Lifestyle Patterns in Patients with Type 2 Diabetes
Abstract
:1. Introduction
2. Study Design
2.1. Materials and Methods
2.2. Statistical Analysis
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Craiut, L.; Bungau, C.; Bungau, T.; Grava, C.; Otrisal, P.; Radu, A.F. Technology Transfer, Sustainability, and Development, Worldwide and in Romania. Sustainability 2022, 14, 5728. [Google Scholar] [CrossRef]
- Tokgozoglu, L.; Hekimsoy, V.; Costabile, G.; Calabrese, I.; Riccardi, G. Diet, Lifestyle, Smoking. In Prevention and Treatment of Atherosclerosis: Improving State-of-the-Art Management and Search for Novel Targets; Handbook of Experimental Pharmacology; von Eckardstein, A., Binder, C.J., Eds.; Springer: Cham, Switzerland, 2022; Volume 270, pp. 3–24. ISBN 978-3-030-86075-2. [Google Scholar]
- Schipper, S.B.J.; Van Veen, M.M.; Elders, P.J.M.; van Straten, A.; Van Der Werf, Y.D.; Knutson, K.L.; Rutters, F. Sleep disorders in people with type 2 diabetes and associated health outcomes: A review of the literature. Diabetologia 2021, 64, 2367–2377. [Google Scholar] [CrossRef] [PubMed]
- Iorga, R.A.; Bacalbasa, N.; Carsote, M.; Bratu, O.G.; Stanescu, A.A.; Bungau, S.; Pantis, C.; Diaconu, C.C. Metabolic and cardiovascular benefits of GLP-1 agonists, besides the hypoglycemic effect (Review). Exp. Ther. Med. 2020, 20, 2396–2400. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.P.; Sjodin, A.M.; Astrup, A.; Despres, J.P.; Bouchard, C.; Tremblay, A. Risk factors for adult overweight and obesity: The importance of looking beyond the ‘big two’. Obes. Facts 2010, 3, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Ghitea, T.C.; Vlad, S.; Birle, D.; Tit, D.M.; Lazar, L.; Nistor-Cseppento, C.; Behl, T.; Bungau, S. The influence of diet therapeutic intervention on the sarcopenic index of patients with metabolic syndrome. Acta Endocrinol. 2020, 16, 470–478. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Thompson, P.D.; Arena, R.; Riebe, D.; Pescatello, L.S.; American College of Sports, M. ACSM’s new preparticipation health screening recommendations from ACSM’s guidelines for exercise testing and prescription, ninth edition. Curr. Sports Med. Rep. 2013, 12, 215–217. [Google Scholar] [CrossRef]
- Dhoble, A.; Lahr, B.D.; Allison, T.G.; Kopecky, S.L. Cardiopulmonary fitness and heart rate recovery as predictors of mortality in a referral population. J. Am. Heart Assoc. 2014, 3, e000559. [Google Scholar] [CrossRef] [Green Version]
- Van Horn, L.; Carson, J.A.; Appel, L.J.; Burke, L.E.; Economos, C.; Karmally, W.; Lancaster, K.; Lichtenstein, A.H.; Johnson, R.K.; Thomas, R.J.; et al. Recommended Dietary Pattern to Achieve Adherence to the American Heart Association/American College of Cardiology (AHA/ACC) Guidelines: A Scientific Statement From the American Heart Association. Circulation 2016, 134, e505–e529. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvado, J.; Covas, M.I.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Gherasim, A.; Arhire, L.I.; Niță, O.; Popa, A.D.; Graur, M.; Mihalache, L. The relationship between lifestyle components and dietary patterns. Proc. Nutr. Soc. 2020, 79, 311–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D.; Hao, T.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 2011, 364, 2392–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, M.J.; Dekker, L.H.; Carrero, J.J.; Navis, G. Lifestyle patterns and incident type 2 diabetes in the Dutch lifelines cohort study. Prev. Med. Rep. 2022, 30, 102012. [Google Scholar] [CrossRef] [PubMed]
- Gherasim, A.; Arhire, L.I.; Niță, O.; Străteanu, R.; Oprescu, A.C.; Graur, M.; Mihalache, L. Can the EPIC food frequency questionnaire be applied to the population in Romania? Rev. Med. Chir. Soc. Med. Nat. Iași 2015, 119, 856–863. [Google Scholar]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Mulligan, A.A.; Luben, R.N.; Bhaniani, A.; Parry-Smith, D.J.; O’Connor, L.; Khawaja, A.P.; Forouhi, N.G.; Khaw, K.T.; Study, E.P.-N.F. A new tool for converting food frequency questionnaire data into nutrient and food group values: FETA research methods and availability. BMJ Open 2014, 4, e004503. [Google Scholar] [CrossRef] [Green Version]
- Manta, A.; Cojocaru, E.; Leon-Constantin, M.M.; Maștaleru, A.; Roca, M.; Rusu, C.; Cojocariu, S.A.; Mitu, F. IPAQ-L and CPET Usefulness in a North-Eastern Romanian Population Undergoing Cardiac Rehabilitation. Appl. Sci. 2021, 11, 5483. [Google Scholar] [CrossRef]
- Mendes, M.A.; da Silva, I.; Ramires, V.; Reichert, F.; Martins, R.; Ferreira, R.; Tomasi, E. Metabolic equivalent of task (METs) thresholds as an indicator of physical activity intensity. PLoS ONE 2018, 13, e0200701. [Google Scholar] [CrossRef] [Green Version]
- International Physical Activity Questionnaire—Long Form (IPAQ). Available online: https://sites.google.com/view/ipaq (accessed on 20 February 2023).
- IBM Corp. IBM SPSS Statistics for Windows, Version 22.0; IBM Corp: Armonk, NY, USA, 2011. [Google Scholar]
- Mihalache, L. The prevalence of the metabolic syndrome and its components in a rural community. Acta Endo. 2012, 8, 595–606. [Google Scholar] [CrossRef]
- Rivellese, A.A.; Giacco, R.; Costabile, G. Dietary carbohydrates for diabetics. Curr. Atheroscler. Rep. 2012, 14, 563–569. [Google Scholar] [CrossRef]
- Sacks, F.M.; Katan, M. Randomized clinical trials on the effects of dietary fat and carbohydrate on plasma lipoproteins and cardiovascular disease. Am. J. Med. 2002, 113 (Suppl. S9B), 13S–24S. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riccardi, G.; Costabile, G. Carbohydrate quality is key for a healthy and sustainable diet. Nat. Rev. Endocrinol. 2019, 15, 257–258. [Google Scholar] [CrossRef] [PubMed]
- Augustin, L.S.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Bjorck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Chaimani, A.; Hoffmann, G.; Schwedhelm, C.; Boeing, H. A network meta-analysis on the comparative efficacy of different dietary approaches on glycemic control in patients with type 2 diabetes mellitus. Eur. J. Epidemiol. 2018, 33, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, C.F.; Bolick, J.P.; Kris-Etherton, P.M.; Sikand, G.; Aspry, K.E.; Soffer, D.E.; Willard, K.E.; Maki, K.C. Review of current evidence and clinical recommendations on the effects of low-carbohydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic risk factors: A scientific statement from the National Lipid Association Nutrition and Lifestyle Task Force. J. Clin. Lipidol. 2019, 13, 689–711.e681. [Google Scholar] [CrossRef] [Green Version]
- Cronin, P.; Joyce, S.A.; O’Toole, P.W.; O’Connor, E.M. Dietary Fiber Modulates the Gut Microbiota. Nutrients 2021, 13, 1655. [Google Scholar] [CrossRef]
- Dietary Guidelines for Americans 2020–2025, 9th Edition. 2022. Available online: https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines (accessed on 20 February 2023).
- Bozzetto, L.; Costabile, G.; Della Pepa, G.; Ciciola, P.; Vetrani, C.; Vitale, M.; Rivellese, A.A.; Annuzzi, G. Dietary Fibre as a Unifying Remedy for the Whole Spectrum of Obesity-Associated Cardiovascular Risk. Nutrients 2018, 10, 943. [Google Scholar] [CrossRef] [Green Version]
- Forouhi, N.G.; Krauss, R.M.; Taubes, G.; Willett, W. Dietary fat and cardiometabolic health: Evidence, controversies, and consensus for guidance. BMJ 2018, 361, k2139. [Google Scholar] [CrossRef] [Green Version]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur. Heart. J. 2016, 37, 2999–3058. [Google Scholar] [CrossRef] [Green Version]
- Imamura, F.; Micha, R.; Wu, J.H.; de Oliveira Otto, M.C.; Otite, F.O.; Abioye, A.I.; Mozaffarian, D. Effects of Saturated Fat, Polyunsaturated Fat, Monounsaturated Fat, and Carbohydrate on Glucose-Insulin Homeostasis: A Systematic Review and Meta-analysis of Randomized Controlled Feeding Trials. PLoS Med. 2016, 13, e1002087. [Google Scholar] [CrossRef] [Green Version]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zock, P.L.; Blom, W.A.; Nettleton, J.A.; Hornstra, G. Progressing Insights into the Role of Dietary Fats in the Prevention of Cardiovascular Disease. Curr. Cardiol. Rep. 2016, 18, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamler, J.; Chan, Q.; Daviglus, M.L.; Dyer, A.R.; Van Horn, L.; Garside, D.B.; Miura, K.; Wu, Y.; Ueshima, H.; Zhao, L.; et al. Relation of Dietary Sodium (Salt) to Blood Pressure and Its Possible Modulation by Other Dietary Factors: The INTERMAP Study. Hypertension 2018, 71, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Stamler, J.; Chan, Q.; Van Horn, L.; Daviglus, M.L.; Dyer, A.R.; Miura, K.; Okuda, N.; Wu, Y.; Ueshima, H.; et al. Salt intake and prevalence of overweight/obesity in Japan, China, the United Kingdom, and the United States: The INTERMAP Study. Am. J. Clin. Nutr. 2019, 110, 34–40. [Google Scholar] [CrossRef]
- Evert, A.B.; Dennison, M.; Gardner, C.D.; Garvey, W.T.; Lau, K.H.K.; MacLeod, J.; Mitri, J.; Pereira, R.F.; Rawlings, K.; Robinson, S.; et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019, 42, 731–754. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Kar, D.; Gillies, C.; Zaccardi, F.; Webb, D.; Seidu, S.; Tesfaye, S.; Davies, M.; Khunti, K. Relationship of cardiometabolic parameters in non-smokers, current smokers, and quitters in diabetes: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2016, 15, 158. [Google Scholar] [CrossRef] [Green Version]
- Hackshaw, A.; Morris, J.K.; Boniface, S.; Tang, J.L.; Milenkovic, D. Low cigarette consumption and risk of coronary heart disease and stroke: Meta-analysis of 141 cohort studies in 55 study reports. BMJ 2018, 360, j5855. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, V.J.; Bakris, G.; MacFadyen, R.J. The ADVANCE trial: Further PROGRESS with HOPE. J. Hum. Hypertens. 2007, 21, 911–913. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 5. Facilitating Positive Health Behaviors and Well-being to Improve Health Outcomes: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46, S68–S96. [Google Scholar] [CrossRef] [PubMed]
- 2018 Physical Activity Guidelines Advisory Committee. In 2018 Physical Activity Guidelines Advisory Committee Scientific Report; U.S. Department of Health and Human Services: Washington, DC, USA, 2018.
- Kohl, H.W., 3rd; Craig, C.L.; Lambert, E.V.; Inoue, S.; Alkandari, J.R.; Leetongin, G.; Kahlmeier, S. The pandemic of physical inactivity: Global action for public health. Lancet 2012, 380, 294–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lear, S.A.; Hu, W.; Rangarajan, S.; Gasevic, D.; Leong, D.; Iqbal, R.; Casanova, A.; Swaminathan, S.; Anjana, R.M.; Kumar, R.; et al. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: The PURE study. Lancet 2017, 390, 2643–2654. [Google Scholar] [CrossRef]
- Lipert, A.; Jegier, A. Comparison of Different Physical Activity Measurement Methods in Adults Aged 45 to 64 Years Under Free-Living Conditions. Clin. J. Sport. Med. 2017, 27, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, D.W.; Barr, E.L.; Healy, G.N.; Salmon, J.; Shaw, J.E.; Balkau, B.; Magliano, D.J.; Cameron, A.J.; Zimmet, P.Z.; Owen, N. Television viewing time and mortality: The Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Circulation 2010, 121, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Liu, B.; Sun, Y.; Snetselaar, L.G.; Wallace, R.B.; Bao, W. Trends in Adherence to the Physical Activity Guidelines for Americans for Aerobic Activity and Time Spent on Sedentary Behavior Among US Adults, 2007 to 2016. JAMA Netw. Open 2019, 2, e197597. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, E.; Gale, J.; Bauman, A.; Ekelund, U.; Hamer, M.; Ding, D. Sitting Time, Physical Activity, and Risk of Mortality in Adults. J. Am. Coll. Cardiol. 2019, 73, 2062–2072. [Google Scholar] [CrossRef]
- Hamilton, M.T.; Hamilton, D.G.; Zderic, T.W. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 2007, 56, 2655–2667. [Google Scholar] [CrossRef] [Green Version]
- Thorp, A.A.; Healy, G.N.; Owen, N.; Salmon, J.; Ball, K.; Shaw, J.E.; Zimmet, P.Z.; Dunstan, D.W. Deleterious associations of sitting time and television viewing time with cardiometabolic risk biomarkers: Australian Diabetes, Obesity and Lifestyle (AusDiab) study 2004-2005. Diabetes Care 2010, 33, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Pulsford, R.M.; Blackwell, J.; Hillsdon, M.; Kos, K. Intermittent walking, but not standing, improves postprandial insulin and glucose relative to sustained sitting: A randomized cross-over study in inactive middle-aged men. J. Sci. Med. Sport 2017, 20, 278–283. [Google Scholar] [CrossRef]
- Mynarski, W.; Psurek, A.; Borek, Z.; Rozpara, M.; Grabara, M.; Strojek, K. Declared and real physical activity in patients with type 2 diabetes mellitus as assessed by the International Physical Activity Questionnaire and Caltrac accelerometer monitor: A potential tool for physical activity assessment in patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2012, 98, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Powell, C.; Herring, M.P.; Dowd, K.P.; Donnelly, A.E.; Carson, B.P. The cross-sectional associations between objectively measured sedentary time and cardiometabolic health markers in adults—A systematic review with meta-analysis component. Obes. Rev. 2018, 19, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Dillman, C.J.; Shields, C.A.; Fowles, J.R.; Perry, A.; Murphy, R.J.L.; Dunbar, P. Including Physical Activity Exercise in Diabetes Management: Diabetes Educators’ Perceptions of Their Own Abilities the Abilities of Their Patients. Can. J. Diabetes 2010, 34, 218–226. [Google Scholar] [CrossRef]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010; Available online: https://www.who.int/publications/i/item/9789241599979 (accessed on 20 February 2023).
- Martin, C.G.; Pomares, M.L.; Muratore, C.M.; Avila, P.J.; Apoloni, S.B.; Rodriguez, M.; Gonzalez, C.D. Level of physical activity and barriers to exercise in adults with type 2 diabetes. AIMS Public Health 2021, 8, 229–239. [Google Scholar] [CrossRef]
- Pippi, R.; Cugusi, L.; Bergamin, M.; Bini, V.; Fanelli, C.G.; Bullo, V.; Gobbo, S.; Di Blasio, A. Impact of BMI, Physical Activity, and Sitting Time Levels on Health-Related Outcomes in a Group of Overweight and Obese Adults with and without Type 2 Diabetes. J. Funct. Morphol. Kinesiol. 2022, 7, 12. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, D.C.; Brellenthin, A.G.; Eijsvogels, T.M.H.; Sui, X.; Church, T.S.; Lavie, C.J.; Blair, S.N. Leisure-Time Running Reduces the Risk of Incident Type 2 Diabetes. Am. J. Med. 2019, 132, 1225–1232. [Google Scholar] [CrossRef]
- Umpierre, D.; Ribeiro, P.A.; Kramer, C.K.; Leitão, C.B.; Zucatti, A.T.; Azevedo, M.J.; Gross, J.L.; Ribeiro, J.P.; Schaan, B.D. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: A systematic review and meta-analysis. JAMA 2011, 305, 1790–1799. [Google Scholar] [CrossRef] [Green Version]
- Chudyk, A.; Petrella, R.J. Effects of exercise on cardiovascular risk factors in type 2 diabetes: A meta-analysis. Diabetes Care 2011, 34, 1228–1237. [Google Scholar] [CrossRef] [Green Version]
- Johnson, N.A.; Barwick, A.L.; Searle, A.; Spink, M.J.; Twigg, S.M.; Chuter, V.H. Self-reported physical activity in community-dwelling adults with diabetes and its association with diabetes complications. J. Diabetes Complicat. 2019, 33, 33–38. [Google Scholar] [CrossRef]
- Reutrakul, S.; Mokhlesi, B. Obstructive Sleep Apnea and Diabetes: A State of the Art Review. Chest 2017, 152, 1070–1086. [Google Scholar] [CrossRef] [PubMed]
- Ogilvie, R.P.; Patel, S.R. The Epidemiology of Sleep and Diabetes. Curr. Diab. Rep. 2018, 18, 82. [Google Scholar] [CrossRef] [PubMed]
- Barone, M.T.; Menna-Barreto, L. Diabetes and sleep: A complex cause-and-effect relationship. Diabetes Res. Clin. Pract. 2011, 91, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Anothaisintawee, T.; Reutrakul, S.; Van Cauter, E.; Thakkinstian, A. Sleep disturbances compared to traditional risk factors for diabetes development: Systematic review and meta-analysis. Sleep Med. Rev. 2016, 30, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Koopman, A.D.M.; Beulens, J.W.; Dijkstra, T.; Pouwer, F.; Bremmer, M.A.; van Straten, A.; Rutters, F. Prevalence of Insomnia (Symptoms) in T2D and Association With Metabolic Parameters and Glycemic Control: Meta-Analysis. J. Clin. Endocrinol. Metab. 2020, 105, 614–643. [Google Scholar] [CrossRef] [PubMed]
- Chew, M.; Tan, N.Y.Q.; Lamoureux, E.; Cheng, C.Y.; Wong, T.Y.; Sabanayagam, C. The associations of objectively measured sleep duration and sleep disturbances with diabetic retinopathy. Diabetes Res. Clin. Pract. 2020, 159, 107967. [Google Scholar] [CrossRef] [Green Version]
- Stults-Kolehmainen, M.A.; Sinha, R. The effects of stress on physical activity and exercise. Sports Med. 2014, 44, 81–121. [Google Scholar] [CrossRef] [Green Version]
- Hamer, M. Psychosocial stress and cardiovascular disease risk: The role of physical activity. Psychosom. Med. 2012, 74, 896–903. [Google Scholar] [CrossRef] [Green Version]
- Schweren, L.J.S.; Larsson, H.; Vinke, P.C.; Li, L.; Kvalvik, L.G.; Arias-Vasquez, A.; Haavik, J.; Hartman, C.A. Diet quality, stress and common mental health problems: A cohort study of 121,008 adults. Clin. Nutr. 2021, 40, 901–906. [Google Scholar] [CrossRef]
- Brady, K.T.; Sonne, S.C. The role of stress in alcohol use, alcoholism treatment, and relapse. Alcohol Res. Health 1999, 23, 263–271. [Google Scholar]
- Torres, O.V.; O’Dell, L.E. Stress is a principal factor that promotes tobacco use in females. Prog. Neuropsychopharmacol Biol. Psychiatry 2016, 65, 260–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo Martire, V.; Caruso, D.; Palagini, L.; Zoccoli, G.; Bastianini, S. Stress & sleep: A relationship lasting a lifetime. Neurosci. Biobehav. Rev. 2020, 117, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Geiker, N.R.W.; Astrup, A.; Hjorth, M.F.; Sjödin, A.; Pijls, L.; Markus, C.R. Does stress influence sleep patterns, food intake, weight gain, abdominal obesity and weight loss interventions and vice versa? Obes. Rev. 2018, 19, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Sapp, P.A.; Riley, T.M.; Davis, K.M.; Hart, T.; Lawler, O. The Dynamic Interplay of Healthy Lifestyle Behaviors for Cardiovascular Health. Curr. Atheroscler. Rep. 2022, 24, 969–980. [Google Scholar] [CrossRef]
- Studart, E.P.M.; Arruda, S.P.M.; Sampaio, H.A.d.C.; Passos, T.U.; Carioca, A.A.F. Dietary patterns and glycemic indexes in type 2 diabetes patients. Rev. Nutr. 2018, 31, 1–12. [Google Scholar] [CrossRef]
- El Bilbeisi, A.H.; Hosseini, S.; Djafarian, K. Dietary Patterns and Metabolic Syndrome among Type 2 Diabetes Patients in Gaza Strip, Palestine. Ethiop. J. Health Sci. 2017, 27, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.L.; Sahni, S.; Chocano-Bedoya, P.; Daly, R.M.; Welch, A.A.; Bischoff-Ferrari, H.; Weaver, C.M. Best Practices for Conducting Observational Research to Assess the Relation between Nutrition and Bone: An International Working Group Summary. Adv Nutr 2019, 10, 391–409. [Google Scholar] [CrossRef] [Green Version]
Clinical/Biological/Lifestyle Parameters | Subjects | ||
---|---|---|---|
Total (n = 92) | Men (n = 44) | Women (n = 48) | |
Age (mean ± SD) | 60.5 ± 10.2 | 58.3 ± 10.6 | 62.6 ± 9.5 |
Residence | |||
Urban (n, %) | 65, 70.7 | 34, 77.3 | 31, 64.6 |
Rural (n, %) | 27, 29.3 | 10, 22.7 | 17, 35.4 |
Duration of diabetes (years) (mean ± SD) | 5.5 ± 5.1 | 5.4 ± 5.8 | 5.5 ± 4.5 |
BMI (kg/m2) (mean ± SD) | 31.5 ± 5.3 | 30.5 ± 5.1 | 32.4 ± 5.3 |
WC (cm) (mean ± SD) | 105.0 ± 11.8 | 105.4 ± 11.0 | 104.7 ± 12.5 |
HbA1c (%) (mean ± SD) | 7.01 ± 1.22 | 7.00 ± 1.33 | 7.02 ± 1.13 |
Fasting glycemia (mg/dL) (mean ± SD) | 146.2 ± 36.7 | 142.5 ± 32.1 | 149.6 ± 40.5 |
Total cholesterol (mg/dL) (mean ± SD) | 204.1 ± 49.1 | 203.2 ± 45.6 | 204.9 ± 52.6 |
LDL cholesterol (mg/dL) (mean ± SD) | 131.0 ± 44.1 | 132.2 ± 41.2 | 129.9 ± 46.9 |
HDL cholesterol (mg/dL) (mean ± SD) | 47.4 ± 12.8 | 43.8 ± 9.3 | 50.9 ± 14.7 |
Triglycerides (mg/dL) (mean ± SD) | 174.2 ± 106.4 | 192.4 ± 132.4 | 157.6 ± 72.8 |
Smoking (n, %) | 11, 12 | 9, 20.5 | 2, 4.2 |
Stress (n, %) | 25, 27.2 | 9, 20.5 | 16, 33.3 |
Sleep hours (mean ± SD) | 6.48 ± 1.2 | 6.57 ± 1.3 | 6.40 ± 1.2 |
Eating three meals/day (n, %) | 48, 52.2 | 21, 47.7 | 27, 56.2 |
Eating during the night (n, %) | 9, 9.8 | 5, 11.4 | 4, 8.3 |
Skipping breakfast (n, %) | 26, 28.3 | 15, 34.1 | 11, 22.9 |
Eating in front of TV (n, %) | 27, 29.3 | 10, 22.7 | 17, 35.4 |
Alcohol intake (n, %) | 22, 23.9 | 20, 45.5 | 2, 4.2 |
Diabetic retinopathy (n, %) | 5, 5.5 | 3, 7 | 2, 4.2 |
Diabetic neuropathy (n, %) | 20, 21.7 | 6, 13.6 | 14, 29.2 |
High blood pressure (n, %) | 70, 76.1 | 30, 68.2 | 40, 83.3 |
Dyslipidemia (n, %) | 54, 58.7 | 28, 63.6 | 26, 54.2 |
Obesity (n, %) | 53, 57.6 | 21, 47.7 | 32, 66.7 |
Average Daily Intake (Mean ± SD) | Subjects | ||
---|---|---|---|
Total (n = 92) | Men (n = 44) | Women (n = 48) | |
Energy (kcal/day) | 1736 ± 712 | 1836 ± 841 | 1644 ± 563 |
Carbohydrates (g) | 213 ± 94 | 222 ± 113 | 204 ± 71 |
Carbohydrates (%) | 49.1 ± 5.8 | 48.3 ± 6 | 49.8 ± 5.5 |
Lipids (g) | 61.5 ± 29.7 | 63.1 ± 35.6 | 60.1 ± 23.3 |
Lipids (%) | 31.8 ± 5 | 30.8 ± 4.8 | 32.8 ± 5 |
Proteins (g) | 84.4 ± 40 | 90.6 ± 49.7 | 78.8 ± 27.7 |
Proteins (%) | 19.3 ± 2.9 | 19.5 ± 3.3 | 19.1 ± 2.4 |
SFA (g) | 21.1 ± 9.9 | 21.7 ± 11.4 | 20.5 ± 8.3 |
SFA (%) | 11 ± 2.5 | 10.7 ± 2.6 | 11.2 ± 2.5 |
MUFA (g) | 22 ± 11.7 | 22.4 ± 13.9 | 21.6 ± 9.3 |
MUFA (%) | 11.3 ± 2.5 | 10.8 ± 2.1 | 11.7 ± 2.9 |
PUFA (g) | 12.4 ± 6.3 | 12.5 ± 7.5 | 12.2 ± 5 |
PUFA (%) | 6.3 ± 1.3 | 5.9 ± 1 | 6.6 ± 1.5 |
Sodium (mg) | 3087 ± 1493 | 3348 ± 1827 | 2848 ± 1071 |
Potassium (mg) | 3141 ± 1332 | 3220 ± 1609 | 3069 ± 1028 |
Cholesterol (mg) | 342.9 ± 136.6 | 370.8 ± 144 | 317.4 ± 125.6 |
Fiber (g) | 19.1 ± 9.2 | 19 ± 11.1 | 19.1 ± 7.3 |
Physical Activity | Subjects | p | Age Categories (p ˃ 0.05) | |||
---|---|---|---|---|---|---|
Total (n = 92) | Men (n = 44) | Women (n = 48) | ˂65 years (n = 60) | ˃65 years (n = 32) | ||
Vigorous PA | ||||||
Min/day | 7.3 | 15 | 0.3 | 9.2 | 3.7 | |
Days | 0.2 | 0.3 | 0.1 | ˂0.05 | 0.3 | 0.1 |
MET | 196.9 | 392.7 | 17.5 | 222 | 150 | |
Moderate PA | ||||||
Min/day | 115.5 | 113.8 | 117 | 124.1 | 99.3 | |
Days | 4.3 | 3.8 | 4.8 | ˃0.05 | 4.6 | 3.9 |
MET | 2450 | 2239 | 2643 | 2648.6 | 2077.5 | |
Walking | ||||||
Min/day | 69.4 | 83.7 | 56.2 | ˂0.05 | 72.5 | 63.5 |
Days | 5.5 | 5.6 | 5.4 | 5.7 | 5.1 | |
MET | 1479 | 1802 | 1182 | ˂0.05 | 1571.3 | 1306 |
Min/week | 448 | 546 | 358 | ˂0.05 | 476 | 395 |
Sedentary time | 239 | 260 | 219 | ˂0.05 | 236 | 243 |
Min/day | ||||||
PA level (n, %) | ||||||
Low | 11, 12 | 5, 11.4 | 6, 12.5 | 6, 10 | 5, 15.6 | |
Moderate | 75, 81.5 | 34, 77.3 | 41, 85.4 | 49, 81.7 | 26, 81.2 | |
High | 6, 6.5 | 5, 11.4 | 1, 2.1 | ˃0.05 | 5, 8.3 | 1, 3.1 |
Food Groups | Dietary Patterns | ||
---|---|---|---|
Prudent Pattern | Western Pattern | Traditional Pattern | |
Cereals and derivatives | 0.771 | 0.385 | −0.064 |
Eggs | 0.144 | 0.680 | −0.200 |
Fats and oils | 0.853 | 0.197 | −0.134 |
Fish and derivatives | 0.635 | 0.476 | 0.049 |
Fruits | 0.650 | 0.415 | 0.257 |
Meat and derivatives | 0.425 | 0.729 | 0.096 |
Milk and derivatives | 0.414 | −0.288 | 0.638 |
Soft drinks (nonalcoholic) | 0.132 | 0.725 | 0.017 |
Nuts and seeds | 0.360 | −0.086 | −0.220 |
Potatoes | 0.712 | 0.171 | 0.144 |
Soups and sauces | 0.112 | 0.538 | 0.608 |
Sugar and snacks | 0.194 | 0.055 | −0.711 |
Vegetables | 0.600 | 0.459 | 0.360 |
Lifestyle Components | Lifestyle Patterns | |
---|---|---|
Inadequate Lifestyle Pattern | Traditional Lifestyle Pattern | |
Prudent pattern | 0.057 | −0.185 |
Western pattern | 0.637 | 0.248 |
Traditional pattern | −0.009 | 0.587 |
Sleep hours | 0.670 | −0.372 |
Alcohol consumption | −0.396 | −0.311 |
Physical activity | 0.216 | 0.691 |
Stress | −0.633 | 0.204 |
Smoking | 0.042 | −0.504 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gherasim, A.; Oprescu, A.C.; Gal, A.M.; Burlui, A.M.; Mihalache, L. Lifestyle Patterns in Patients with Type 2 Diabetes. Metabolites 2023, 13, 831. https://doi.org/10.3390/metabo13070831
Gherasim A, Oprescu AC, Gal AM, Burlui AM, Mihalache L. Lifestyle Patterns in Patients with Type 2 Diabetes. Metabolites. 2023; 13(7):831. https://doi.org/10.3390/metabo13070831
Chicago/Turabian StyleGherasim, Andreea, Andrei C. Oprescu, Ana Maria Gal, Alexandra Maria Burlui, and Laura Mihalache. 2023. "Lifestyle Patterns in Patients with Type 2 Diabetes" Metabolites 13, no. 7: 831. https://doi.org/10.3390/metabo13070831