Role of Milk Intake in Modulating Serum Lipid Profiles and Gut Metabolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Experiment Design
2.2. Biochemical Assays
2.3. LC-MS Analysis
2.4. Non-Targeted Metabolomic Analysis
2.5. Statistical Analysis
3. Results
3.1. The Impact of Buffalo Milk and Holstein Cow Milk Intake on Blood Lipid in Golden Hamsters
3.2. Effect of Buffalo Milk and Holstein Cow Milk Intake on Serum Metabolites
3.3. Effect of Buffalo Milk and Holstein Cow Milk Intake on Gut Microbial Metabolites
3.4. Correlation Analysis of Metabolomics and Blood Lipid
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huth, P.J.; DiRienzo, D.B.; Miller, G.D. Major Scientific Advances with Dairy Foods in Nutrition and Health. J. Dairy Sci. 2006, 89, 1207–1221. [Google Scholar] [CrossRef] [PubMed]
- Pratelli, G.; Tamburini, B.; Badami, G.D.; Pizzo, M.L.; Blasio, A.D.; Carlisi, D.; Liberto, D.D. Cow’s Milk: A Benefit for Human Health? Omics Tools and Precision Nutrition for Lactose Intolerance Management. Nutrients 2024, 16, 320. [Google Scholar] [CrossRef] [PubMed]
- Unger, A.L.; Torres-Gonzalez, M.; Kraft, J. Dairy Fat Consumption and the Risk of Metabolic Syndrome: An Examination of the Saturated Fatty Acids in Dairy. Nutrients 2019, 11, 2200. [Google Scholar] [CrossRef] [PubMed]
- Michael, M.; Neil, J.S.; Christie, B.; Vera, B. Triglycerides and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2011, 123, 2292–2333. [Google Scholar] [CrossRef]
- Teixeira, T.F.S.; Souza, N.C.S.; Chiarello, P.G.; Franceschini, S.C.C.; Bressan, J.; Ferreira, C.L.L.F.; Peluzio, M.d.C.G. Intestinal Permeability Parameters in Obese Patients Are Correlated with Metabolic Syndrome Risk Factors. Clin. Nutr. 2012, 31, 735–740. [Google Scholar] [CrossRef]
- Alvarez-León, E.E.; Román-Vinas, B.; Serra-Majem, L. Lluís Serra-Majem Dairy Products and Health: A Review of the Epidemiological Evidence. Br. J. Nutr. 2006, 96, S94–S99. [Google Scholar] [CrossRef]
- Chen, L.; Zhernakova, D.V.; Kurilshikov, A.; Andreu-Sánchez, S.; Wang, D.; Augustijn, H.E.; Vila, A.V.; Study, L.C.; Weersma, R.K.; Medema, M.H.; et al. Influence of the Microbiome, Diet and Genetics on Inter-Individual Variation in the Human Plasma Metabolome. Nat. Med. 2022, 28, 2333. [Google Scholar] [CrossRef]
- Daniel, N.; Nachbar, R.T.; Tran, T.T.T.; Ouellette, A.; Varin, T.V.; Cotillard, A.; Quinquis, L.; Gagné, A.; St-Pierre, P.; Trottier, J.; et al. Gut Microbiota and Fermentation-Derived Branched Chain Hydroxy Acids Mediate Health Benefits of Yogurt Consumption in Obese Mice. Nat. Commun. 2022, 13, 1343. [Google Scholar] [CrossRef]
- González, S.; Fernández-Navarro, T.; Arboleya, S.; de los Reyes-Gavilán, C.G.; Salazar, N.; Gueimonde, M. Fermented Dairy Foods: Impact on Intestinal Microbiota and Health-Linked Biomarkers. Front. Microbiol. 2019, 10, 1046. [Google Scholar] [CrossRef]
- Zhang, X.; Coker, O.O.; Chu, E.S.; Fu, K.; Lau, H.C.H.; Wang, Y.-X.; Chan, A.W.H.; Wei, H.; Yang, X.; Sung, J.J.Y.; et al. Dietary Cholesterol Drives Fatty Liver-Associated Liver Cancer by Modulating Gut Microbiota and Metabolites. Gut 2020, 70, 761. [Google Scholar] [CrossRef]
- Yuan, X.; Shi, W.; Jiang, J.; Li, Z.; Fu, P.; Yang, C.; ur Rehman, S.; Pauciullo, A.; Liu, Q.; Shi, D. Comparative Metabolomics Analysis of Milk Components between Italian Mediterranean Buffaloes and Chinese Holstein Cows Based on LC-MS/MS Technology. PLoS ONE 2022, 17, e0262878. [Google Scholar] [CrossRef] [PubMed]
- Berriozabalgoitia, A.; de Gordoa, J.C.R.; Amores, G.; Virto, M. Dietary Fatty Acid Metabolism: New Insights into the Similarities of Lipid Metabolism in Humans and Hamsters. Food Chem. Mol. Sci. 2021, 4, 100060. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Ma, P.; Yang, C.; Wang, J.; He, K.; Chen, G.; Huang, W.; Fan, J.; Xian, X.; Wang, Y.; et al. Dietary-Induced Elevations of Triglyceride-Rich Lipoproteins Promote Atherosclerosis in the Low-Density Lipoprotein Receptor Knockout Syrian Golden Hamster. Front. Cardiovasc. Med. 2021, 8, 738060. [Google Scholar] [CrossRef] [PubMed]
- Morton, R.E.; Mihna, D.; Liu, Y. The Lipid Substrate Preference of CETP Controls the Biochemical Properties of HDL in Fat/Cholesterol-Fed Hamsters. J. Lipid Res. 2021, 62, 100027. [Google Scholar] [CrossRef] [PubMed]
- The Chinese Dietary Guidelines. 2022. Available online: http://dg.cnsoc.org/ (accessed on 5 November 2024).
- Nair, A.B.; Jacob, S. A Simple Practice Guide for Dose Conversion between Animals and Human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, A.; Cao, H.; Lu, H.; Wang, B.; Xie, Q.; Xu, W.; Li, L.-J. Metabolomic Analyses of Faeces Reveals Malabsorption in Cirrhotic Patients. Dig. Liver Dis. 2013, 45, 677–682. [Google Scholar] [CrossRef]
- Cao, H.; Huang, H.; Xu, W.; Chen, D.; Yu, J.; Li, J.; Li, L. Fecal Metabolome Profiling of Liver Cirrhosis and Hepatocellular Carcinoma Patients by Ultra Performance Liquid Chromatography–Mass Spectrometry. Anal. Chim. Acta 2011, 691, 68–75. [Google Scholar] [CrossRef]
- Want, E.J.; Masson, P.; Michopoulos, F.; Wilson, I.D.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Loftus, N.; Holmes, E.; Nicholson, J.K. Global Metabolic Profiling of Animal and Human Tissues via UPLC-MS. Nat. Protoc. 2013, 8, 17–32. [Google Scholar] [CrossRef]
- Bian, X.; Zhao, Y.; Xiao, S.; Yang, H.; Han, Y.; Zhang, L. Metabolome and Transcriptome Analysis Reveals the Molecular Profiles Underlying the Ginseng Response to Rusty Root Symptoms. BMC Plant Biol. 2021, 21, 215. [Google Scholar] [CrossRef]
- Jakobsen, M.U.; Trolle, E.; Outzen, M.; Mejborn, H.; Grønberg, M.G.; Lyndgaard, C.B.; Stockmarr, A.; Venø, S.K.; Bysted, A. Intake of Dairy Products and Associations with Major Atherosclerotic Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Cohort Studies. Sci. Rep. 2021, 11, 1303. [Google Scholar] [CrossRef]
- He, M.; Guo, Z.; Lu, Z.; Wei, S.; Wang, Z. High Milk Consumption Is Associated with Carotid Atherosclerosis in Middle and Old-Aged Chinese. Int. J. Cardiol. Hypertens. 2020, 5, 100031. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Ludwig, D.S. Milk and Health. N. Engl. J. Med. 2020, 382, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Higurashi, S.; Ogawa, A.; Nara, T.Y.; Kato, K.; Kadooka, Y. Cheese Consumption Prevents Fat Accumulation in the Liver and Improves Serum Lipid Parameters in Rats Fed a High-Fat Diet. Dairy Sci. Technol. 2016, 96, 539–549. [Google Scholar] [CrossRef]
- Silva, F.M.; Giatti, L.; Diniz, M.F.H.S.; Brant, L.C.C.; Barreto, S.M. Dairy Product Consumption Reduces Cardiovascular Mortality: Results after 8 Year Follow-up of ELSA-Brasil. Eur. J. Nutr. 2022, 61, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Calleja, M.; Caetano Feitoza, N.; Falk, B.; Klentrou, P.; Ward, W.E.; Sullivan, P.J.; Josse, A.R. Increased Dairy Product Consumption as Part of a Diet and Exercise Weight Management Program Improves Body Composition in Adolescent Females with Overweight and Obesity—A Randomized Controlled Trial. Pediatr. Obes. 2020, 15, e12690. [Google Scholar] [CrossRef]
- Jiang, M.; Meng, Z.; Cheng, Z.; Zhan, K.; Ma, X.; Yang, T.; Huang, Y.; Yan, Q.; Gong, X.; Zhao, G. Effects of Buffalo Milk and Cow Milk on Lipid Metabolism in Obese Mice Induced by High Fat. Front. Nutr. 2022, 9, 841800. [Google Scholar] [CrossRef]
- Elwood, P.C.; Pickering, J.E.; Givens, D.I.; Gallacher, J.E. The Consumption of Milk and Dairy Foods and the Incidence of Vascular Disease and Diabetes: An Overview of the Evidence. Lipids 2010, 45, 925–939. [Google Scholar] [CrossRef]
- Godos, J.; Tieri, M.; Ghelfi, F.; Titta, L.; Marventano, S.; Lafranconi, A.; Gambera, A.; Alonzo, E.; Sciacca, S.; Buscemi, S.; et al. Dairy Foods and Health: An Umbrella Review of Observational Studies. Int. J. Food Sci. Nutr. 2020, 71, 138–151. [Google Scholar] [CrossRef]
- Díaz-López, A.; Bulló, M.; Martínez-González, M.A.; Corella, D.; Estruch, R.; Fitó, M.; Gómez-Gracia, E.; Fiol, M.; García De La Corte, F.J.; Ros, E.; et al. Dairy Product Consumption and Risk of Type 2 Diabetes in an Elderly Spanish Mediterranean Population at High Cardiovascular Risk. Eur. J. Nutr. 2016, 55, 349–360. [Google Scholar] [CrossRef]
- Lamichhane, S.; Sen, P.; Dickens, A.M.; Orešič, M.; Bertram, H.C. Gut Metabolome Meets Microbiome: A Methodological Perspective to Understand the Relationship between Host and Microbe. Methods 2018, 149, 3–12. [Google Scholar] [CrossRef]
- Kirkpatrick, C.F.; Sikand, G.; Petersen, K.S.; Anderson, C.A.M.; Aspry, K.E.; Bolick, J.P.; Kris-Etherton, P.M.; Maki, K.C. Nutrition Interventions for Adults with Dyslipidemia: A Clinical Perspective from the National Lipid Association. J. Clin. Lipidol. 2023, 17, 428–451. [Google Scholar] [CrossRef] [PubMed]
- Buscemi, S.; Corleo, D.; Buscemi, C.; Randazzo, C.; Borzì, A.M.; Barile, A.M.; Rosafio, G.; Ciaccio, M.; Caldarella, R.; Meli, F.; et al. Influence of Habitual Dairy Food Intake on LDL Cholesterol in a Population-Based Cohort. Nutrients 2021, 13, 593. [Google Scholar] [CrossRef] [PubMed]
- Sandby, K.; Magkos, F.; Chabanova, E.; Petersen, E.T.; Krarup, T.; Bertram, H.C.; Kristiansen, K.; Geiker, N.R.W. The Effect of Dairy Products on Liver Fat and Metabolic Risk Markers in Males with Abdominal Obesity—A Four-Arm Randomized Controlled Trial. Clin. Nutr. 2024, 43, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Kai, S.H.Y.; Bongard, V.; Simon, C.; Ruidavets, J.-B.; Arveiler, D.; Dallongeville, J.; Wagner, A.; Amouyel, P.; Ferrières, J. Low-Fat and High-Fat Dairy Products Are Differently Related to Blood Lipids and Cardiovascular Risk Score. Eur. J. Prev. Cardiol. 2014, 21, 1557–1567. [Google Scholar] [CrossRef] [PubMed]
- Dawczynski, C.; Martin, L.; Wagner, A.; Jahreis, G. N-3 LC-PUFA-Enriched Dairy Products Are Able to Reduce Cardiovascular Risk Factors: A Double-Blind, Cross-over Study. Clin. Nutr. 2010, 29, 592–599. [Google Scholar] [CrossRef]
- Kolovou, G.; Ooi, T.C. Postprandial Lipaemia and Vascular Disease. Curr. Opin. Cardiol. 2013, 28, 446. [Google Scholar] [CrossRef]
- Kjølbæk, L.; Schmidt, J.M.; Rouy, E.; Jensen, K.J.; Astrup, A.; Bertram, H.C.; Hammershøj, M.; Raben, A. Matrix Structure of Dairy Products Results in Different Postprandial Lipid Responses: A Randomized Crossover Trial. Am. J. Clin. Nutr. 2021, 114, 1729–1742. [Google Scholar] [CrossRef]
- Monnerie, S.; Comte, B.; Ziegler, D.; Morais, J.A.; Pujos-Guillot, E.; Gaudreau, P. Metabolomic and Lipidomic Signatures of Metabolic Syndrome and Its Physiological Components in Adults: A Systematic Review. Sci. Rep. 2020, 10, 669. [Google Scholar] [CrossRef]
- Fu, J.; Oveisi, F.; Gaetani, S.; Lin, E.; Piomelli, D. Oleoylethanolamide, an Endogenous PPAR-α Agonist, Lowers Body Weight and Hyperlipidemia in Obese Rats. Neuropharmacology 2005, 48, 1147–1153. [Google Scholar] [CrossRef]
- Schwartz, G.J.; Fu, J.; Astarita, G.; Li, X.; Gaetani, S.; Campolongo, P.; Cuomo, V.; Piomelli, D. The Lipid Messenger OEA Links Dietary Fat Intake to Satiety. Cell Metab. 2008, 8, 281. [Google Scholar] [CrossRef]
- Sihag, J.; Jones, P.J.H. Oleoylethanolamide: The Role of a Bioactive Lipid Amide in Modulating Eating Behaviour. Obes. Rev. 2018, 19, 178–197. [Google Scholar] [CrossRef] [PubMed]
- Claudel, T.; Staels, B.; Kuipers, F. The Farnesoid X Receptor. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2020–2030. [Google Scholar] [CrossRef] [PubMed]
- Fiorucci, S.; Distrutti, E. Chenodeoxycholic Acid: An Update on Its Therapeutic Applications. Handb. Exp. Pharmacol. 2019, 256, 265–282. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.; Tong, J.; Hao, H.; Yang, Z.; Chen, K.; Xu, H.; Wang, A. Bile Acid Coordinates Microbiota Homeostasis and Systemic Immunometabolism in Cardiometabolic Diseases. Acta Pharm. Sin. B 2021, 12, 2129. [Google Scholar] [CrossRef]
- Xu, H.; Fang, F.; Wu, K.; Song, J.; Li, Y.; Lu, X.; Liu, J.; Zhou, L.; Yu, W.; Yu, F.; et al. Gut Microbiota-Bile Acid Crosstalk Regulates Murine Lipid Metabolism via the Intestinal FXR-FGF19 Axis in Diet-Induced Humanized Dyslipidemia. Microbiome 2023, 11, 262. [Google Scholar] [CrossRef]
- Shihabudeen, M.S.; Roy, D.; James, J.; Thirumurugan, K. Chenodeoxycholic Acid, an Endogenous FXR Ligand Alters Adipokines and Reverses Insulin Resistance. Mol. Cell. Endocrinol. 2015, 414, 19–28. [Google Scholar] [CrossRef]
- Nowiński, A.; Chabowski, D.; Giebułtowicz, J.; Aleksandrowicz, M.; Ufnal, M. Deoxycholic Acid, a Secondary Bile Acid, Increases Cardiac Output and Blood Pressure in Rats. Nutrients 2023, 16, 32. [Google Scholar] [CrossRef]
- Wang, Y.; Jones, P.J.H.; Woollett, L.A.; Buckley, D.D.; Yao, L.; Granholm, N.A.; Tolley, E.A.; Heubi, J.E. Effects of Chenodeoxycholic Acid and Deoxycholic Acid on Cholesterol Absorption and Metabolism in Humans. Transl. Res. 2006, 148, 37–45. [Google Scholar] [CrossRef]
- Tatsuno, I.; Saito, Y.; Kudou, K.; Ootake, J. Efficacy and Safety of TAK-085 Compared with Eicosapentaenoic Acid in Japanese Subjects with Hypertriglyceridemia Undergoing Lifestyle Modification: The Omega-3 Fatty Acids Randomized Double-Blind (ORD) Study. J. Clin. Lipidol. 2013, 7, 199–207. [Google Scholar] [CrossRef]
- Tatsuno, I.; Saito, Y.; Kudou, K.; Ootake, J. Long-Term Safety and Efficacy of TAK-085 in Japanese Subjects with Hypertriglyceridemia Undergoing Lifestyle Modification: The Omega-3 Fatty Acids Randomized Long-Term (ORL) Study. J. Clin. Lipidol. 2013, 7, 615–625. [Google Scholar] [CrossRef]
- Tatsuno, I. Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: An Emphasis on Omega-3-Acid Ethyl Esters 90 for the Treatment of Hypertriglyceridemia. Expert Rev. Cardiovasc. Ther. 2014, 12, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.-M.; Jeon, S.-W.; De, A.; Hong, T.-S.; Park, Y.-J. A Randomized, Open-Label, Single-Dose, Crossover Study of the Comparative Bioavailability of EPA and DHA in a Novel Liquid Crystalline Nanoparticle-Based Formulation of ω-3 Acid Ethyl Ester Versus Omacor® Soft Capsule among Healthy Adults. Int. J. Mol. Sci. 2023, 24, 17201. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-H.; Tseng, P.-T.; Chen, N.-Y.; Lin, P.-C.; Lin, P.-Y.; Chang, J.P.-C.; Kuo, F.-Y.; Lin, J.; Wu, M.-C.; Su, K.-P. Safety and Tolerability of Prescription Omega-3 Fatty Acids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Prostaglandins Leukot. Essent. Fat. Acids 2018, 129, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Shimabukuro, M.; Higa, M.; Yamakawa, K.; Masuzaki, H.; Sata, M. Miglitol, α-Glycosidase Inhibitor, Reduces Visceral Fat Accumulation and Cardiovascular Risk Factors in Subjects with the Metabolic Syndrome: A Randomized Comparable Study. Int. J. Cardiol. 2013, 167, 2108–2113. [Google Scholar] [CrossRef]
- Hamada, Y.; Nagasaki, H.; Fuchigami, M.; Furuta, S.; Seino, Y.; Nakamura, J.; Oiso, Y. The Alpha-Glucosidase Inhibitor Miglitol Affects Bile Acid Metabolism and Ameliorates Obesity and Insulin Resistance in Diabetic Mice. Metabolism 2013, 62, 734–742. [Google Scholar] [CrossRef]
- Ye, L.; Cao, Z.; Lai, X.; Shi, Y.; Zhou, N. Niacin Ameliorates Hepatic Steatosis by Inhibiting De Novo Lipogenesis Via a GPR109A-Mediated PKC–ERK1/2–AMPK Signaling Pathway in C57BL/6 Mice Fed a High-Fat Diet. J. Nutr. 2020, 150, 672–684. [Google Scholar] [CrossRef]
- Luo, C.; Yang, C.; Wang, X.; Chen, Y.; Liu, X.; Deng, H. Nicotinamide Reprograms Adipose Cellular Metabolism and Increases Mitochondrial Biogenesis to Ameliorate Obesity. J. Nutr. Biochem. 2022, 107, 109056. [Google Scholar] [CrossRef]
- Méndez-Lara, K.A.; Rodríguez-Millán, E.; Sebastián, D.; Blanco-Soto, R.; Camacho, M.; Nan, M.N.; Diarte-Añazco, E.M.G.; Mato, E.; Lope-Piedrafita, S.; Roglans, N.; et al. Nicotinamide Protects Against Diet-Induced Body Weight Gain, Increases Energy Expenditure, and Induces White Adipose Tissue Beiging. Mol. Nutr. Food Res. 2021, 65, 2100111. [Google Scholar] [CrossRef]
- Kovács, D.; Camera, E.; Póliska, S.; Cavallo, A.; Maiellaro, M.; Dull, K.; Gruber, F.; Zouboulis, C.C.; Szegedi, A.; Törőcsik, D. Linoleic Acid Induced Changes in SZ95 Sebocytes—Comparison with Palmitic Acid and Arachidonic Acid. Nutrients 2023, 15, 3315. [Google Scholar] [CrossRef]
- Russo, G.L. Dietary N−6 and N−3 Polyunsaturated Fatty Acids: From Biochemistry to Clinical Implications in Cardiovascular Prevention. Biochem. Pharmacol. 2009, 77, 937–946. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, H.; Jin, Q.; Wang, X. Effects of Dietary Linoleic Acid on Blood Lipid Profiles: A Systematic Review and Meta-Analysis of 40 Randomized Controlled Trials. Foods 2023, 12, 2129. [Google Scholar] [CrossRef] [PubMed]
- Farvid, M.S.; Ding, M.; Pan, A.; Sun, Q.; Chiuve, S.E.; Steffen, L.M.; Willett, W.C.; Hu, F.B. Dietary Linoleic Acid and Risk of Coronary Heart Disease: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Circulation 2014, 130, 1568–1578. [Google Scholar] [CrossRef] [PubMed]
- Ramsden, C.E.; Hibbeln, J.R.; Majchrzak, S.F.; Davis, J.M. N-6 Fatty Acid-Specific and Mixed Polyunsaturate Dietary Interventions Have Different Effects on CHD Risk: A Meta-Analysis of Randomised Controlled Trials. Br. J. Nutr. 2010, 104, 1586–1600. [Google Scholar] [CrossRef] [PubMed]
- Ramsden, C.E.; Zamora, D.; Leelarthaepin, B.; Majchrzak-Hong, S.F.; Faurot, K.R.; Suchindran, C.M.; Ringel, A.; Davis, J.M.; Hibbeln, J.R. Use of Dietary Linoleic Acid for Secondary Prevention of Coronary Heart Disease and Death: Evaluation of Recovered Data from the Sydney Diet Heart Study and Updated Meta-Analysis. BMJ 2013, 346, e8707. [Google Scholar] [CrossRef]
- Azemi, N.A.; Azemi, A.K.; Abu-Bakar, L.; Sevakumaran, V.; Muhammad, T.S.T.; Ismail, N. Effect of Linoleic Acid on Cholesterol Levels in a High-Fat Diet-Induced Hypercholesterolemia Rat Model. Metabolites 2022, 13, 53. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Zhang, C.; Yang, Y.; Huang, L.; Liu, Q.; Li, L.; Zeng, Q.; Li, Z. Role of Milk Intake in Modulating Serum Lipid Profiles and Gut Metabolites. Metabolites 2024, 14, 688. https://doi.org/10.3390/metabo14120688
Xu T, Zhang C, Yang Y, Huang L, Liu Q, Li L, Zeng Q, Li Z. Role of Milk Intake in Modulating Serum Lipid Profiles and Gut Metabolites. Metabolites. 2024; 14(12):688. https://doi.org/10.3390/metabo14120688
Chicago/Turabian StyleXu, Ting, Chang Zhang, Yufeng Yang, Liang Huang, Qingyou Liu, Ling Li, Qingkun Zeng, and Zhipeng Li. 2024. "Role of Milk Intake in Modulating Serum Lipid Profiles and Gut Metabolites" Metabolites 14, no. 12: 688. https://doi.org/10.3390/metabo14120688
APA StyleXu, T., Zhang, C., Yang, Y., Huang, L., Liu, Q., Li, L., Zeng, Q., & Li, Z. (2024). Role of Milk Intake in Modulating Serum Lipid Profiles and Gut Metabolites. Metabolites, 14(12), 688. https://doi.org/10.3390/metabo14120688