Abnormal Phenylalanine Metabolism of Procapra przewalskii in Chronic Selenosis in Selenium-Enriched Habitats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Environment
2.2. Sample Collection and Analysis
2.3. Biochemical Tests on Blood
2.4. Proteomic Analysis of Serum
2.4.1. TMT Mark
2.4.2. SCX Chromatographic Fractionation
2.4.3. LC–MS/MS Analysis
2.4.4. Protein Identification and Analysis
2.4.5. Bioinformatics Analysis
2.5. Metabolomics Analysis in Serum
2.5.1. Sample Processing
2.5.2. Chromatography and Mass Spectrometry
2.6. Data Processing
3. Results
3.1. Mineral Content Analysis
3.2. Biochemical Indices in the Blood
3.3. The Proteomic Results in Serum
3.3.1. Differential Protein Bioinformatics Analysis
GO Function Annotations
KEGG Pathway Annotations
3.4. Metabolomics Results in Serum
Differential Metabolite Bioinformatics Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ping, X.G.; Li, C.W.; Li, C.L.; Tang, S.H.; Fang, H.X.; Cui, S.P.; Chen, J.; Wang, E.G.; He, Y.B.; Cai, P.; et al. The distribution, population and conservation status of Przewalski’s gazelle, Procapra przewalskii. Biodivers Sci. 2018, 26, 177–184. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X. Proteomics in organ dysfunction today: A new way to understand the disease. J. Organ Dysfunct. 2006, 2, 66–67. [Google Scholar] [CrossRef]
- Li, C.L.; Jiang, Z.G.; Ping, X.G.; Cai, J.; You, Z.Q.; Li, C.W.; Wu, Y.L. Current status and conservation of the endangered Przewalski’s ga-zelle (P.przewalskii), endemic to the Qinghai-Tibetan Plateau, China. Oryx 2012, 46, 145–153. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, Z. Sexual segregation in Tibetan gazelle: A test of the activity budget hypothesis. Proc. Zool. Soc. Lond. 2008, 274, 327–331. [Google Scholar] [CrossRef]
- Abstracts for a conference on trace elements in diet, nutrition, and health: Essentiality and toxicity. Cell Biol. Toxicol. 2008, 24 (Suppl. S1), 1–130. [CrossRef]
- Bhatnagar, Y.V.; Wangchuk, R.; Mishra, C. Decline of the Tibetan gazelle, Procapra picticaudata in Ladakh, India. Oryx 2006, 40, 229–232. [Google Scholar] [CrossRef]
- Zhao, B.; Xing, C.; Zhou, S.; Wu, X.; Yang, R.; Yan, S. Sources, Fraction Distribution and Health Risk Assessment of Selenium (Se) in Dashan Village, a Se-Rich Area in Anhui Province, China. Bull. Environ. Contam. Toxicol. 2020, 104, 545–550. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Wang, D.; Wang, H.; Wu, Y.; Lü, Z. Fencing for conservation?—The impacts of fencing on grasslands and the endangered Prze-walski’s gazelle on the Tibetan Plateau. Sci. China Life Sci. 2018, 61, 1593–1595. [Google Scholar] [CrossRef]
- Shen, X.Y.; Huo, B.; Wu, T.; Song, C.J. Chi YK iTRAQ-based proteomic analysis to identify molecular mechanisms of the selenium deficiency response in the Przewalski’s gazelle. J. Proteome 2019, 203, 103389. [Google Scholar] [CrossRef]
- Jiang, Z.G.; Li, D.Q.; Wang, Z.W. Population declines of Przewalski’s gazelle around Qinghai Lake, China. Oryx 2000, 34, 129–135. [Google Scholar] [CrossRef]
- Mallon, D.; Kingswood, S. Antelopes. Part 4: North Africa, the Middle East, and Asia. Global Survey and Regional Action Plans; SSC Antelope Specialist Group; IUCN: Gland, Switzerland, 2001. [Google Scholar]
- Song, C.; Jiang, Q.; Shen, X. Responses of Przewalski’s Gazelle (Procapra przewalskii) to Zinc Nutrition in Physical Habitat. Biol. Trace Element Res. 2021, 199, 142–147. [Google Scholar] [CrossRef]
- Huo, B.; He, J.; Shen, X. Effects of Selenium-Deprived Habitat on the Immune Index and Antioxidant Capacity of Przewalski’s gazelle. Biol. Trace Elem. Res. 2020, 198, 149–156. [Google Scholar] [CrossRef]
- Zhao, K.; Huo, B.; Shen, X. Studies on Antioxidant Capacity in Selenium-Deprived the Choko Yak in the Shouqu Prairie. Biol. Trace Element Res. 2021, 199, 3297–3302. [Google Scholar] [CrossRef]
- Li, Z.; Beauchamp, J.G. Nonrandom mixing between groups of Przewalski’s gazelle and Tibetan gazelle. J. Mammal. 2010, 91, 674–680. [Google Scholar] [CrossRef]
- Dai, C.; Sun, Z.; Zhang, X.; Qiu, M.C. Erratum to: Elevated muscle enzymes and muscle biopsy in idiopathic hypoparathyroidism patients. J. Endocrinol. Investig. 2012, 35, 451. [Google Scholar]
- Fordyce, F.M. Selenium Deficiency and Toxicity in the Environment. In Essentials of Medical Geology; Selinus, O., Ed.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, L.; Wang, W.; Li, Y.; Li, H. Erratum to: Environmental selenium in the Kaschin–Beck disease area, Tibetan Plateau, China. Environ. Geochem. Health 2012, 34, 297. [Google Scholar] [CrossRef]
- Hao, L.; Zhang, J.; Zhang, S.; Ma, S.; Li, B.; Long, J.; Fan, J.; Luo, K. Distribution characteristics and main influencing factors of selenium in surface soil of natu-ral selenium-rich area: A case study in Langao County, China. Environ. Geochem. Health 2021, 43, 333–346. [Google Scholar] [CrossRef]
- Combs, G.F., Jr. Selenium in global food systems. Br. J. Nutr. 2001, 85, 517–547. [Google Scholar] [CrossRef]
- Zhao, C.; Ren, J.; Xue, C.; Lin, E. Study on the Relationship between Soil Selenium and Plant Selenium Uptake. Plant Soil 2005, 277, 197–206. [Google Scholar] [CrossRef]
- Song, T.; Su, X.; He, J.; Liang, Y.; Zhou, T.; Liu, C. Selenium (Se) uptake and dynamic changes of Se content in soil–plant systems. Environ. Sci. Pollut. Res. 2018, 25, 34343–34350. [Google Scholar] [CrossRef]
- Su, Y.; Li, L.; Farooq, M.U.; Huang, X.; Zheng, T.; Zhang, Y.J.; Ei, H.H.; Panhwar, F.H.; Tang, Z.; Zeng, R.; et al. Rescue effects of Se-enriched rice on physiological and biochemical characteristics in cadmi-um poisoning mice. Environ. Sci. Pollut. Res. 2021, 28, 20023–20033. [Google Scholar] [CrossRef]
- Nieradko-Iwanicka, B.; Borzęcki, A. Subacute poisoning of mice with deltamethrin produces memory impairment, reduced locomotor activity, liver damage and changes in blood morphology in the mechanism of oxidative stress. Pharmacol. Rep. 2015, 67, 535–541. [Google Scholar] [CrossRef]
- Száková, J.; Tremlová, J.; Pegová, K.; Najmanová, J.; Tlustoš, P. Soil-to-plant transfer of native selenium for wild vegetation cover at selected locations of the Czech Republic. Environ. Monit. Assess. 2015, 187, 358. [Google Scholar] [CrossRef]
- Kurt, B.O.; Konukoglu, D.; Kalayci, R.; Ozdemir, S. Investigation of the Protective Role of Selenium in the Changes Caused by Chlorpyrifos in Trace Elements, Biochemical and Hematological Parameters in Rats. Biol. Trace Element Res. 2022, 200, 228–237. [Google Scholar] [CrossRef]
- Xiao, C.; Lei, X.; Wang, Q.; Du, Z.; Jiang, L.; Chen, S.; Zhang, M.; Zhang, H.; Ren, F. Effects of a Tripeptide Iron on Iron-Deficiency Anemia in Rats. Biol. Trace Element Res. 2016, 169, 211–217. [Google Scholar] [CrossRef]
- Acharyya, N.; Deb, B.; Chattopadhyay, S.; Maiti, S. Arsenic-Induced Antioxidant Depletion, Oxidative DNA Breakage, and Tissue Damages are Prevented by the Combined Action of Folate and Vitamin B12. Biol. Trace Element Res. 2015, 168, 122–132. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, H.; Xu, C.; Xia, C. Critical Thresholds of Antioxidant and Immune Function Parameters for Se deficiency Prediction in Dairy Cows. Biol. Trace Element Res. 2016, 172, 320–325. [Google Scholar] [CrossRef]
- Roman, M.; Jitaru, P.; Barbante, C. Selenium biochemistry and its role for human health. Metallomics 2014, 6, 25–54. [Google Scholar] [CrossRef]
- Chen, M.; Mahfuz, S.; Cui, Y.; Jia, L.; Liu, Z.; Song, H. The Antioxidant Status of Serum and Egg Yolk in Layer Fed with Mushroom Stembase (Flammulina velutipes). Pak. J. Zool. 2019, 52, 389–392. [Google Scholar] [CrossRef]
- Herena, Y.H.; Naghum, A.; Marla, J.B.; Lucia, A.S. From selenium absorption to selenoprotein degradation. Biol. Trace Elem. Res. 2019, 192, 26–37. [Google Scholar]
- Huma, N.; Sajid, A.; Khalid, A.; Wardah, H.; Moazama, B.; Shakeela, P.; Sadia, M.; Sajida, M. Toxic effect of insecticides mixtures on antioxidant enzymes in different organs of fish, Labeo rohita. Pak. J. Zool. 2019, 51, 1355–1361. [Google Scholar]
- Iqra, B.; Moolchand, M.; Pershotam, K.; Saeed, A.S.; Hira, S. Effect of dietary selenium yeast supplementation on morphology and antioxidant status in testes of young goat. Pak. J. Zool. 2019, 51, 979–988. [Google Scholar]
- Meng, T.; Liu, Y.-L.; Xie, C.-Y.; Zhang, B.; Huang, Y.-Q.; Zhang, Y.-W.; Yao, Y.; Huang, R.; Wu, X. Effects of Different Selenium Sources on Laying Performance, Egg Selenium Concentration, and Antioxidant Capacity in Laying Hens. Biol. Trace Element Res. 2019, 189, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Fan, R.; Chen, M.; Li, X.J.; Xing, M.Y.; Zhu, F.T. Inflammatory response occurs in veins of broiler chickens treated with a se-lenium deficiency diet. Biol. Trace Elem. Res. 2017, 183, 1–9. [Google Scholar]
- Han, Y.-H.; Kim, S.-U.; Kwon, T.-H.; Lee, D.-S.; Ha, H.-L.; Park, D.-S.; Woo, E.-J.; Kim, J.-M.; Chae, H.-B.; Lee, S.Y.; et al. Peroxiredoxin II is essential for preventing hemolytic anemia from oxidative stress through maintaining hemoglobin stability. Biochem. Biophys. Res. Commun. 2012, 426, 427–432. [Google Scholar] [CrossRef]
- Zhao, J.; Xing, H.; Liu, C.; Zhang, Z.; Xu, S. Effect of Selenium Deficiency on Nitric Oxide and Heat Shock Proteins in Chicken Erythrocytes. Biol. Trace Element Res. 2016, 171, 208–213. [Google Scholar] [CrossRef]
- Liao, C.; Hardison, R.C.; Kennett, M.J.; Carlson, B.A.; Paulson, R.F.; Prabhu, K.S. Selenoproteins regulate stress erythroid progenitors and spleen microenvironment during stress erythropoiesis. Blood 2018, 131, 2568–2580. [Google Scholar] [CrossRef]
- Qiu, J.; Zhou, P.; Shen, X. Effects of Se-Yeast on Immune and Antioxidant in the Se-Deprived Pishan Red Sheep. Biol. Trace Element Res. 2022, 200, 2741–2749. [Google Scholar] [CrossRef]
- Exner, R.; Wessner, B.; Manhart, N.; Roth, E. Therapeutic potential of glutathione. Wien. Klin. Wochenschr. 2000, 112, 610–616. [Google Scholar]
- Safdari-Rostamabad, M.; Hosseini-Vashan, S.J.; Perai, A.H.; Sarir, H. Nanoselenium Supplementation of Heat-Stressed Broilers: Effects on Performance, Carcass Characteristics, Blood Metabolites, Immune Response, Antioxidant Status, and Jejunal Morphology. Biol. Trace Elem. Res. 2017, 178, 105–116. [Google Scholar] [CrossRef]
- Ashrafi, H.; Sadeghi, A.A.; Chamani, M. Effect of Organic Selenium Supplementation on the Antioxidant Status, Immune Response, and the Relative Expression of IL-2 and IFN-γ Genes in Ewes During the Hot Season. Biol. Trace Elem. Res. 2023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, P.; Shen, X. Effects of Se-Enriched Malt on the Immune and Antioxidant Function in the Se-Deprived Rec-lamation Merino Sheep in Southern Xinjiang. Biol. Trace Elem. Res. 2022, 200, 3621–3629. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Gao, S.; Hou, L.; Li, A.; Zhu, L.-Q.; Dong, J.; Chen, F. Selenium-enriched Bacillus subtilis Improves Growth Performance, Antioxidant Capacity, Immune Status, and Gut Health of Broiler Chickens. Biol. Trace Element Res. 2023. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.J.; Van Wyk, K.G.; Leonard, J.V.; Clayton, P.T. Phenylalanine supplementation improves the phenylalanine profile in tyro-sinaemia. J. Inherit. Metab. Dis. 2000, 23, 677–683. [Google Scholar] [CrossRef]
- Furuyama, K.; Kaneko, K. Iron metabolism in erythroid cells and patients with congenital sideroblastic anemia. Int. J. Hematol. 2018, 107, 44–54. [Google Scholar] [CrossRef]
- Liapi, C.; Feskou, I.; Zarros, A.; Carageorgiou, H.; Galanopoulou, P.; Tsakiris, S. Equilibrated diet restores the effects of early age choline-deficient feeding on rat brain antioxidant status and enzyme activities: The role of homocysteine, l-phenylalanine and l-alanine. Metab. Brain Dis. 2008, 23, 289–301. [Google Scholar] [CrossRef]
- Berti, S.L.; Nasi, G.M.; Garcia, C.; de Castro, F.L.; Nunes, M.L.; Rojas, D.B.; Moraes, T.B.; Dutra-Filho, C.S.; Wannmacher, C.M.D. Pyruvate and creatine prevent oxidative stress and behavioral alterations caused by phenylalanine administration into hippocampus of rats. Metab. Brain Dis. 2012, 27, 79–89. [Google Scholar] [CrossRef]
- Sikalidis, A.K. Amino Acids and Immune Response: A Role for Cysteine, Glutamine, Phenylalanine, Tryptophan and Argi-nine in T-cell Function and Cancer? Pathol. Oncol. Res. 2015, 21, 9–17. [Google Scholar] [CrossRef]
- Meadows, G.G.; Abdallah, R.M.; Starkey, J.R.; Aslakson, C.J. Response of natural killer cells from dietary tyrosine-and phenylala-nine-restricted mice to biological response modifiers. Cancer Immunol. Immunother. 1988, 26, 67–73. [Google Scholar] [CrossRef]
- Cesaro, L.; Marin, O.; Venerando, A.; Donella-Deana, A.; Pinna, L.A. Phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) serine-511 by the combined action of tyrosine kinases and CK2: The implication of tyrosine-512 and phenylalanine-508. Amino Acids 2013, 45, 1423–1429. [Google Scholar] [CrossRef]
- Roy, S.; Das, T.K. Study of Interaction Between Tryptophan, Tyrosine, and Phenylalanine Separately with Silver Nanoparticles by Fluorescence Quenching Method. J. Appl. Spectrosc. 2015, 82, 598–606. [Google Scholar] [CrossRef]
- Kawai, R.; Toya, Y.; Shimizu, H. Metabolic pathway design for growth-associated phenylalanine production using synthetically designed mutualism. Bioprocess Biosyst. Eng. 2022, 45, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Ngiwsara, L.; Vatanavicharn, N.; Sawangareetrakul, P.; Liammongkolkul, S.; Ratanarak, P.; Boonyawat, B.; Srisomsap, C.; Champattanachai, V.; Ketudat-Cairns, J.; Wasant, P.; et al. Molecular characterization of Thai patients with phenylalanine hydroxylase deficiency and in vitro functional study of two novel PAH variants. Mol. Biol. Rep. 2021, 48, 2063–2070. [Google Scholar] [CrossRef]
- Ding, D.; Liu, Y.; Xu, Y.; Zheng, P.; Li, H.; Zhang, D.; Sun, J. Improving the Production of L-Phenylalanine by Identifying Key Enzymes through Multi-Enzyme Reaction System in Vitro. Sci. Rep. 2016, 6, 32208. [Google Scholar] [CrossRef] [PubMed]
- Swierczynski, J.; Sledzinski, T.; Slominska, E.; Smolenski, R.; Sledzinski, Z. Serum Phenylalanine Concentration as a Marker of Liver Function in Obese Patients Before and After Bariatric Surgery. Obes. Surg. 2009, 19, 883–889. [Google Scholar] [CrossRef]
- Sapropterin reduces phenylalanine levels in phenylketonuria. Inpharma Wkly. 2007, 1569, 7.
- Hong, S.; Zhu, T.; Zheng, S.; Zhan, X.; Xu, F.; Gu, X.; Liang, L. Gene expression profiles in the brain of phenylketonuria mouse model reversed by the low phenylalanine diet therapy. Metab. Brain Dis. 2021, 36, 2405–2414. [Google Scholar] [CrossRef]
- Preissler, T.; Bristot, I.J.; Costa, B.M.L.; Fernandes, E.K.; Rieger, E.; Bortoluzzi, V.T.; de Franceschi, I.D.; Dutra-Filho, C.S.; Moreira, J.C.F.; Wannmacher, C.M.D. Phenylalanine induces oxidative stress and decreases the viability of rat astrocytes: Possible relevance for the pathophysiology of neurodegeneration in phenylketonuria. Metab. Brain Dis. 2016, 31, 529–537. [Google Scholar] [CrossRef]
- Buchanan, F.C.; Fitzsimmons, C.J.; Van Kessel, A.G.; Thue, T.D.; Winkelman-Sim, D.C.; Schmutz, S.M. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genet. Sel. Evol. 2002, 34, 105. [Google Scholar] [CrossRef]
- Afifi, A.E.M.A.; Shaat, R.M.; Gharbia, O.M.; Elhanafy, M.; Hasan, A.S.G. Role of serum leptin levels and leptin receptor gene polymorphisms in systemic lupus erythematosus. Clin. Rheumatol. 2020, 39, 3465–3472. [Google Scholar] [CrossRef]
- Unsal, M.; Kara, N.; Karakus, N.; Tural, S.; Elbistan, M. Effects of leptin and leptin receptor gene polymorphisms on lung cancer. Tumor Biol. 2014, 35, 10231–10236. [Google Scholar] [CrossRef] [PubMed]
- Pliszka, M.; Oleszczak, B.; Szablewski, L. Leptin at gender-specific concentrations does not affect glucose transport, expres-sion of glucose transporters and leptin receptors in human lymphocytes. Endocrine 2015, 49, 97–105. [Google Scholar] [CrossRef]
- Wasim, M.; Awan, F.R.; Najam, S.S.; Khan, A.R.; Khan, H.N. Role of Leptin Deficiency, Inefficiency, and Leptin Receptors in Obesity. Biochem. Genet. 2016, 54, 565–572. [Google Scholar] [CrossRef]
- Szczepankiewicz, D.; Sobkowiak, P.; Narożna, B.; Wojsyk-Banaszak, I.; Bręborowicz, A.; Szczepankiewicz, A. Leptin gene polymorphism affects leptin level in childhood asthma. World J. Pediatr. 2018, 14, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.; Desen, W.; Zhizhong, P.; Lijing, C.; Xiaojun, W.; Zhenhai, L.; Tai, K. Expression and Biological Significance of Leptin, Leptin Receptor, VEGF, and CD34 in Colorectal Carcinoma. Cell Biochem. Biophys. 2011, 60, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Mitsuyama, S.; Abe, F.; Kimura, M.; Yoshida, M.; Higuchi, T. Association between leptin gene expression in subcutaneous adipose tissue and cir-culating leptin levels in obese patients with psoriasis. Arch. Dermatol. Res. 2015, 307, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Leptin receptor (LEPR.; CD295). Sci. Bus. Exch. 2010, 3, 559. [CrossRef]
- MacDonald, A.; Lee, P.; Davies, P.; Daly, A.; Lilburn, M.; Ozel, H.G.; Preece, M.A.; Hendriksz, C.; Chakrapani, A. Long-term compliance with a novel vitamin and mineral supplement in older people with PKU. J. Inherit. Metab. Dis. 2008, 31, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gu, X.F. A Study of Gene Expression Profiles of Cultured Embryonic Rat Neurons Induced by Phenylalanine. Metab. Brain Dis. 2005, 20, 61–72. [Google Scholar] [CrossRef]
- Hvas, A.M.; Nexo, E.; Nielsen, J.B. Vitamin B12 and vitamin B6 supplementation is needed among adults with phenylke-tonuria (PKU). J. Inherit. Metab. Dis. 2006, 29, 47–53. [Google Scholar] [CrossRef]
- Chen, L.; Yang, P.; Hu, L.; Yang, L.; Chu, H.; Hou, X. Modulating phenylalanine metabolism by L. acidophilus alleviates alcohol-related liver disease through enhancing intestinal barrier function. Cell Biosci. 2023, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Ishii, Y.; Suzuki, S.; Kohno, T.; Aoki, M.; Goto, I.; Kohno, T.; Ito, A.; Asai, S. Patients with severe liver cirrhosis followed up by L-[1- 13 C] phenylalanine breath test. J. Gastroenterol. 2003, 38, 1086–1090. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Chen, M.; Lu, S.; Zhao, L.; Ji, J.; Gao, H. Metabolic characterization of hepatitis B virus-related liver cirrhosis using NMR-based serum metabolomics. Metabolomics 2017, 13, 121. [Google Scholar] [CrossRef]
- Tietge, U.J.F.; Bahr, M.J.; Manns, M.P.; Böker, K.H.W. Hepatic amino-acid metabolism in liver cirrhosis and in the long-term course after liver transplantation. Transpl. Int. 2003, 16, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Huo, B.; Gan, S. Effects of Nano-Selenium on Antioxidant Capacity in Se-Deprived Tibetan Gazelle (Procapra picti-caudata) in the Qinghai–Tibet Plateau. Biol. Trace Elem. Res. 2021, 199, 981–988. [Google Scholar] [CrossRef]
- Xiang, Z.; Yang, J.; Ikhumhen, H.O.; Sheng, C.; Wong, L.; Ren, X.; Zhou, J.; Wang, W. Complete mitochondrial genome sequence of the Przewalski’s gazelle (Procapra przewalskii). Conserv. Genet. Resour. 2018, 11, 369–371. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Type of search | MS/MS ion search |
Enzyme | Trypsin |
Mass values | Monoisotopic |
Max missed cleavages | 2 |
Fixed modifications | Carbamidomethyl (C), TMT 10 plex (N-term), TMT 10 plex (K) |
Variable modifications | Oxidation (M), TMT 10 plex (Y) |
Peptide mass tolerance | ±20 ppm |
Fragment mass tolerance | 0.1 Da |
Protein mass | Unrestricted |
Database | Uniprot |
Database pattern | Decoy |
FDR | ≤0.01 |
Protein quantification | The protein ratios are calculated as the median of only the unique peptides of the protein |
Experimental bias | Normalizes all peptide ratios by the median protein ratio. The median protein ratio should be 1 after the normalization. |
Elements | Soil | Grass | ||
---|---|---|---|---|
Se-Rich Habitat | Healthy Habitat | Se-Rich Habitat | Healthy Habitat | |
Copper (Cu) | 5.24 ± 1.36 | 5.82 ± 1.68 | 3.69 ± 1.01 | 4.03 ± 0.79 |
Manganese (Mn) | 274.63 ± 35.69 | 266.84 ± 28.94 | 71.54 ± 11.58 | 68.74 ± 13.68 |
Iron (Fe) | 7681.89 ± 741.52 * | 7985.51 ± 661.21 | 699.73 ± 197.13 * | 714.58 ± 187.95 |
Zinc (Zn) | 44.84 ±7.51 | 43.11 ± 6.85 | 31.21 ± 8.04 | 33.57 ± 9.11 |
Selenium (Se) | 2.82 ± 0.043 ** | 0.67 ± 0.022 | 3.39 ± 0.059 ** | 0.89 ± 0.021 |
Molybdenum (Mo) | 1.78 ± 0.31 | 1.86 ± 0.28 | 1.57 ± 0.22 | 1.96 ± 0.67 |
Elements | Blood (μg/mL) | Muscle (μg/g) | ||
---|---|---|---|---|
Se-Rich Habitat | Healthy Habitat | Se-Rich Habitat | Healthy Habitat | |
Cu | 0.84 ± 0.17 | 0.91 ± 0.27 | 35 ± 1.04 | 39 ± 1.17 |
Mn | 0.49 ± 0.057 | 0.51 ± 0.033 | 6.17 ± 0.19 | 5.98 ± 0.16 |
Fe | 381.35 ± 56.87 ** | 519.45 ± 49.76 | 141.75 ± 18.28 ** | 189.65 ± 20.41 |
Zn | 7.79 ± 1.68 | 7.48 ± 1.72 | 95.84 ± 3.47 | 87.65 ± 3.77 |
Se | 0.54 ± 0.021 ** | 0.11 ± 0.017 | 1.16 ± 0.05 ** | 0.35 ± 0.03 |
Mo | 0.29 ± 0.016 | 0.31 ± 0.023 | 0.98 ± 0.03 | 1.07 ± 0.04 |
Hematological Parameters | Blood | |
---|---|---|
Se-Rich Habitat | Healthy Habitat | |
Hb (g/L) | 145.48 ± 5.25 * | 178.94 ± 7.94 |
RBC (×1012/L) | 10.02 ± 0.26 * | 12.04 ± 0.24 |
PCV (%) | 38.17 ± 1.77 ** | 51.87 ± 1.54 |
MCV (fl) | 38.09 ± 0.66 * | 43.08 ± 0.68 |
MCH (pg) | 14.52 ± 0.38 | 14.86 ± 0.24 |
MCHC (g/L) | 381.14 ± 14.61 | 344.98 ± 10.54 * |
WBC (109/L) | 18.67 ± 0.42 | 11.37 ± 0.84 ** |
PLT (×109/L) | 441.74 ± 13.87 * | 468.85 ± 21.98 |
Antioxidant Indices | Serum | |
---|---|---|
Se-Rich Habitat | Healthy Habitat | |
GSH-Px (U/mL) | 46.84 ± 3.98 ** | 69.54 ± 6.61 |
SOD (U/mL) | 49.86 ± 7.69 ** | 67.85 ± 13.54 |
CAT (U/mL) | 3.13 ± 0.54 ** | 6.11 ± 0.75 |
T-AOC (U/mL) | 4.01 ± 0.41 ** | 7.88 ± 1.14 |
MDA (nmol/mL) | 13.02 ± 3.11 | 4.44 ± 2.97 ** |
NOS (U/mL) | 70.98 ±7.79 | 39.74 ± 6.83 ** |
NO (μmol/mL) | 8.94 ± 2.14 | 4.39 ± 1.17 ** |
LPO (mmol/mL) | 3.25 ± 0.97 | 2.11 ± 0.64 * |
Immune Indices | Serum | |
---|---|---|
Se-Rich Habitat | Healthy Habitat | |
IL-1β (ng/L) | 42.98 ± 7.64 ** | 104.91 ± 10.28 |
IL-2 (ng/L) | 174.65 ± 19.97 ** | 255.41 ± 22.68 |
IL-6 (ng/L) | 296.15 ± 38.17 ** | 502.96 ± 55.47 |
TNF-α (ng/L) | 523.63 ± 55.41 ** | 711.47 ± 79.51 |
IgA (g/L) | 048 ± 0.066 ** | 1.02 ± 0.19 |
IgG (g/L) | 5.99 ± 0.64 ** | 9.07 ± 0.64 |
IgM (g/L) | 3.35 ± 0.17 * | 4.11 ± 0.36 |
Number | Proteins | Ratio |
---|---|---|
A0A452ED36 | B-cell receptor-associated protein | 0.180 |
A0A452EAH6 | PDZ domain-containing protein | 0.273 |
A0A452F8A2 | GYF domain-containing protein | 0.289 |
A0A452FR97 | Phosphoglycerate mutase | 0.317 |
A0A452E132 | Phosphoglycerate kinase | 0.336 |
A0A452F4C8 | Exocyst complex component Sec8 | 0.346 |
A0A452EWA3 | Non-specific serine/threonine protein kinase | 0.366 |
A0A452E2F6 | Alpha-1-acid glycoprotein | 0.371 |
A0A452EMX2 | Uncharacterized protein | 0.372 |
A0A452FZ73 | Creatine kinase | 0.372 |
A0A452EH63 | Fructose-bisphosphate aldolase | 0.457 |
A0A452DZ49 | Uncharacterized protein | 0.479 |
A0A452G1C7 | Uncharacterized protein | 0.494 |
A0A452FNW6 | Glyceraldehyde-3-phosphate dehydrogenase | 0.519 |
A0A452FAN0 | 2-phospho-D-glycerate hydrolyase | 0.530 |
A0A452FHR5 | Uncharacterized protein | 0.533 |
A0A452EQR9 | RRM domain-containing protein | 0.539 |
A0A452ET10 | Uncharacterized protein | 0.555 |
A0A452FHU9 | Uncharacterized protein | 0.562 |
A0A452FIH4 | PITH-domain-containing protein | 0.563 |
A0A452EBM8 | Chloride channel protein | 0.563 |
A0A452DNM6 | Arp2/3 complex 34 kDa subunit | 0.596 |
A0A452EB57 | Proteasome subunit beta | 0.597 |
A0A452DSW4 | Amine oxidase | 0.601 |
A0A452E3A4 | Uncharacterized protein | 0.617 |
A0A452ET55 | Triosephosphate isomerase | 0.617 |
A0A452EJV5 | SAM domain-containing protein | 0.635 |
A0A452DX94 | Glutathione transferase | 0.645 |
A0A452F6I3 | Uncharacterized protein | 0.653 |
A0A452G3A7 | Uncharacterized protein | 1.512 |
A0A452FXT0 | DZF-domain-containing protein | 1.525 |
A0A452EVP1 | Apolipoprotein D | 1.532 |
A0A452EUI8 | Apolipoprotein C-II | 1.635 |
A0A452FF95 | Ig-like domain-containing protein | 1.638 |
A0A452EI28 | Uncharacterized protein | 1.697 |
A0A452F2V9 | V-type proton ATPase subunit C | 1.782 |
A0A452FMH2 | Serum amyloid A protein | 1.852 |
A0A452FTY4 | Serum amyloid A protein | 1.863 |
A0A452EH87 | Ig-like domain-containing protein | 1.879 |
A0A452DZA7 | Ig-like domain-containing protein | 2.012 |
A0A452FQK6 | Uncharacterized protein | 2.075 |
A0A452FM96 | Uncharacterized protein | 3.199 |
A0A452DYK6 | LRRcap domain-containing protein | 5.170 |
A0A452G5R6 | Haptoglobin | 5.198 |
Number | Metabolites | Ratio |
---|---|---|
M1136 | MFCD00133175 | 0.236674101 |
M1131 | Methyl 3-hydroxypalmitate | 0.245912491 |
M0096 | Pregabalin | 0.360438539 |
M0217 | Vigabatrin | 0.405421635 |
M0830 | N~6~,N~6~-Dimethyllysine | 0.462717965 |
M0518 | L-Theanine | 0.505753644 |
M0476 | Fasoracetam | 0.530718405 |
M1143 | Coumarin | 0.584921507 |
M0781 | Afegostat | 0.586163676 |
M0279 | g-Butyrobetaine | 0.598788438 |
M0333 | Acetanilide | 0.600654881 |
M0456 | 235BBF3K97 | 0.602385586 |
M0430 | N.pi.-Methyl-L-histidine | 0.654847868 |
M0168 | Ricinoleic Acid | 0.352162448 |
M0223 | Benzoic acid | 0.46156872 |
M0124 | N~2~-Acetyl-L-ornithine | 0.515348311 |
M0068 | Hydroxynorleucine | 0.589651438 |
M0075 | 3-(3,4-dihydroxyphenyl)propanoic acid | 0.599884946 |
M0216 | Allantoin | 0.624748837 |
M0105 | N,N-dimethylarginine | 0.627098881 |
M0113 | (2R)-2-Acetoxy-3-[(9Z)-9-octadecen-1-yloxy]propyl 2-(trimethylammonio)ethyl phosphate | 0.673983498 |
M0121 | N6,N6,N6-Trimethyl-L-lysine | 0.802597421 |
M0189 | Methyl palmitate | 0.820344187 |
M0009 | PC | 1.240687574 |
M0306 | Octadecanamine | 1.415271685 |
M0019 | Bis(4-ethylbenzylidene)sorbitol | 1.432326828 |
M0324 | Bis(2-ethylhexyl) amine | 1.441261393 |
M0308 | Cinnamyl alcohol | 1.471295541 |
M0341 | Autumnolide | 1.523646777 |
M1020 | Umbelliferone | 1.075196303 |
M0481 | Maraniol | 1.189934366 |
M1275 | 1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine | 1.373282197 |
M0115 | Inspra | 1.527846994 |
M1220 | Phaseic acid | 1.548361001 |
M0339 | Propionylcarnitine | 1.756348021 |
M0422 | 2-methylbutyrylcarnitine | 1.953783596 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Zhou, P.; Shen, X. Abnormal Phenylalanine Metabolism of Procapra przewalskii in Chronic Selenosis in Selenium-Enriched Habitats. Metabolites 2023, 13, 982. https://doi.org/10.3390/metabo13090982
Ren H, Zhou P, Shen X. Abnormal Phenylalanine Metabolism of Procapra przewalskii in Chronic Selenosis in Selenium-Enriched Habitats. Metabolites. 2023; 13(9):982. https://doi.org/10.3390/metabo13090982
Chicago/Turabian StyleRen, Hong, Ping Zhou, and Xiaoyun Shen. 2023. "Abnormal Phenylalanine Metabolism of Procapra przewalskii in Chronic Selenosis in Selenium-Enriched Habitats" Metabolites 13, no. 9: 982. https://doi.org/10.3390/metabo13090982
APA StyleRen, H., Zhou, P., & Shen, X. (2023). Abnormal Phenylalanine Metabolism of Procapra przewalskii in Chronic Selenosis in Selenium-Enriched Habitats. Metabolites, 13(9), 982. https://doi.org/10.3390/metabo13090982