Overweight, Obesity, Hypertriglyceridemia, and Insulin Resistance Are Positively Associated with High Serum Copper Levels in Mexican Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Ethical Approval
2.3. Anthropometric and Biochemicals Measurements
2.4. Definition of Binary Cardiometabolic Traits
2.5. Serum Cu Quantification by ICP-MS
2.6. Statically Analysis
3. Results
3.1. Description of the Study Samples
3.2. Association of Overweight and Obesity Status with Serum Cu Level
3.3. Association between Serum Cu Level and Cardiometabolic Traits
3.4. Association of Binary Cardiometabolic Traits with High Serum Cu Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Trait | Shapiro–Wilk Test (p-Value) | |
---|---|---|
Untransformed | Rank-Based Inverse Normal Transformation | |
BMI (kg/m2) | <0.001 | 0.999 |
FPG (mg/dL) | 0.01 | 0.941 |
TC (mg/dL) | <0.001 | 0.992 |
TG (mg/dL) | <0.001 | 0.994 |
TyG index | <0.001 | |
Cu (µg dL−1) | <0.001 | 0.999 |
References
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef]
- Ladher, N.; Hinton, R.; Veitch, E. Challenges of obesity and type 2 diabetes require more attention to food environment. BMJ 2023, 383, 2269. [Google Scholar] [CrossRef]
- Campos-Nonato, I.; Galvan-Valencia, O.; Hernandez-Barrera, L.; Oviedo-Solis, C.; Barquera, S. Prevalencia de obesidad y factores de riesgo asociados en adultos mexicanos: Resultados de la Ensanut 2022. Salud Publica Mex. 2023, 65, s238–s247. [Google Scholar] [CrossRef]
- Pigeyre, M.; Yazdi, F.T.; Kaur, Y.; Meyre, D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin. Sci. 2016, 130, 943–986. [Google Scholar] [CrossRef]
- Pattan, V.; Chang Villacreses, M.M.; Karnchanasorn, R.; Chiu, K.C.; Samoa, R. Daily Intake and Serum Levels of Copper, Selenium and Zinc According to Glucose Metabolism: Cross-Sectional and Comparative Study. Nutrients 2021, 13, 4044. [Google Scholar] [CrossRef]
- Dubey, P.; Thakur, V.; Chattopadhyay, M. Role of Minerals and Trace Elements in Diabetes and Insulin Resistance. Nutrients 2020, 12, 1864. [Google Scholar] [CrossRef]
- Shi, Y.; Zou, Y.; Shen, Z.; Xiong, Y.; Zhang, W.; Liu, C.; Chen, S. Trace Elements, PPARs, and Metabolic Syndrome. Int. J. Mol. Sci. 2020, 21, 2612. [Google Scholar] [CrossRef]
- Vazquez-Moreno, M.; Sandoval-Castillo, M.; Rios-Lugo, M.J.; Klunder-Klunder, M.; Cruz, M.; Martinez-Navarro, I.; Romero-Guzman, E.T.; Victoria-Campos, C.I.; Vilchis-Gil, J.; Hernandez-Mendoza, H. Overweight and Obesity Are Positively Associated with Serum Copper Levels in Mexican Schoolchildren. Biol. Trace Elem. Res. 2023, 201, 2744–2749. [Google Scholar] [CrossRef]
- Pedro, E.M.; da Rosa Franchi Santos, L.F.; Scavuzzi, B.M.; Iriyoda, T.M.V.; Peixe, T.S.; Lozovoy, M.A.B.; Reiche, E.M.V.; Dichi, I.; Simao, A.N.C.; Santos, M.J. Trace Elements Associated with Systemic Lupus Erythematosus and Insulin Resistance. Biol. Trace Elem. Res. 2019, 191, 34–44. [Google Scholar] [CrossRef]
- Tan, P.Y.; Soma Roy, M. Dietary copper and selenium are associated with insulin resistance in overweight and obese Malaysian adults. Nutr. Res. 2021, 93, 38–47. [Google Scholar] [CrossRef]
- Horn, D.; Barrientos, A. Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life 2008, 60, 421–429. [Google Scholar] [CrossRef]
- Bjorklund, G.; Dadar, M.; Pivina, L.; Dosa, M.D.; Semenova, Y.; Aaseth, J. The Role of Zinc and Copper in Insulin Resistance and Diabetes Mellitus. Curr. Med. Chem. 2020, 27, 6643–6657. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, S.Y.; Choi, C.S. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab. J. 2022, 46, 15–37. [Google Scholar] [CrossRef]
- Robert, J.J. [Methods for the measurement of insulin resistance. Hyperinsulinemic euglycemic clamp]. Presse Med. 1995, 24, 730–734. [Google Scholar]
- Bastard, J.P.; Lavoie, M.E.; Messier, V.; Prud’homme, D.; Rabasa-Lhoret, R. Evaluation of two new surrogate indices including parameters not using insulin to assess insulin sensitivity/resistance in non-diabetic postmenopausal women: A MONET group study. Diabetes Metab. 2012, 38, 258–263. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Simental-Mendia, L.E.; Gonzalez-Ortiz, M.; Martinez-Abundis, E.; Ramos-Zavala, M.G.; Hernandez-Gonzalez, S.O.; Jacques-Camarena, O.; Rodriguez-Moran, M. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. [Google Scholar] [CrossRef]
- Barazzoni, R.; Gortan Cappellari, G.; Ragni, M.; Nisoli, E. Insulin resistance in obesity: An overview of fundamental alterations. Eat. Weight. Disord. 2018, 23, 149–157. [Google Scholar] [CrossRef]
- Unger, G.; Benozzi, S.F.; Perruzza, F.; Pennacchiotti, G.L. Triglycerides and glucose index: A useful indicator of insulin resistance. Endocrinol. Nutr. 2014, 61, 533–540. [Google Scholar] [CrossRef]
- Ramdas Nayak, V.K.; Satheesh, P.; Shenoy, M.T.; Kalra, S. Triglyceride Glucose (TyG) Index: A surrogate biomarker of insulin resistance. J. Pak. Med. Assoc. 2022, 72, 986–988. [Google Scholar] [CrossRef]
- Chen, W.; Ding, S.; Tu, J.; Xiao, G.; Chen, K.; Zhang, Y.; Huang, R.; Liao, Y. Association between the insulin resistance marker TyG index and subsequent adverse long-term cardiovascular events in young and middle-aged US adults based on obesity status. Lipids Health Dis. 2023, 22, 65. [Google Scholar] [CrossRef]
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 2021, 137, 111315. [Google Scholar] [CrossRef]
- Rios-Lugo, M.J.; Madrigal-Arellano, C.; Gaytan-Hernandez, D.; Hernandez-Mendoza, H.; Romero-Guzman, E.T. Association of Serum Zinc Levels in Overweight and Obesity. Biol. Trace Elem. Res. 2020, 198, 51–57. [Google Scholar] [CrossRef]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- American Diabetes, A. Diagnosis and classification of diabetes mellitus. Diabetes Care 2004, 27 (Suppl. 1), S5–S10. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Razali, N.M.; Wah, Y.B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2011, 2, 21–33. [Google Scholar]
- Turnlund, J.R. Copper nutriture, bioavailability, and the influence of dietary factors. J. Am. Diet. Assoc. 1988, 88, 303–308. [Google Scholar] [CrossRef]
- Feldman, A.; Aigner, E.; Weghuber, D.; Paulmichl, K. The Potential Role of Iron and Copper in Pediatric Obesity and Nonalcoholic Fatty Liver Disease. Biomed. Res. Int. 2015, 2015, 287401. [Google Scholar] [CrossRef]
- Gu, K.; Li, X.; Xiang, W.; Jiang, X. The Relationship Between Serum Copper and Overweight/Obesity: A Meta-analysis. Biol. Trace Elem. Res. 2020, 194, 336–347. [Google Scholar] [CrossRef]
- Cayir, Y.; Cayir, A.; Turan, M.I.; Kurt, N.; Kara, M.; Laloglu, E.; Ciftel, M.; Yildirim, A. Antioxidant status in blood of obese children: The relation between trace elements, paraoxonase, and arylesterase values. Biol. Trace Elem. Res. 2014, 160, 155–160. [Google Scholar] [CrossRef]
- Azab, S.F.; Saleh, S.H.; Elsaeed, W.F.; Elshafie, M.A.; Sherief, L.M.; Esh, A.M. Serum trace elements in obese Egyptian children: A case-control study. Ital. J. Pediatr. 2014, 40, 20. [Google Scholar] [CrossRef]
- Yerlikaya, F.H.; Toker, A.; Aribas, A. Serum trace elements in obese women with or without diabetes. Indian. J. Med. Res. 2013, 137, 339–345. [Google Scholar]
- Yang, H.; Liu, C.N.; Wolf, R.M.; Ralle, M.; Dev, S.; Pierson, H.; Askin, F.; Steele, K.E.; Magnuson, T.H.; Schweitzer, M.A.; et al. Obesity is associated with copper elevation in serum and tissues. Metallomics 2019, 11, 1363–1371. [Google Scholar] [CrossRef]
- Banach, W.; Nitschke, K.; Krajewska, N.; Mongiallo, W.; Matuszak, O.; Muszynski, J.; Skrypnik, D. The Association between Excess Body Mass and Disturbances in Somatic Mineral Levels. Int. J. Mol. Sci. 2020, 21, 7306. [Google Scholar] [CrossRef]
- Yamada, T.; Agui, T.; Suzuki, Y.; Sato, M.; Matsumoto, K. Inhibition of the copper incorporation into ceruloplasmin leads to the deficiency in serum ceruloplasmin activity in Long-Evans cinnamon mutant rat. J. Biol. Chem. 1993, 268, 8965–8971. [Google Scholar] [CrossRef]
- Meszaros, Z.; Szombathy, T.; Raimondi, L.; Karadi, I.; Romics, L.; Magyar, K. Elevated serum semicarbazide-sensitive amine oxidase activity in non-insulin-dependent diabetes mellitus: Correlation with body mass index and serum triglyceride. Metabolism 1999, 48, 113–117. [Google Scholar] [CrossRef]
- Cignarelli, M.; DePergola, G.; Picca, G.; Sciaraffia, M.; Pannacciulli, N.; Tarallo, M.; Laudadio, E.; Turrisi, E.; Giorgino, R. Relationship of obesity and body fat distribution with ceruloplasmin serum levels. Int. J. Obes. Relat. Metab. Disord. 1996, 20, 809–813. [Google Scholar]
- Yang, H.; Ralle, M.; Wolfgang, M.J.; Dhawan, N.; Burkhead, J.L.; Rodriguez, S.; Kaplan, J.H.; Wong, G.W.; Haughey, N.; Lutsenko, S. Copper-dependent amino oxidase 3 governs selection of metabolic fuels in adipocytes. PLoS Biol. 2018, 16, e2006519. [Google Scholar] [CrossRef]
- Warnberg, J.; Nova, E.; Moreno, L.A.; Romeo, J.; Mesana, M.I.; Ruiz, J.R.; Ortega, F.B.; Sjostrom, M.; Bueno, M.; Marcos, A.; et al. Inflammatory proteins are related to total and abdominal adiposity in a healthy adolescent population: The AVENA Study. Am. J. Clin. Nutr. 2006, 84, 505–512. [Google Scholar] [CrossRef]
- Pini, M.; Rhodes, D.H.; Fantuzzi, G. Hematological and acute-phase responses to diet-induced obesity in IL-6 KO mice. Cytokine 2011, 56, 708–716. [Google Scholar] [CrossRef]
- Arner, E.; Forrest, A.R.; Ehrlund, A.; Mejhert, N.; Itoh, M.; Kawaji, H.; Lassmann, T.; Laurencikiene, J.; Ryden, M.; Arner, P.; et al. Ceruloplasmin is a novel adipokine which is overexpressed in adipose tissue of obese subjects and in obesity-associated cancer cells. PLoS ONE 2014, 9, e80274. [Google Scholar] [CrossRef]
- Kim, C.H.; Park, J.Y.; Kim, J.Y.; Choi, C.S.; Kim, Y.I.; Chung, Y.E.; Lee, M.S.; Hong, S.K.; Lee, K.U. Elevated serum ceruloplasmin levels in subjects with metabolic syndrome: A population-based study. Metabolism 2002, 51, 838–842. [Google Scholar] [CrossRef]
- Chen, J.; Lan, C.; An, H.; Jin, Y.; Li, Q.; Ge, S.; Yu, Y.; Shen, G.; Pan, B.; Xu, Y.; et al. Potential interference on the lipid metabolisms by serum copper in a women population: A repeated measurement study. Sci. Total Environ. 2021, 760, 143375. [Google Scholar] [CrossRef]
- Shi, Y.; Hu, H.; Wu, Z.; Wu, J.; Chen, Z.; Cheng, X.; Li, P. Associations between dietary copper intake and hypertriglyceridemia among children and adolescents in the US. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 809–816. [Google Scholar] [CrossRef]
- Kwon, O.B.; Kang, J.H. Lipid peroxidation induced by the Cu,Zn-superoxide dismutase and hydrogen peroxide system. Biochem. Mol. Biol. Int. 1999, 47, 645–653. [Google Scholar] [CrossRef]
- Schauer, R.; Wember, M. Hydroxylation and O-acetylation of N-acetylneuraminic acid bound to glycoproteins of isolated subcellular membranes from porcine and bovine submaxillary glands. Hoppe Seylers Z. Physiol. Chem. 1971, 352, 1282–1290. [Google Scholar] [CrossRef]
- Qiu, Q.; Zhang, F.; Zhu, W.; Wu, J.; Liang, M. Copper in Diabetes Mellitus: A Meta-Analysis and Systematic Review of Plasma and Serum Studies. Biol. Trace Elem. Res. 2017, 177, 53–63. [Google Scholar] [CrossRef]
- Lu, C.W.; Lee, Y.C.; Kuo, C.S.; Chiang, C.H.; Chang, H.H.; Huang, K.C. Association of Serum Levels of Zinc, Copper, and Iron with Risk of Metabolic Syndrome. Nutrients 2021, 13, 548. [Google Scholar] [CrossRef]
- Sun, Z.; Shao, Y.; Yan, K.; Yao, T.; Liu, L.; Sun, F.; Wu, J.; Huang, Y. The Link between Trace Metal Elements and Glucose Metabolism: Evidence from Zinc, Copper, Iron, and Manganese-Mediated Metabolic Regulation. Metabolites 2023, 13, 1048. [Google Scholar] [CrossRef]
- Gonzalez-Dominguez, A.; Millan-Martinez, M.; Dominguez-Riscart, J.; Mateos, R.M.; Lechuga-Sancho, A.M.; Gonzalez-Dominguez, R. Altered Metal Homeostasis Associates with Inflammation, Oxidative Stress, Impaired Glucose Metabolism, and Dyslipidemia in the Crosstalk between Childhood Obesity and Insulin Resistance. Antioxidants 2022, 11, 2439. [Google Scholar] [CrossRef]
- Pouresmaeil, V.; Al Abudi, A.H.; Mahimid, A.H.; Sarafraz Yazdi, M.; Es-Haghi, A. Evaluation of Serum Selenium and Copper Levels with Inflammatory Cytokines and Indices of Oxidative Stress in Type 2 Diabetes. Biol. Trace Elem. Res. 2023, 201, 617–626. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, X.K.; Wang, Y.; Cai, L. The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: Therapeutic effects by chelators. Hemoglobin 2008, 32, 135–145. [Google Scholar] [CrossRef]
- Luc, K.; Schramm-Luc, A.; Guzik, T.J.; Mikolajczyk, T.P. Oxidative stress and inflammatory markers in prediabetes and diabetes. J. Physiol. Pharmacol. 2019, 70, 809–824. [Google Scholar] [CrossRef]
- Ma, J.; Xie, Y.; Zhou, Y.; Wang, D.; Cao, L.; Zhou, M.; Wang, X.; Wang, B.; Chen, W. Urinary copper, systemic inflammation, and blood lipid profiles: Wuhan-Zhuhai cohort study. Environ. Pollut. 2020, 267, 115647. [Google Scholar] [CrossRef]
- Lair, B.; Laurens, C.; Van Den Bosch, B.; Moro, C. Novel Insights and Mechanisms of Lipotoxicity-Driven Insulin Resistance. Int. J. Mol. Sci. 2020, 21, 6358. [Google Scholar] [CrossRef]
- Suren Garg, S.; Kushwaha, K.; Dubey, R.; Gupta, J. Association between obesity, inflammation and insulin resistance: Insights into signaling pathways and therapeutic interventions. Diabetes Res. Clin. Pract. 2023, 200, 110691. [Google Scholar] [CrossRef]
- Eguchi, K.; Manabe, I. Toll-like receptor, lipotoxicity and chronic inflammation: The pathological link between obesity and cardiometabolic disease. J. Atheroscler. Thromb. 2014, 21, 629–639. [Google Scholar] [CrossRef]
- Boden, G. Obesity, insulin resistance and free fatty acids. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 139–143. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, H.; Zhang, H.; Li, Y.; Chen, S.; He, D.; Yang, G.; Ban, B.; Zhang, M.; Liu, F. Serum triglyceride glucose index is a valuable predictor for visceral obesity in patients with type 2 diabetes: A cross-sectional study. Cardiovasc. Diabetol. 2023, 22, 98. [Google Scholar] [CrossRef]
- Morales-Gurrola, G.; Simental-Mendia, L.E.; Castellanos-Juarez, F.X.; Salas-Pacheco, J.M.; Guerrero-Romero, F. The triglycerides and glucose index is associated with cardiovascular risk factors in metabolically obese normal-weight subjects. J. Endocrinol. Investig. 2020, 43, 995–1000. [Google Scholar] [CrossRef]
Trait | Normal Weight n = 107 | Overweight and Obesity n = 239 | p-Value |
---|---|---|---|
Women, n (%) | 68 (63.6) | 146 (61.1) | 0.663 |
Age, years | 37.22 ± 17.17 | 39.29 ± 15.27 | 0.264 |
BMI, kg/m2 | 22.834 ± 1.585 | 30.127 ± 4.953 | <0.001 |
FPG, mg/dL | 90.694 ± 9.215 | 94.676 ± 10.390 | 0.001 |
TC, mg/dL | 165.220 ± 49.408 | 181.180 ± 51.520 | 0.007 |
TG, mg/dL | 123.454 ± 54.515 | 158.746 ± 73.613 | <0.001 |
TyG index | 8.532 ± 0.475 | 8.838 ± 0.495 | <0.001 |
Cu, μg dL−1 | 85.134 ± 69.906 | 116.171 ± 85.393 | 0.001 |
Trait | Adjusted | |
---|---|---|
Model 1 | Model 2 | |
BMI, kg/m2 | 0.001 ± 0.004 (0.745) | - |
FPG, mg/dL | 0.011 ± 0.006 (0.055) | 0.008 ± 0.006 (0.175) |
TC, mg/dL | 0.030 ± 0.034 (0.388) | 0.016 ± 0.035 (0.650) |
TG, mg/dL | 0.188 ± 0.045 (<0.001) | 0.160 ± 0.045 (<0.001) |
TyG index | 0.002 ± 0.001 (<0.001) | 0.001 ± 0.001 (<0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Cruz, A.; Rios-Lugo, M.J.; Soto-Sánchez, J.; Juárez-Pérez, C.A.; Cabello-López, A.; Jiménez-Ramírez, C.; Chang-Rueda, C.; Cruz, M.; Hernández-Mendoza, H.; Vazquez-Moreno, M. Overweight, Obesity, Hypertriglyceridemia, and Insulin Resistance Are Positively Associated with High Serum Copper Levels in Mexican Adults. Metabolites 2024, 14, 282. https://doi.org/10.3390/metabo14050282
Ramírez-Cruz A, Rios-Lugo MJ, Soto-Sánchez J, Juárez-Pérez CA, Cabello-López A, Jiménez-Ramírez C, Chang-Rueda C, Cruz M, Hernández-Mendoza H, Vazquez-Moreno M. Overweight, Obesity, Hypertriglyceridemia, and Insulin Resistance Are Positively Associated with High Serum Copper Levels in Mexican Adults. Metabolites. 2024; 14(5):282. https://doi.org/10.3390/metabo14050282
Chicago/Turabian StyleRamírez-Cruz, Armando, María Judith Rios-Lugo, Jacqueline Soto-Sánchez, Cuauhtémoc Arturo Juárez-Pérez, Alejandro Cabello-López, Carmina Jiménez-Ramírez, Consuelo Chang-Rueda, Miguel Cruz, Héctor Hernández-Mendoza, and Miguel Vazquez-Moreno. 2024. "Overweight, Obesity, Hypertriglyceridemia, and Insulin Resistance Are Positively Associated with High Serum Copper Levels in Mexican Adults" Metabolites 14, no. 5: 282. https://doi.org/10.3390/metabo14050282
APA StyleRamírez-Cruz, A., Rios-Lugo, M. J., Soto-Sánchez, J., Juárez-Pérez, C. A., Cabello-López, A., Jiménez-Ramírez, C., Chang-Rueda, C., Cruz, M., Hernández-Mendoza, H., & Vazquez-Moreno, M. (2024). Overweight, Obesity, Hypertriglyceridemia, and Insulin Resistance Are Positively Associated with High Serum Copper Levels in Mexican Adults. Metabolites, 14(5), 282. https://doi.org/10.3390/metabo14050282