Patel, S.B.; Lutjohann, D. It’s time to personalize and optimize lipid-lowering therapy. Eur. Heart J. 2020, 41, 2629–2631. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Belwal, T.; Li, L.; Limwachiranon, J.; Liu, X.; Luo, Z. Phytosterols and their derivatives: Potential health-promoting uses against lipid metabolism and associated diseases, mechanism, and safety issues. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1243–1267. [Google Scholar] [CrossRef] [PubMed]
- Cedó, L.; Farràs, M.; Lee-Rueckert, M.; Escolà-Gil, J.C. Molecular Insights into the Mechanisms Underlying the Cholesterol- Lowering Effects of Phytosterols. Curr. Med. Chem. 2019, 26, 6704–6723. [Google Scholar] [CrossRef] [PubMed]
- Wożakowska-Kapłon, B.; Salwa, P. Monakolina—Pomost między prozdrowotną modyfikacją diety a farmakoterapią hipercholesterolemii. Folia Cardiol. 2016, 11, 318–326. [Google Scholar] [CrossRef]
- Poli, A.; Marangoni, F.; Corsini, A.; Manzato, E.; Marrocco, W.; Martini, D.; Medea, G.; Visioli, F. Phytosterols, Cholesterol Control, and Cardiovascular Disease. Nutrients 2021, 13, 2810. [Google Scholar] [CrossRef]
- Wang, L.; Feng, L.; Prabahar, K.; Hernández-Wolters, B.; Wang, Z. The effect of phytosterol supplementation on lipid profile: A critical umbrella review of interventional meta-analyses. Phytother. Res. 2024, 38, 507–519. [Google Scholar] [CrossRef]
- Sanllorente, A.; Lassale, C.; Soria-Florido, M.T.; Castañer, O.; Fitó, M.; Hernáez, Á. Modification of High-Density Lipoprotein Functions by Diet and Other Lifestyle Changes: A Systematic Review of Randomized Controlled Trials. J. Clin. Med. 2021, 10, 5897. [Google Scholar] [CrossRef]
- Swora-Cwynar, E.; Wrotecki, F.; Dobrowolska, A. Stan wiedzy lekarzy podstawowej opieki zdrowotnej na temat zasad żywienia chorych z zespołem metabolicznym. Forum Zaburzen Metab. 2022, 13, 145–153. [Google Scholar]
- Colussi, G.; Catena, C.; Novello, M.; Bertin, N.; Sechi, L.A. Impact of omega-3 polyunsaturated fatty acids on vascular function and blood pressure: Relevance for cardiovascular outcomes. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 191–200. [Google Scholar] [CrossRef]
- Granato, D.; Barba, F.J.; Bursać Kovačević, D.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef] [PubMed]
- Sikand, G.; Severson, T. Top 10 dietary strategies for atherosclerotic cardiovascular risk reduction. Am. J. Prev. Cardiol. 2020, 4, 100106. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Khandouzi, N.; Zahedmehr, A.; Nasrollahzadeh, J. Effects of canola or olive oil on plasma lipids, lipoprotein-associated phospholipase A2 and inflammatory cytokines in patients referred for coronary angiography. Lipids Health Dis. 2020, 19, 183. [Google Scholar] [CrossRef]
- Smith, A.D.; Jernerén, F.; Refsum, H. ω-3 fatty acids and their interactions. Am. J. Clin. Nutr. 2021, 113, 775–778. [Google Scholar] [CrossRef]
- Lange, K.W.; Nakamura, Y.; Gosslau, A.M.; Li, S. Are there serious adverse effects of omega-3 polyunsaturated fatty acid supplements? J. Food Bioact. 2019, 7, 1–6. [Google Scholar] [CrossRef]
- Dludla, P.V.; Nyambuya, T.M.; Orlando, P.; Silvestri, S.; Mxinwa, V.; Mokgalaboni, K.; Nkambule, B.B.; Louw, J.; Muller, C.J.F.; Tiano, L. The impact of coenzyme Q10 on metabolic and cardiovascular disease profiles in diabetic patients: A systematic review and meta-analysis of randomized controlled trials. Endocrinol. Diabetes Metab. 2020, 3, e00118. [Google Scholar] [CrossRef]
- Chow, S.L.; Bozkurt, B.; Baker, W.L.; Bleske, B.E.; Breathett, K.; Fonarow, G.C.; Greenberg, B.; Khazanie, P.; Leclerc, J.; Morris, A.A.; et al. American Heart Association Clinical Pharmacology Committee and Heart Failure and Transplantation Committee of the Council on Clinical Cardiology; Council on Epidemiology and Prevention; and Council on Cardiovascular and Stroke Nursing. Complementary and Alternative Medicines in the Management of Heart Failure: A Scientific Statement From the American Heart Association. Circulation 2023, 147, 4–23. [Google Scholar] [CrossRef]
- Sue-Ling, C.B.; Abel, W.M.; Sue-Ling, K. Coenzyme Q10 as Adjunctive Therapy for Cardiovascular Disease and Hypertension: A Systematic Review. J. Nutr. 2022, 152, 1666–1674. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, Z.; Zhao, D. Effects of Coenzyme Q10 Supplementation on Lipid Profiles in Adults: A Meta-analysis of Randomized Controlled Trials. J. Clin. Endocrinol. Metab. 2022, 108, 232–249. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Tian, Z.; Zhao, D.; Liang, Y.; Zhong, Z.; Xu, Y.; Hou, S.; Yang, Y. The Association between the Diversity of Coenzyme Q10 Intake from Dietary Sources and the Risk of New-Onset Hypertension: A Nationwide Cohort Study. Nutrients 2024, 16, 1017. [Google Scholar] [CrossRef] [PubMed]
- Merenkova, S.P.; Zinina, O.V.; Stuart, M.; Okuskhanova, E.K.; Androsova, N.V. Effects of dietary fiber on human health: A Review. Hum. Sport. Med. 2020, 20, 106–109. [Google Scholar] [CrossRef]
- Nweze, C.C.; Nebechukwu, E.W.; Bawa, M.Y. Dietary fiber and risk of coronary heart diseases. GSCARR 2021, 9, 2–6. [Google Scholar] [CrossRef]
- Thomas, M.S.; Calle, M.; Fernandez, M.L. Healthy plant-based diets improve dyslipidemias, insulin resistance, and inflammation in metabolic syndrome. A narrative review. Adv. Nutr. 2023, 14, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Luo, F. Dietary Fiber: An Opportunity for a Global Control of Hyperlipidemia. Oxidative Med. Cell. Longev. 2021, 2021, 10–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Y.M.; Sea, M.M.M.; Ng, K.; Wang, M.; Chan, I.H.; Lam, C.W.; Sanderson, J.E.; Woo, J. Dietary Fiber Intake, Myocardial Injury, and Major Adverse Cardiovascular Events Among End-Stage Kidney Disease Patients: A Prospective Cohort Study. Kidney Int. Rep. 2019, 4, 814. [Google Scholar] [CrossRef]
- Barrett, E.M.; Batterham, M.J.; Beck, E.J. Whole grain and cereal fibre intake in the Australian Health Survey: Associations to CVD risk factors. Public Health Nutr. 2020, 23, 1404–1413. [Google Scholar] [CrossRef] [PubMed]
- Partula, V.; Deschasaux, M.; Druesne-Pecollo, N.; Latino-Martel, P.; Desmetz, E.; Chazelas, E.; Kesse-Guyot, E.; Julia, C.; Fezeu, L.K.; Galan, P.; et al. Associations between consumption of dietary fibers and the risk of cardiovascular diseases, cancers, type 2 diabetes, and mortality in the prospective NutriNet-Santé cohort. Am. J. Clin. Nutr. 2020, 112, 196. [Google Scholar] [CrossRef]
- Miller, K.M. Review of whole grain and dietary fiber recommendations and intake levels in different countries. Nutr. Rev. 2020, 78, 30–34. [Google Scholar] [CrossRef]
- Ramezani, F.; Pourghazi, F.; Eslami, M.; Gholami, M.; Mohammadian Khonsari, N.; Ejtahed, H.S.; Larijani, B.; Qorbani, M. Dietary fiber intake and all-cause and cause-specific mortality: An updated systematic review and meta-analysis of prospective cohort studies. Clin. Nutr. 2024, 43, 65–83. [Google Scholar] [CrossRef] [PubMed]
- Butnariu, M.; Sarac, I. Functional Food. Int. J. Nutr. 2019, 3, 11–12. [Google Scholar] [CrossRef]
- Kołodziejczyk, P.; Michniewicz, J. Ziarno zbóż i produkty zbożowe jako źródła błonnika pokarmowego. Żywność Nauka Technol. Jakość 2018, 3, 13–14. [Google Scholar] [CrossRef]
- Saber, A.; Bayumi, E. Age-Related Gastric Changes. J. Surg. Spec. Issue Gastrointest. Surg. Recent Trends 2016, 4, 20–26. [Google Scholar] [CrossRef]
- Chrzastek, Z.; Guligowska, A.; Sobczuk, P.; Kostka, T. Dietary factors, risk of developing depression, and severity of its symptoms in older adults-A narrative review of current knowledge. Nutrition 2023, 106, 111892. [Google Scholar] [CrossRef] [PubMed]
- Oniszczuk, A.; Oniszczuk, T.; Gancarz, M.; Szymańska, J. Role of Gut Microbiota, Probiotics and Prebiotics in the Cardiovascular Diseases. Molecules 2021, 26, 1172. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, D.; Nigam, P.S. Use of Characterized Microorganisms in Fermentation of Non-Dairy-Based Substrates to Produce Probiotic Food for Gut-Health and Nutrition. Fermentation 2023, 9, 1. [Google Scholar] [CrossRef]
- Pavlidou, E.; Fasoulas, A.; Mantzorou, M.; Giaginis, C. Clinical Evidence on the Potential Beneficial Effects of Probiotics and Prebiotics in Cardiovascular Disease. Int. J. Mol. Sci. 2022, 23, 15898. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, H.Y.; Hu, X.M.; Zhang, Y.; Zhang, S.Y. Current understanding of gut microbiota alterations and related therapeutic intervention strategies in heart failure. Chin. Med. J. 2019, 132, 1844. [Google Scholar] [CrossRef] [PubMed]
- Vasquez, E.C.; Pereira, T.M.C.; Peotta, V.A.; Baldo, M.P.; Campos-Toimil, M. Probiotics as Beneficial Dietary Supplements to Prevent and Treat Cardiovascular Diseases: Uncovering Their Impact on Oxidative Stress. Oxidative Med. Cell. Longev. 2019, 2019, 3086270. [Google Scholar] [CrossRef]
- Hsu, C.N.; Hou, C.Y.; Hsu, W.H.; Tain, Y.L. Early-Life Origins of Metabolic Syndrome: Mechanisms and Preventive Aspects. Int. J. Mol. Sci. 2021, 22, 11872. [Google Scholar] [CrossRef] [PubMed]
- Rhee, M.; Lee, J.; Lee, E.Y.; Yoon, K.H.; Lee, S.H. Lipid Variability Induces Endothelial Dysfunction by Increasing Inflammation and Oxidative Stress. Endocrinol. Metab. 2024. advance online publication. [Google Scholar] [CrossRef]
- Costanza, A.C.; Moscavitch, S.D.; Faria, H.C.; Mesquita, E.T. Probiotic therapy with Saccharomyces boulardii for heart failure patients: A randomized, double-blind, placebo-controlled pilot trial. Int. J. Cardiol. 2015, 8, 348–350. [Google Scholar] [CrossRef]
- Shaito, A.; Aramouni, K.; Assaf, R.; Parenti, A.; Orekhov, A.; Yazbi, A.E.; Pintus, G.; Eid, A.H. Oxidative Stress-Induced Endothelial Dysfunction in Cardiovascular Diseases. Front. Biosci. 2022, 27, 105. [Google Scholar] [CrossRef] [PubMed]
- Senoner, T.; Dichtl, W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients 2019, 11, 2090. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, M.; Poursaleh, A.; Ghasempour, G.; Farhad, S.; Najafi, M. The effects of oxidative stress on the development of atherosclerosis. Biol. Chem. 2019, 400, 711–732. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Healthy Diet. Regional Office for the Eastern Mediterranean. 2019. Available online: https://apps.who.int/iris/handle/10665/325828 (accessed on 24 August 2023).
- Zhang, H.; Zeng, Y.; Yang, H.; Hu, Y.; Hu, Y.; Chen, W.; Ying, Z.; Sun, Y.; Qu, Y.; Li, Q.; et al. Familial factors, diet, and risk of cardiovascular disease: A cohort analysis of the UK Biobank. Am. J. Clin. Nutr. 2021, 114, 1837–1845. [Google Scholar] [CrossRef] [PubMed]
- Szczepańska, E.; Gacal, M.; Sokal, A.; Janota, B.; Kowalski, O. Diet in Patients with Myocardial Infarction and Coexisting Type 2 Diabetes Mellitus. Int. J. Environ. Res. Public Health 2023, 20, 5442. [Google Scholar] [CrossRef]
- Küçük, N.; Urak, F.; Bilgic, A.; Florkowski, W.J.; Kiani, A.K.; Özdemir, F.N. Fruit and vegetable consumption across population segments: Evidence from a national household survey. J. Health Popul. Nutr. 2023, 42, 54. [Google Scholar] [CrossRef]
- Boonthongkaew, C.; Tong-Un, T.; Kanpetta, Y.; Chaungchot, N.; Leelayuwat, C.; Leelayuwat, N. Vitamin C supplementation improves blood pressure and oxidative stress after acute exercise in patients with poorly controlled type 2 diabetes mellitus: A randomized, placebo-controlled, cross-over study. Chin. J. Physiol. 2021, 64, 16–23. [Google Scholar] [CrossRef]
- Fuentes, E.; Trostchansky, A.; Reguengo, L.M.; Junior, M.R.M.; Palomo, I. Antiplatelet Effects of Bioactive Compounds Present in Tomato Pomace. Curr. Drug Targets 2021, 22, 1716–1724. [Google Scholar] [CrossRef]
- Garg, A.; Lee, J.C. Vitamin E: Where Are We Now in Vascular Diseases? Life 2022, 12, 310. [Google Scholar] [CrossRef] [PubMed]
- Padayatty, S.J.; Katz, A.; Wang, Y. Vitamin C as an antioxidant: Evaluation of its role in disease prevention. J. Am. Coll. Nutr. 2003, 22, 18–35. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, Y.; Wang, Y.; Li, L.; Liao, Y.; Zhang, Y.; Yu, D. The effect of folic acid in patients with cardiovascular disease: A systematic review and meta-analysis. Medicine 2019, 98, e17095. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M.; Rezaiian, F.; Saadati, S.; Naseri, K.; Ashtary-Larky, D.; Yousefi, M.; Golalipour, E.; Clark, C.C.T.; Rastgoo, S.; Asbaghi, O. The effects of folic acid supplementation on endothelial function in adults: A systematic review and dose-response meta-analysis of randomized controlled trials. Nutr. J. 2023, 22, 12. [Google Scholar] [CrossRef] [PubMed]
- Guarnizo-Poma, M.; Urrunaga-Pastor, D.; Montero-Suyo, C.; Lazaro-Alcantara, H.; Paico-Palacios, S.; Pantoja-Torres, B.; Benites-Zapata, V.A.; Insulin Resistance and Metabolic Syndrome Research Group. Association between serum vitamin B12 levels and metabolic syndrome in a euthyroid population. Diabetes Metab. Syndr. 2018, 12, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Nile, S.H.; Keum, Y.S. Folates: Chemistry, analysis, occurrence, biofortification and bioavailability. Food Res. Int. 2016, 1, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ashok, T.; Puttam, H.; Tarnate, V.C.A.; Jhaveri, S.; Avanthika, C.; Trejo Treviño, A.G.; Sl, S.; Ahmed, N.T. Role of Vitamin B12 and Folate in Metabolic Syndrome. Cureus 2021, 13, e18521. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Bai, X.; Wu, B.; Tan, Y.; Li, M.; Yang, Q. Characterizing Vitamin B12 Deficiency in Neurology Outpatients: A Retrospective Observational Study. Clin. Neuropharmacol. 2024, 47, 87–96. [Google Scholar] [CrossRef]
- Ma, L.; Hu, L.; Feng, X.; Wang, S. Nitrate and Nitrite in Health and Disease. Aging Dis. 2018, 9, 938–945. [Google Scholar] [CrossRef]
- An, P.; Wan, S.; Luo, Y.; Luo, J.; Zhang, X.; Zhou, S.; Xu, T.; He, J.; Mechanick, J.I.; Wu, W.C.; et al. Micronutrient Supplementation to Reduce Cardiovascular Risk. J. Am. Coll. Cardiol. 2022, 80, 2269–2285. [Google Scholar] [CrossRef] [PubMed]
- Gawrys, J.; Gajecki, D.; Szahidewicz-Krupska, E.; Doroszko, A. Intraplatelet L-Arginine-Nitric Oxide Metabolic Pathway: From Discovery to Clinical Implications in Prevention and Treatment of Cardiovascular Disorders. Oxidative Med. Cell. Longev. 2020, 2020, 1015908. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Moghadam, S.K.; Bahadoran, Z.; Ghasemi, A.; Azizi, F. Dietary L-Arginine Intakes and the Risk of Metabolic Syndrome: A 6-Year Follow-Up in Tehran Lipid and Glucose Study. Prev. Nutr. Food Sci. 2017, 22, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Imaizumi, V.M.; Laurindo, L.F.; Manzan, B.; Guiguer, E.L.; Oshiiwa, M.; Otoboni, A.M.M.B.; Araujo, A.C.; Tofano, R.J.; Barbalho, S.M. Garlic: A systematic review of the effects on cardiovascular diseases. Crit. Rev. Food Sci. Nutr. 2022, 63, 6797–6819. [Google Scholar] [CrossRef] [PubMed]
- Sobenin, I.A.; Myasoedova, V.A.; Iltchuk, M.I.; Zhang, D.W.; Orekhov, A.N. Therapeutic effects of garlic in cardiovascular ath atherosclerotic disease. Chin. J. Nat. Med. 2019, 17, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Zheng, Z.; Zhang, B.; Sun-Waterhouse, D.; Qiao, X. Formation, nutritional value, and enhancement of characteristic components in black garlic: A review for maximizing the goodness to humans. Compr. Rev. Food Sci. Food Saf. 2020, 19, 801–834. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, A.; Hosseinzadeh, H. A review on the effects of Allium sativum (Garlic) in metabolic syndrome. J. Endocrinol. Investig. 2015, 38, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Dryer-Beers, E.R.; Griffin, J.; Matthews, P.M.; Frost, G.S. Higher dietary polyphenol intake is associated with lower blood inflammatory markers. J. Nutr. 2024, in press. [CrossRef] [PubMed]
- Bt Hj Idrus, R.; Sainik, N.Q.A.V.; Nordin, A.; Saim, A.B.; Sulaiman, N. Cardioprotective Effects of Honey and Its Constituent: An Evidence-Based Review of Laboratory Studies and Clinical Trials. Int. J. Environ. Res. Public Health 2020, 17, 3613. [Google Scholar] [CrossRef]
- Hashim, K.N.; Chin, K.Y.; Ahmad, F. The Mechanism of Honey in Reversing. Metab. Syndr. 2022, 26, 808. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, D.; Sun, J.; Liu, X.; Jiang, L.; Guo, H.; Ren, F. Interaction of plant phenols with food macronutrients: Characterisation and nutritional–physiological consequences. Nutr. Res. Rev. 2014, 27, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Tagliazucchi, D.; Helal, A.; Verzelloni, E.; Conte, A. The type and concentration of milk increase the in vitro bioaccessibility of coffee chlorogenic acids. J. Agric. Food Chem. 2012, 60, 11056–11064. [Google Scholar] [CrossRef]
- Vélez-Terreros, P.Y.; Romero-Estévez, D.; Navarrete, H.; Yánez-Jácome, G.S. Nutritional Quality of Conventional, Organic, and Hydroponic Tomatoes Commercialized in Quito, Ecuador. Foods 2024, 13, 1348. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Inaba, M. Potassium Metabolism and Management in Patients with CKD. Nutrients 2021, 13, 1751. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.; Abreu, S. Sodium and Potassium Intake and Cardiovascular Disease in Older People: A Systematic Review. Nutrients 2020, 12, 3447. [Google Scholar] [CrossRef] [PubMed]
- Perdomo, F.; Cabrera Fránquiz, F.; Cabrera, J.; Serra-Majem, L. Influencia del procedimiento culinario sobre la biodisponibilidad del licopeno en el tomate. [Influence of cooking procedure on the bioavailability of lycopene in tomatoes]. Nutr. Hosp. 2012, 5, 1542–1546. [Google Scholar] [CrossRef] [PubMed]
- Moran, N.E.; Erdman, J.W.; Clinton, S.K. Complex interactions between dietary and genetic factors impact lycopene metabolism and distribution. Arch. Biochem. Biophys. 2013, 539, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Przybylska, S.; Tokarczyk, G. Lycopene in the Prevention of Cardiovascular Diseases. Int. J. Mol. Sci. 2022, 23, 1957. [Google Scholar] [CrossRef] [PubMed]
- Report of the Formal Meeting of Member States to Conclude the Work on the Comprehensive Global Monitoring Framework, Including Indicators, and a Set of Voluntary Global Targets for the Prevention and Control of Communicable Diseases. Website. Available online: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/3082 (accessed on 16 August 2023).
- Mean Salt Intake in Adults Aged 25 Years and Older in the Americas, 1990–2019. ENLACE Data Portal. Pan American Health Organization. 2023. Available online: https://www.paho.org/en/enlace/salt-intake (accessed on 16 August 2023).
- Rosi, A.; Paolella, G.; Biasini, B.; Scazzina, F. SINU Working Group on Nutritional Surveillance in Adolescents. Dietary habits of adolescents living in North America, Europe or Oceania: A review on fruit, vegetable and legume consumption, sodium intake, and adherence to the Mediterranean Diet. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 544–560. [Google Scholar] [CrossRef]
- Noroozi, F.; Fararouei, M.; Kojuri, J.; Ghahremani, L.; Ghodrati, K. Salt Consumption and Blood Pressure in Rural Hypertensive Participants: A Community Filed Trial. Sci. World J. 2022, 2022, 2908811. [Google Scholar] [CrossRef]
- Luc, K.; Schramm-Luc, A.; Guzik, T.J.; Mikolajczyk, T.P. Oxidative stress and inflammatory markers in prediabetes and diabetes. J. Physiol. Pharmacol. 2019, 70, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Glenn, A.J.; Liu, Q.; Madsen, T.; Allison, M.A.; Shikany, J.M.; Manson, J.E.; Chan, K.H.K.; Wu, W.C. Added Sugar, Sugar-Sweetened Beverages, and Artificially Sweetened Beverages and Risk of Cardiovascular Disease: Findings from the Women’s Health Initiative and a Network Meta-Analysis of Prospective Studies. Nutrients 2022, 14, 4226. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Hu, F.B. Sugar-Sweetened Beverages and Cardiometabolic Health: An Update of the Evidence. Nutrients 2019, 11, 1840. [Google Scholar] [CrossRef] [PubMed]
- Olszewski, P.K.; Wood, E.L.; Klockars, A.; Levine, A.S. Excessive Consumption of Sugar: An Insatiable Drive for Reward. Curr. Nutr. Rep. 2019, 8, 120–128. [Google Scholar] [CrossRef]
- Sebastian, R.S.; Enns, C.W.; Martin, C.L.; Goldman, J.D.; Moshfegh, A.J. Sweet Foods Consumption by Adults in the U.S. What We Eat in America, NHANES 2015–2018. FSRG Diet. Data Briefs 2020, 33, 1–8. [Google Scholar]
- Sahin, A.W.; Zannini, E.; Coffey, A.; Arendt, E.K. Sugar reduction in bakery products: Current strategies and sourdough technology as a potential novel approach. Food Res. Int. 2019, 126, 108583. [Google Scholar] [CrossRef] [PubMed]
- Castro-Barquero, S.; Ruiz-León, A.M.; Sierra-Pérez, M.; Estruch, R.; Casas, R. Dietary Strategies for Metabolic Syndrome: A Comprehensive Review. Nutrients 2020, 12, 2983. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, S.; Hu, X.; Chen, F.; Li, D. A Review of Healthy Dietary Choices for Cardiovascular Disease: From Individual Nutrients and Foods to Dietary Patterns. Nutrients 2023, 15, 4898. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Li, Y.; Luo, B.; Lin, Z.; Chen, K.; Liu, Y. Dietary patterns and cardiometabolic health: Clinical evidence and mechanism. MedComm 2023, 4, e212. [Google Scholar] [CrossRef]
- Belardo, D.; Michos, E.D.; Blankstein, R.; Blumenthal, R.S.; Ferdinand, K.C.; Hall, K.; Klatt, K.; Natajaran, P.; Ostfeld, R.J.; Reddy, K.; et al. Practical, Evidence-Based Approaches to Nutritional Modifications to Reduce Atherosclerotic Cardiovascular Disease: An American Society For Preventive Cardiology Clinical Practice Statement. Am. J. Prev. Cardiol. 2022, 10, 100323. [Google Scholar] [CrossRef]
- Petersen, K.S.; Flock, M.R.; Richter, C.K.; Mukherjea, R.; Slavin, J.L.; Kris-Etherton, P.M. Healthy Dietary Patterns for Preventing Cardiometabolic Disease: The Role of Plant-Based Foods and Animal Products. Curr. Dev. Nutr. 2017, 1, cdn.117.001289. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef] [PubMed]
- Le Goff, D.; Aerts, N.; Odorico, M.; Guillou-Landreat, M.; Perraud, G.; Bastiaens, H.; Musinguzi, G.; Le Reste, J.-Y.; Barais, M. Practical dietary interventions to prevent cardiovascular disease suitable for implementation in primary care: An ADAPTE-guided systematic review of international clinical guidelines. Int. J. Behav. Nutr. Phys. Act. 2023, 20, 93. [Google Scholar] [CrossRef] [PubMed]
- Leskinen, T.; Stenholm, S.; Heinonen, O.J.; Pulakka, A.; Aalto, V.; Kivimaki, M.; Vahtera, J. Change in physical activity and accumulation of cardiometabolic risk factors. Prev. Med. 2018, 112, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Meadley, B.; Perraton, L.; Smith, K.; Bonham, M.P.; Bowles, K.A. Assessment of Cardiometabolic Health, Diet and Physical Activity in Helicopter Rescue Paramedics. Prehospital Emerg. Care 2022, 26, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Ashcroft, S.P.; Stocks, B.; Egan, B.; Zierath, J.R. Exercise induces tissue-specific adaptations to enhance cardiometabolic health. Cell Metab. 2024, 36, 278–300. [Google Scholar] [CrossRef] [PubMed]
- Slaght, J.L.; Wicklow, B.A.; Dart, A.B. Physical activity and cardiometabolic health in adolescents with type 2 diabetes: A cross-sectional study. BMJ Open Diabetes Res. Care 2021, 9, e002134. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.E.; Volpert-Esmond, H.I.; Deen, J.F.; Modde, E.; Warne, D. Stress and Cardiometabolic Disease Risk for Indigenous Populations throughout the Lifespan. Int. J. Environ. Res. Public Health 2021, 18, 1821. [Google Scholar] [CrossRef]
- Bomhof-Roordink, H.; Seldenrijk, A.; Van Hout, H.P.; Van Marwijk, H.W.; Diamant, M.; Penninx, B.W. Associations between life stress and subclinical cardiovascular disease are partly mediated by depressive and anxiety symptoms. J. Psychosom. Res. 2015, 78, 332–339. [Google Scholar] [CrossRef]
Compounds | Food Products | Protective Effects | Literature |
---|---|---|---|
Plant sterols and stanols | Vegetable oils, bread, vegetables, cereals, nuts |
| [14,15,16] |
Fiber | Bran and whole grains, vegetables, and fruits |
| [37,39] |
Probiotic bacteria | Fermented dairy and pickled vegetable products |
| [47,51,52,54] |
Folic acid | Green vegetables |
| [66,67] |
Vitamin B12 | White meat |
| [70] |
Vitamin C | Vegetables, fruits |
| [62,63] |
Vitamin E | Vegetables, fruits |
| [62,63] |
PUFAs | Oil products, fish |
| [21,22,23,24] |
Lycopene | Tomatoes, tomato puree, passatas |
| [72,89] |
Arginine | Turkey meat and buckwheat |
| [73,74,75] |
CoQ10 | Wheat sprouts, fatty fish, oils, and nuts |
| [29,30] |
Allicin | Fresh and fermented garlic |
| [77,78,79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepańska, E.; Janota, B.; Wlazło, M.; Gacal, M. Can Daily Dietary Choices Have a Cardioprotective Effect? Food Compounds in the Prevention and Treatment of Cardiometabolic Diseases. Metabolites 2024, 14, 296. https://doi.org/10.3390/metabo14060296
Szczepańska E, Janota B, Wlazło M, Gacal M. Can Daily Dietary Choices Have a Cardioprotective Effect? Food Compounds in the Prevention and Treatment of Cardiometabolic Diseases. Metabolites. 2024; 14(6):296. https://doi.org/10.3390/metabo14060296
Chicago/Turabian StyleSzczepańska, Elżbieta, Barbara Janota, Marika Wlazło, and Magdalena Gacal. 2024. "Can Daily Dietary Choices Have a Cardioprotective Effect? Food Compounds in the Prevention and Treatment of Cardiometabolic Diseases" Metabolites 14, no. 6: 296. https://doi.org/10.3390/metabo14060296
APA StyleSzczepańska, E., Janota, B., Wlazło, M., & Gacal, M. (2024). Can Daily Dietary Choices Have a Cardioprotective Effect? Food Compounds in the Prevention and Treatment of Cardiometabolic Diseases. Metabolites, 14(6), 296. https://doi.org/10.3390/metabo14060296