Comparative Lipidomics of Oral Commensal and Opportunistic Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Processing
2.2. Lipidomics Analysis
2.3. Data Reduction
3. Results and Discussion
3.1. Consideration of Targeted vs. Non-Targeted Lipidomics Analyses
3.2. Modified Fatty Acyls: Aminoacyl Hydroxy-Fatty Acids (HFAs) in Gram-Negative Bacteria
3.3. Modified Fatty Acyls: Gly-Ser Lipids (Gly-Ser-FAHFA) in Gram-Negative Bacteria
3.4. Glycerolipids (GL) and Modified-GLs
3.5. Glycerphospholipids (GPLs)
3.6. Sphingolipids: Ceramides
3.7. Sphingolipids: Sphingomyelins
3.8. Sphingolipids: Phosphorylated Ceramides
3.9. Sphingolipids: Ceramide Sulfonates
3.10. Glycopeptidolipids (GPL)
3.11. Mutanamides: Lipopeptides
3.12. Betaine Lipids: Monoacylglyceryl-Carboxyhydroxymethylcholine (MGCC)
3.13. Unique Fungal Lipid Biomarkers
4. Summary
5. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tuominen, H.; Rautava, J. Oral Microbiota and Cancer Development. Pathobiology 2021, 88, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Colombo, A.V.; da Silva, C.M.; Haffajee, A.; Colombo, A.P. Identification of intracellular oral species within human crevicular epithelial cells from subjects with chronic periodontitis by fluorescence in situ hybridization. J. Periodontal Res. 2007, 42, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Teles, F.R.; Teles, R.P.; Uzel, N.G.; Song, X.Q.; Torresyap, G.; Socransky, S.S.; Haffajee, A.D. Early microbial succession in redeveloping dental biofilms in periodontal health and disease. J. Periodontal Res. 2012, 47, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Herrero, E.R.; Slomka, V.; Bernaerts, K.; Boon, N.; Hernandez-Sanabria, E.; Passoni, B.B.; Quirynen, M.; Teughels, W. Antimicrobial effects of commensal oral species are regulated by environmental factors. J. Dent. 2016, 47, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Borgnakke, W.S.; Ylöstalo, P.V.; Taylor, G.W.; Genco, R.J. Effect of periodontal disease on diabetes: Systematic review of epidemiologic observational evidence. J. Clin. Periodontol. 2013, 40 (Suppl. S14), S135–S152. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Liu, L.; Chen, L.; Xiang, Y.; Wang, Y.; Zhao, Y. The coexistence of bacterial species restructures biofilm architecture and increases tolerance to antimicrobial agents. Microbiol. Spectr. 2023, 11, e0358122. [Google Scholar] [CrossRef] [PubMed]
- Krzyściak, W.; Jurczak, A.; Kościelniak, D.; Bystrowska, B.; Skalniak, A. The virulence of Streptococcus mutans and the ability to form biofilms. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 499–515. [Google Scholar] [CrossRef] [PubMed]
- Kara, D.; Luppens, S.B.; van Marle, J.; Ozok, R.; ten Cate, J.M. Microstructural differences between single-species and dual-species biofilms of Streptococcus mutans and Veillonella parvula, before and after exposure to chlorhexidine. FEMS Microbiol. Lett. 2007, 271, 90–97. [Google Scholar] [PubMed]
- Luppens, S.B.; Kara, D.; Bandounas, L.; Jonker, M.J.; Wittink, F.R.; Bruning, O.; Breit, T.M.; Ten Cate, J.M.; Crielaard, W. Effect of Veillonella parvula on the antimicrobial resistance and gene expression of Streptococcus mutans grown in dual-species biofilm. Oral Microbiol. Immunol. 2008, 23, 183–189. [Google Scholar] [CrossRef]
- Khoury, Z.H.; Vila, T.; Puthran, T.R.; Sultan, A.S.; Montelongo-Jauregui, D.; Melo, M.A.S.; Jabra-Rizk, M.A. The Role of Candida albicans Secreted Polysaccharides in Augmenting Streptococcus mutans Adherence and Mixed Biofilm Formation: In vitro and in vivo Studies. Front. Microbiol. 2020, 11, 307. [Google Scholar] [CrossRef]
- Li, Y.; Huang, S.; Du, J.; Wu, M.; Huang, X. Current and prospective therapeutic strategies: Tackling Candida albicans and Streptococcus mutans cross-kingdom biofilm. Front. Cell. Infect. Microbiol. 2023, 13, 1106231. [Google Scholar] [CrossRef] [PubMed]
- Pathak, J.L.; Yan, Y.; Zhang, Q.; Wang, L.; Ge, L. The role of oral microbiome in respiratory health and diseases. Respir. Med. 2021, 185, 106475. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.J.; Cao, N.W.; Zhou, H.Y.; Meng, X.; Guo, B.; Zhang, H.Y.; Li, B.Z. The oral and gut microbiome in rheumatoid arthritis patients: A systematic review. Rheumatology 2021, 60, 1054–1066. [Google Scholar] [CrossRef] [PubMed]
- Koliarakis, I.; Messaritakis, I.; Nikolouzakis, T.K.; Hamilos, G.; Souglakos, J.; Tsiaoussis, J. Oral Bacteria and Intestinal Dysbiosis in Colorectal Cancer. Int. J. Mol. Sci. 2019, 20, 4146. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Fang, J.Y. Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer. Trends Microbiol. 2023, 31, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Sansores-España, D.; Carrillo-Avila, A.; Melgar-Rodriguez, S.; Díaz-Zuñiga, J.; Martínez-Aguilar, V. Periodontitis and Alzheimer’s disease. Med. Oral Patol. Oral Cir. Bucal 2021, 26, e43–e48. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, D.; Liu, S.; Zhang, S.; Pan, Y. The Role of Porphyromonas gingivalis Outer Membrane Vesicles in Periodontal Disease and Related Systemic Diseases. Front. Cell. Infect. Microbiol. 2021, 10, 585917. [Google Scholar] [CrossRef] [PubMed]
- Rabe, L.K.; Winterscheid, K.K.; Hillier, S.L. Association of viridans group streptococci from pregnant women with bacterial vaginosis and upper genital tract infection. J. Clin. Microbiol. 1988, 26, 1156–1160. [Google Scholar] [CrossRef]
- Cassini, M.A.; Pilloni, A.; Condò, S.G.; Vitali, L.A.; Pasquantonio, G.; Cerroni, L. Periodontal bacteria in the genital tract: Are they related to adverse pregnancy outcome? Int. J. Immunopathol. Pharmacol. 2013, 26, 931–939. [Google Scholar] [CrossRef]
- Ishihara, K.; Okuda, K. Molecular pathogenesis of the cell surface proteins and lipids from Treponema denticola. FEMS Microbiol. Lett. 1999, 181, 199–204. [Google Scholar] [CrossRef]
- Cabacungan, E.; Pieringer, R.A. Excretion of extracellular lipids by Streptococcus mutans BHT and FA-1. Infect. Immun. 1980, 27, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Sallans, L.; Giner, J.L.; Kiemle, D.J.; Custer, J.E.; Kaneshiro, E.S. Structural identities of four glycosylated lipids in the oral bacterium Streptococcus mutans UA159. Biochim. Biophys. Acta 2013, 183, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Custer, J.E.; Goddard, B.D.; Matter, S.F.; Kaneshiro, E.S. The relative proportions of different lipid classes and their fatty acid compositions change with culture age in the cariogenic dental pathogen Streptococcus mutans UA159. Lipids 2014, 49, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Lattif, A.A.; Mukherjee, P.K.; Chandra, J.; Roth, M.R.; Welti, R.; Rouabhia, M.; Ghannoum, M.A. Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation. Microbiology 2011, 157 Pt 11, 3232–3242. [Google Scholar] [CrossRef] [PubMed]
- Hans, S.; Fatima, Z.; Hameed, S. Mass spectrometry-based untargeted lipidomics reveals new compositional insights into membrane dynamics of Candida albicans under magnesium deprivation. J. Appl. Microbiol. 2022, 132, 978–993. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.L.; Erol, E. Construction of a Bacterial Lipidomics Analytical Platform: Pilot Validation with Bovine Paratuberculosis Serum. Metabolites 2023, 13, 809. [Google Scholar] [CrossRef] [PubMed]
- Klatt, S.; Brammananth, R.; O’Callaghan, S.; Kouremenos, K.A.; Tull, D.; Crellin, P.K.; Coppel, R.L.; McConville, M.J. Identification of novel lipid modifications and intermembrane dynamics in Corynebacterium glutamicum using high-resolution mass spectrometry. J. Lipid Res. 2018, 59, 1190–1204. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.L. (Ed.) Non-targeted lipidomics utilizing constant infusion high resolution ESI mass spectrometry. In Springer Protocols, Neuromethods: Lipidomics; Springer: Cham, Switzerland, 2017; Volume 125, pp. 13–19. ISBN 978-1-0716-0863-0. [Google Scholar]
- Wood, P.L.; Woltjer, R.L. Electrospray Ionization High Resolution Mass Spectrometry of the Chloride Adducts of Steroids, Mono- and Oligo-saccharides, Xyloglucans, Ceramides, Gangliosides, and Phenols. In Springer Protocols, Neuromethods: Metabolomics; Wood, P.L., Ed.; Springer: Cham, Switzerland, 2021; Volume 159, pp. 69–76. ISBN 978-1-0716-0863-0. [Google Scholar]
- Chwastek, G.; Surma, M.A.; Rizk, S.; Grosser, D.; Lavrynenko, O.; Rucińska, M.; Jambor, H.; Sáenz, J. Principles of Membrane Adaptation Revealed through Environmentally Induced Bacterial Lipidome Remodeling. Cell Rep. 2020, 32, 108165. [Google Scholar] [CrossRef] [PubMed]
- Frantsuzova, E.; Bogun, A.; Vetrova, A.; Delegan, Y. Methods of Identifying Gordonia Strains in Clinical Samples. Pathogens 2022, 11, 1496. [Google Scholar] [CrossRef]
- Cohen, L.J.; Kang, H.S.; Chu, J.; Huang, Y.H.; Gordon, E.A.; Reddy, B.V.; Ternei, M.A.; Craig, J.W.; Brady, S.F. Functional metagenomic discovery of bacterial effectors in the human microbiome and isolation of commendamide, a GPCR G2A/132 agonist. Proc. Natl. Acad. Sci. USA 2015, 112, E4825–E4834. [Google Scholar] [CrossRef]
- Cohen, L.J.; Esterhazy, D.; Kim, S.H.; Lemetre, C.; Aguilar, R.R.; Gordon, E.A.; Pickard, A.J.; Cross, J.R.; Emiliano, A.B.; Han, S.M.; et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 2017, 549, 48–53. [Google Scholar] [CrossRef]
- Lynch, A.; Tammireddy, S.R.; Doherty, M.K.; Whitfield, P.D.; Clarke, D.J. The Glycine Lipids of Bacteroides thetaiotaomicron are Important for Fitness during Growth in Vivo and in Vitro. Appl. Environ. Microbiol. 2019, 85, e02157-18. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.L. Fatty Acyl Esters of Hydroxy Fatty Acid (FAHFA) Lipid Families. Metabolites 2020, 10, 512. [Google Scholar] [CrossRef]
- Brejchova, K.; Balas, L.; Paluchova, V.; Brezinova, M.; Durand, T.; Kuda, O. Understanding FAHFAs: From structure to metabolic regulation. Prog. Lipid Res. 2020, 79, 101053. [Google Scholar] [CrossRef]
- Riecan, M.; Paluchova, V.; Lopes, M.; Brejchova, K.; Kuda, O. Branched and linear fatty acid esters of hydroxy fatty acids (FAHFA) relevant to human health. Pharmacol. Ther. 2022, 231, 107972. [Google Scholar] [CrossRef] [PubMed]
- Butovich, I.A. Tear film lipids. Exp. Eye Res. 2013, 117, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, S.; Okahashi, N.; Tsugawa, H.; Ogata, Y.; Ikeda, K.; Suda, W.; Arai, H.; Hattori, M.; Arita, M. Elucidation of Gut Microbiota-Associated Lipids Using LC-MS/MS and 16S rRNA Sequence Analyses. iScience 2020, 23, 101841. [Google Scholar] [CrossRef]
- Wood, P.L.; Scoggin, K.; Ball, B.A.; Lawrence, L.; Troedsson, M.H.; Squires, E.L. Lipidomics of equine sperm and seminal plasma: Identification of amphiphilic (O-acyl)-ω-hydroxy-fatty acids. Theriogenology 2016, 86, 1212–1225. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.L.; Ball, B.A.; Scoggin, K.; Troedsson, M.H.; Squires, E.L. Lipidomics of equine amniotic fluid: Identification of amphiphilic (O-acyl)-ω-hydroxy-fatty acids. Theriogenology 2018, 105, 120–125. [Google Scholar] [CrossRef]
- Dietz, C.; Clark, R.B.; Nichols, F.C.; Smith, M.B. Convergent synthesis of a deuterium-labeled serine dipeptide lipid for analysis of biological samples. J. Label. Comp. Radiopharm. 2017, 60, 274–285. [Google Scholar] [CrossRef]
- Farrokhi, V.; Nemati, R.; Nichols, F.C.; Yao, X.; Anstadt, E.; Fujiwara, M.; Grady, J.; Wakefield, D.; Castro, W.; Donaldson, J.; et al. Bacterial lipodipeptide, Lipid 654, is a microbiome-associated biomarker for multiple sclerosis. Clin. Transl. Immunol. 2013, 2, e8. [Google Scholar] [CrossRef] [PubMed]
- Nemati, R.; Dietz, C.; Anstadt, E.J.; Cervantes, J.; Liu, Y.; Dewhirst, F.E.; Clark, R.B.; Finegold, S.; Gallagher, J.J.; Smith, M.B.; et al. Deposition and hydrolysis of serine dipeptide lipids of Bacteroidetes bacteria in human arteries: Relationship to atherosclerosis. J. Lipid Res. 2017, 58, 1999–2007. [Google Scholar] [CrossRef] [PubMed]
- Nichols, F.C.; Clark, R.B.; Liu, Y.; Provatas, A.A.; Dietz, C.J.; Zhu, Q.; Wang, Y.H.; Smith, M.B. Glycine Lipids of Porphyromonas gingivalis are Agonists for Toll-like Receptor 2. Infect. Immun. 2020, 88, e00877-19. [Google Scholar] [CrossRef]
- Nichols, F.C.; Clark, R.B.; Maciejewski, M.W.; Provatas, A.A.; Balsbaugh, J.L.; Dewhirst, F.E.; Smith, M.B.; Rahmlow, A. A novel phosphoglycerol serine-glycine lipodipeptide of Porphyromonas gingivalis is a TLR2 ligand. J. Lipid Res. 2020, 61, 1645–1657. [Google Scholar] [CrossRef] [PubMed]
- Nichols, F.C.; Bhuse, K.; Clark, R.B.; Provatas, A.A.; Carrington, E.; Wang, Y.H.; Zhu, Q.; Davey, M.E.; Dewhirst, F.E. Serine/Glycine Lipid Recovery in Lipid Extracts from Healthy and Diseased Dental Samples: Relationship to Chronic Periodontitis. Front. Oral Health 2021, 2, 698481. [Google Scholar] [CrossRef] [PubMed]
- Olsen, I.; Nichols, F.C. Are Sphingolipids and Serine Dipeptide Lipids Underestimated Virulence Factors of Porphyromonas gingivalis? Infect. Immun. 2018, 86, e00035-18. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, C.; Stafford, G.P.; Murdoch, C. Porphyromonas gingivalis Outer Membrane Vesicles Increase Vascular Permeability. J. Dent. Res. 2020, 99, 1494–1501. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Everett, C.; Barragan, J.A.; Vargas-Medrano, J.; Gadad, B.S.; Nichols, F.; Cervantes, J.L. Multiple Sclerosis-associated Bacterial Ligand 654. Arch. Med. Res. 2022, 53, 157–162. [Google Scholar] [CrossRef]
- Heidler von Heilborn, D.; Nover, L.L.; Weber, M.; Hölzl, G.; Gisch, N.; Waldhans, C.; Mittler, M.; Kreyenschmidt, J.; Woehle, C.; Hüttel, B.; et al. Polar lipid characterization and description of Chryseobacterium capnotolerans sp. nov., isolated from high CO2-containing atmosphere and emended descriptions of the genus Chryseobacterium, and the species C. balustinum, C. daecheongense, C. formosense, C. gleum, C. indologenes, C. joostei, C. scophthalmum and C. ureilyticum. Int. J. Syst. Evol. Microbiol. 2022, 72, 5. [Google Scholar]
- Bill, M.K.; Brinkmann, S.; Oberpaul, M.; Patras, M.A.; Leis, B.; Marner, M.; Maitre, M.P.; Hammann, P.E.; Vilcinskas, A.; Schuler, S.M.M.; et al. Novel Glycerophospholipid, Lipo- and N-acyl Amino Acids from Bacteroidetes: Isolation, Structure Elucidation and Bioactivity. Molecules 2021, 26, 5195. [Google Scholar] [CrossRef]
- Sartorio, M.G.; Valguarnera, E.; Hsu, F.F.; Feldman, M.F. Lipidomics Analysis of Outer Membrane Vesicles and Elucidation of the Inositol Phosphoceramide Biosynthetic Pathway in Bacteroides thetaiotaomicron. Microbiol. Spectr. 2022, 10, e0063421. [Google Scholar] [CrossRef]
- Kawasaki, K.; Gomi, K.; Kawai, Y.; Shiozaki, M.; Nishijima, M. Molecular basis for lipopolysaccharide mimetic action of Taxol and flavolipin. J. Endotoxin Res. 2003, 9, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.; Joyce, S.A.; Clarke, D.J. Membrane lipids from gut microbiome-associated bacteria as structural and signalling molecules. Microbiology 2023, 169, micro001315. [Google Scholar] [CrossRef]
- Nichols, F.C. Distribution of 3-hydroxy iC17:0 in subgingival plaque and gingival tissue samples: Relationship to adult periodontitis. Infect. Immun. 1994, 62, 3753–3760. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Chen, L.; Gerritsen, J.; Smidt, H.; Goldfine, H. The cellular lipids of Romboutsia. Biochim. Biophys. Acta. 2016, 1861 Pt A, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Garrett, T.A.; Goldfine, H. Lipidomic Analysis of Clostridium cadaveris and Clostridium fallax. Lipids 2019, 54, 423–431. [Google Scholar] [CrossRef]
- Guan, Z.; Goldfine, H. Lipid diversity in clostridia. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021, 1866, 158966. [Google Scholar] [CrossRef]
- Lopes, C.; Barbosa, J.; Maciel, E.; da Costa, E.; Alves, E.; Domingues, P.; Mendo, S.; Domingues, M.R.M. Lipidomic signature of Bacillus licheniformis I89 during the different growth phases unravelled by high-resolution liquid chromatography-mass spectrometry. Arch. Biochem. Biophys. 2019, 663, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Joyce, L.R.; Wall, A.M.; Guan, Z.; Palmer, K.L. Streptococcus pneumoniae, S. mitis, and S. oralis Produce a Phosphatidylglycerol-Dependent, ltaS-Independent Glycerophosphate-Linked Glycolipid. mSphere 2021, 6, e01099-20. [Google Scholar] [CrossRef]
- Nakano, M.; Fischer, W. Trihexosyldiacylglycerol and acyltrihexosyldiacylglycerol as lipid anchors of the lipoteichoic acid of Lactobacillus casei DSM 20021. Biol. Chem. 1978, 359, 1–12. [Google Scholar]
- Shiraishi, T.; Yokota, S.; Morita, N.; Fukiya, S.; Tomita, S.; Tanaka, N.; Okada, S.; Yokota, A. Characterization of a Lactobacillus gasseri JCM 1131T lipoteichoic acid with a novel glycolipid anchor structure. Appl. Environ. Microbiol. 2013, 79, 3315–3318. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, T.; Yokota, S.; Sato, Y.; Ito, T.; Fukiya, S.; Yamamoto, S.; Sato, T.; Yokota, A. Lipoteichoic acids are embedded in cell walls during logarithmic phase, but exposed on membrane vesicles in Lactobacillus gasseri JCM 1131T. Benef. Microbes 2018, 9, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, T.; Yamamoto, S.; Yokota, S.I. Structural analysis of the lipoteichoic acid anchor glycolipid: Comparison of methods for degradation of the glycerophosphate backbone polymer. J. Microbiol. Methods 2019, 166, 105726. [Google Scholar] [CrossRef] [PubMed]
- Nichols, F.C.; Riep, B.; Mun, J.; Morton, M.D.; Bojarski, M.T.; Dewhirst, F.E.; Smith, M.B. Structures and biological activity of phosphorylated dihydroceramides of Porphyromonas gingivalis. J. Lipid Res. 2004, 45, 2317–2330. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.T.; Tian, J.; Kobayashi-Kirschvink, K.J.; Cen, L.; McLean, J.S.; Bor, B.; Shi, W.; He, X. Episymbiotic bacterium induces intracellular lipid droplet production in its host bacteria. bioRxiv 2023, 6, 2023.09.06.556576. [Google Scholar] [CrossRef]
- Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.; Yu, W.H.; Lakshmanan, A.; Wade, W.G. The human oral microbiome. J. Bacteriol. 2010, 192, 5002–5017. [Google Scholar] [CrossRef] [PubMed]
- Lazarevic, V.; Whiteson, K.; Hernandez, D.; François, P.; Schrenzel, J. Study of inter- and intra-individual variations in the salivary microbiota. BMC Genom. 2010, 11, 523. [Google Scholar] [CrossRef]
- Baronio, M.; Lattanzio, V.M.; Vaisman, N.; Oren, A.; Corcelli, A. The acylhalocapnines of halophilic bacteria: Structural details of unusual sulfonate sphingoids. J. Lipid Res. 2010, 51, 1878–1885. [Google Scholar] [CrossRef] [PubMed]
- Nichols, F.C.; Yao, X.; Bajrami, B.; Downes, J.; Finegold, S.M.; Knee, E.; Gallagher, J.J.; Housley, W.J.; Clark, R.B. Phosphorylated dihydroceramides from common human bacteria are recovered in human tissues. PLoS ONE 2011, 6, e16771. [Google Scholar] [CrossRef]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The Microbial "Protective Clothing" in Extreme Environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef]
- Yoo, B.H.; Kim., M.D. Isolation of the Inositol Phosphoceramide Synthase Gene (AUR1) from Stress-Tolerant Yeast Pichia kudriavzevii. J. Microbiol. Biotechnol. 2015, 25, 1902–1907. [Google Scholar] [CrossRef] [PubMed]
- Panevska, A.; Skočaj, M.; Križaj, I.; Maček, P.; Sepčić, K. Ceramide phosphoethanolamine, an enigmatic cellular membrane sphingolipid. Biochim. Biophys. Acta Biomembr. 2019, 1861, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- LaBach, J.P.; White, D.C. Identification of ceramide phosphorylethanolamine and ceramide phosphorylglycerol in the lipids of an anaerobic bacterium. J. Lipid Res. 1969, 10, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Cerbón, J.; Falcon, A.; Hernández-Luna, C.; Segura-Cobos, D. Inositol phosphoceramide synthase is a regulator of intracellular levels of diacylglycerol and ceramide during the G1 to S transition in Saccharomyces cerevisiae. Biochem. J. 2005, 388 Pt 1, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Grundner, M.; Munjaković, H.; Tori, T.; Sepčić, K.; Gašperšič, R.; Oblak, Č.; Seme, K.; Guella, G.; Trenti, F.; Skočaj, M. Ceramide Phosphoethanolamine as a Possible Marker of Periodontal Disease. Membranes 2022, 12, 655. [Google Scholar] [CrossRef] [PubMed]
- Buré, C.; Cacas, J.L.; Mongrand, S.; Schmitter, J.M. Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 995–1010. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, P.N.; Wani, K.S.; Chaudhari, B.L.; Chincholkar, S.B. Characteristics of sulfobacin A from a soil isolate Chryseobacterium gleum. Appl. Biochem. Biotechnol. 2009, 158, 231–241. [Google Scholar] [CrossRef]
- Tropis, M.; Meniche, X.; Wolf, A.; Gebhardt, H.; Strelkov, S.; Chami, M.; Schomburg, D.; Krämer, R.; Morbach, S.; Daffé, M. The crucial role of trehalose and structurally related oligosaccharides in the biosynthesis and transfer of mycolic acids in Corynebacterineae. J. Biol. Chem. 2005, 280, 26573–26585. [Google Scholar] [CrossRef]
- Guan, Z.; Katzianer, D.; Zhu, J.; Goldfine, H. Clostridium difficile contains plasmalogen species of phospholipids and glycolipids. Biochim. Biophys. Acta 2014, 1841, 1353–1359. [Google Scholar] [CrossRef]
- Walker, A.; Pfitzner, B.; Harir, M.; Schaubeck, M.; Calasan, J.; Heinzmann, S.S.; Turaev, D.; Rattei, T.; Endesfelder, D.; Castell, W.Z.; et al. Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter affected by high-fat diets. Sci. Rep. 2017, 7, 11047. [Google Scholar] [CrossRef]
- Godchaux, W., 3rd; Leadbetter, E.R. Sulfonolipids of gliding bacteria. Structure of the N-acylaminosulfonates. J. Biol. Chem. 1984, 259, 2982–2990. [Google Scholar] [CrossRef]
- Schorey, J.S.; Sweet, L. The mycobacterial glycopeptidolipids: Structure, function, and their role in pathogenesis. Mol. Microbiol. 2015, 98, 681–693. [Google Scholar] [CrossRef]
- Ooshima, T.; Kuramitsu, H.K. Regulation of extracellular slime production by Actinomyces viscosus. Infect. Immun. 1981, 32, 1105–1112. [Google Scholar] [CrossRef]
- Zvanych, R.; Lukenda, N.; Li, X.; Kim, J.J.; Tharmarajah, S.; Magarvey, N.A. Systems biosynthesis of secondary metabolic pathways within the oral human microbiome member Streptococcus mutans. Mol. Biosyst. 2015, 11, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Cañavate, J.P.; Armada, I.; Ríos, J.L.; Hachero-Cruzado, I. Exploring occurrence and molecular diversity of betaine lipids across taxonomy of marine microalgae. Phytochemistry 2016, 124, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.L.; Wood, M.D.; Kunigelis, S.C. Pilot Lipidomics Study of Copepods: Investigation of Potential Lipid-Based Biomarkers for the Early Detection and Quantification of the Biological Effects of Climate Change on the Oceanic Food Chain. Life 2023, 13, 2335. [Google Scholar] [CrossRef]
- Tsugawa, H.; Satoh, A.; Uchino, H.; Cajka, T.; Arita, M.; Arita, M. Mass Spectrometry Data Repository Enhances Novel Metabolite Discoveries with Advances in Computational Metabolomics. Metabolites 2019, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.M.; Goossens, C.; Zhou, Y.; Chaib, S.; Raviglione, S.; Nicolè, F.; Hume, B.C.C.; Forcioli, D.; Agostini, S.; Boissin, E.; et al. Multi-omics determination of metabolome diversity in natural coral populations in the Pacific Ocean. Commun. Earth Environ. 2023, 4, 281. [Google Scholar] [CrossRef]
- Angelini, R.; Babudri, F.; Lobasso, S.; Corcelli, A. MALDI-TOF/MS analysis of archaebacterial lipids in lyophilized membranes dry-mixed with 9-aminoacridine. J. Lipid Res. 2010, 51, 2818–2825. [Google Scholar] [CrossRef]
Microbe | ATCC # | Gram | Class |
---|---|---|---|
Streptococcus oralis | 9811 | Positive | Bacilli |
Streptococcus intermedius | 27335 | Positive | Bacilli |
Streptococcus mitis | 49456 | Positive | Bacilli |
Streptococcus sanguinis | 10556 | Positive | Bacilli |
Streptococcus gordonii | 33399 | Positive | Bacilli |
Streptococcus mutans | 35668 | Positive | Bacilli |
Staphylococcus epidermis | 14990 | Positive | Bacilli |
Streptococcus acidominimus | 51726 | Positive | Bacilli |
Actinomyces viscosus | 43146 | Positive | Actinomycetia |
Nanosynbacter lyticus | TSD 290 | Positive | Saccharimonadia |
Porphyromonas gingivalis | 33277 | Negative | Bacteroidia |
Prevotella brevis | 19188 | Negative | Bacteroidia |
Fusobacterium nucleatum | 10953 | Negative | Fusobacter |
Veillonella parvula | 10790 | Negative | Clostridia |
Treponema denticola | 35405 | Negative | Spirochaetia |
Proteus vulgaris | 8427 | Negative | Gammaproteobacteria |
Alkermansia muciniphila | BAA 835 | Negative | Verrucomicrobiae |
Candida albicans | 24433 | Fungus | Sachcharomycetes |
Gly-Hydroxy-FA | P. gingivalis | F. nucleatum | T. denticola |
---|---|---|---|
Gly-HFA 15:0 | 0.017 | 0.022 | |
Gly-HFA 16:0 | 1.0 (0.042) | 0.825 | 1.0 (0.040) |
Gly-HFA 17:0 | 0.036 | ||
Gly-HFA 18:0 | 0.109 | 0.115 | 0.141 |
Gly-HFA 19:0 | 0.047 | 1.0 (0.036) | 0.119 |
Gly-HFA 20:0 | 0.047 | 0.038 | 0.051 |
Gly-Ser-FAHFA | P. gingivalis | F. nucleatum | T. denticola |
---|---|---|---|
Gly-Ser FAHFA 27:0 | 0.0239 | ||
Gly-Ser FAHFA 30:0 | 0.0954 | ||
Gly-Ser FAHFA 31:0 | 0.3595 | 0.1983 | |
Gly-Ser FAHFA 32:0 | 1.0 (3.29) | 1.0 (0.077) | 1.0 (0.014) |
Gly-Ser FAHFA 33:0 | 0.0377 | ||
Gly-Ser-FAHFA-P-DG | |||
Gly-Ser-FAHFA-P-DG 59:0 | 0.3845 | ||
Gly-Ser-FAHFA-P-DG 60:0 | 0.7934 | 0.6614 | |
Gly-Ser-FAHFA-P-DG 61:0 | 0.8599 | 0.7809 | |
Gly-Ser-FAHFA-P-DG 62:0 | 1.0 (0.28) | 1.0 (0.035) | |
Gly-Ser-FAHFA-P-DG 63:0 | 0.5418 | 0.4949 | |
Gly-Ser-FAHFA-P-DG 64:0 | 0.0753 |
Lipid * ([M-H]−) | Product Ions ([M-H]−, ppm) |
---|---|
Gly-Ser-FAHFA-P-DG 59:0 (1213.8952) |
|
Gly-Ser-FAHFA-P-DG 60:0 (1227.9109) |
|
Gly-Ser-FAHFA-P-DG 61:0 (1241.9265) |
|
Gly-Ser-FAHFA-P-DG 62:0 (1255.9422) |
|
Gly-Ser-FAHFA-P-DG 63:0 (1269.9578) |
|
Gly-Ser-FAHFA-P-DG 64:0 (1283.9735) |
|
Microbe | PC 30:0 | PC 34:1 | PC 30:1 | PC 32:0 | PC 34:0 | PC 36:3 | LPC 16:0 | LPC 18:0 | LPC 16:1 | LPC/PC |
---|---|---|---|---|---|---|---|---|---|---|
S.sanguins | 0.300 | 0.31 | 1.03 | |||||||
S. mutans | 0.047 | 0.33 | 7.02 | |||||||
S. acidominus | 7.80 | 0.18 | 0.023 | |||||||
A. viscosus | 9.69 | 0.95 | 0.098 | |||||||
P. gingivalis | 0.610 | 1.13 | 1.85 | |||||||
F. nucleatum | 0.180 | 0.86 | 4.78 | |||||||
T. denticola | 0.710 | 1.28 | 1.80 | |||||||
C. albicans | 10.14 | 2.15 | 0.21 | |||||||
S. epidermis | 0.27 | 0.65 | 2.38 | |||||||
S. intermedius | 2.58 | 20.37 | 7.89 | |||||||
P. vulgaris | 4.59 | 2.44 | 0.53 | |||||||
P. brevis | 1.74 | 10.64 | 6.12 | |||||||
V. parvula | 2.66 | 10.72 | 4.03 | |||||||
S. oralis | 1.03 | 22.83 | 22.10 | |||||||
N. lyticus | 9.10 | 0.339 | 0.037 | |||||||
A.muciniphilia | 0.014 | 0.22 | 15.71 | |||||||
S. mitis | 2.66 | 11.02 | 4.14 | |||||||
S. gordinii | 1.12 | 22.72 | 20.29 |
MGCC | Exact Mass | (M+H)+ | N. lyticus |
---|---|---|---|
MGCC 16:0 | 489.3665 | 490.3738 | 1.0 (0.12) |
MGCC 18:0 | 517.3978 | 518.4051 | 0.417 |
MGCC 18:1 | 515.3821 | 516.3894 | 0.082 |
MGCC 20:1 | 543.4134 | 544.4207 | 0.247 |
MGCC 22:2 | 569.4291 | 570.4364 | 0.520 |
MGCC 24:1 | 599.4761 | 600.4833 | 0.223 |
Fatty Acyle | Glycerolipids | Glycerphospholipids | Sphingolipids | Other Lipids | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gly-HFA | Gly-Ser-FAHFA | Gly-Ser-FAHFA-P-DAG | MG | DG | DHDG | THDG | Glycerophospho-cholines | Phosphatidyl-glycerols | Ceramides | PE-Cermides | Ceramide Sulfonates | Glycopeptidolipids | Mutanamides | Betaine Lipids | |
Gram-Positive Commensal | |||||||||||||||
S. oralis | |||||||||||||||
S. intermedius | |||||||||||||||
S.mitis | |||||||||||||||
S.sanguinis | |||||||||||||||
S. gordonii | |||||||||||||||
Gram-Positive Opportunistic | |||||||||||||||
S. mutans | |||||||||||||||
S. epidermis | |||||||||||||||
S. acidominimus | |||||||||||||||
A. viscosus | |||||||||||||||
N. lyticus | |||||||||||||||
Gram-Negative Opportunistic | |||||||||||||||
P. gingivalis | |||||||||||||||
P. brevis | |||||||||||||||
P. vulgaris | |||||||||||||||
F. nucleatum | |||||||||||||||
V. parvula | |||||||||||||||
T. denticola | |||||||||||||||
A. muciniphila | |||||||||||||||
Fungus | |||||||||||||||
C. albicans |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wood, P.L.; Le, A.; Palazzolo, D.L. Comparative Lipidomics of Oral Commensal and Opportunistic Bacteria. Metabolites 2024, 14, 240. https://doi.org/10.3390/metabo14040240
Wood PL, Le A, Palazzolo DL. Comparative Lipidomics of Oral Commensal and Opportunistic Bacteria. Metabolites. 2024; 14(4):240. https://doi.org/10.3390/metabo14040240
Chicago/Turabian StyleWood, Paul L., Annie Le, and Dominic L. Palazzolo. 2024. "Comparative Lipidomics of Oral Commensal and Opportunistic Bacteria" Metabolites 14, no. 4: 240. https://doi.org/10.3390/metabo14040240
APA StyleWood, P. L., Le, A., & Palazzolo, D. L. (2024). Comparative Lipidomics of Oral Commensal and Opportunistic Bacteria. Metabolites, 14(4), 240. https://doi.org/10.3390/metabo14040240