Antibodies against Phosphorylcholine—Implications for Chronic Inflammatory Diseases
Abstract
:1. Introduction
2. Phosphorylcholine as Danger and Pathogen-Associated Molecular Pattern
3. Anti-PC as Protection Marker in Chronic Inflammatory Conditions
4. SLE, Atherosclerosis and CVD
5. Animal Models and Immunization with PC
6. Potential Underlying Mechanisms
7. Old Friends/Hygiene Hypothesis and Anti-PC
8. Conclusions
9. Future Directions
Funding
Conflicts of Interest
References
- Frostegard, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013, 11, 117. [Google Scholar] [CrossRef] [PubMed]
- Frostegard, J.; Ulfgren, A.K.; Nyberg, P.; Hedin, U.; Swedenborg, J.; Andersson, U.; Hansson, G.K. Cytokine expression in advanced human atherosclerotic plaques: Dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 1999, 145, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, D.; Parthasarathy, S.; Carew, T.E.; Khoo, J.C.; Witztum, J.L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity [see comments]. N. Engl. J. Med. 1989, 320, 915–924. [Google Scholar] [PubMed]
- Mayerl, C.; Lukasser, M.; Sedivy, R.; Niederegger, H.; Seiler, R.; Wick, G. Atherosclerosis research from past to present--on the track of two pathologists with opposing views, Carl von Rokitansky and Rudolf Virchow. Virchows Arch. 2006, 449, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Tardif, J.C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef]
- Liu, A.; Ming, J.Y.; Fiskesund, R.; Ninio, E.; Karabina, S.A.; Bergmark, C.; Frostegard, A.G.; Frostegard, J. Induction of dendritic cell-mediated T-cell activation by modified but not native low-density lipoprotein in humans and inhibition by annexin a5: Involvement of heat shock proteins. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 197–205. [Google Scholar] [CrossRef]
- Lee, S.; Birukov, K.G.; Romanoski, C.E.; Springstead, J.R.; Lusis, A.J.; Berliner, J.A. Role of phospholipid oxidation products in atherosclerosis. Circ. Res. 2012, 111, 778–799. [Google Scholar] [CrossRef]
- Bergmark, C.; Dewan, A.; Orsoni, A.; Merki, E.; Miller, E.R.; Shin, M.J.; Binder, C.J.; Hörkkö, S.; Krauss, R.M.; Chapman, M.J.; et al. A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. J. Lipid Res. 2008, 49, 2230–2239. [Google Scholar] [CrossRef]
- Frostegard, J.; Svenungsson, E.; Wu, R.; Gunnarsson, I.; Lundberg, I.E.; Klareskog, L.; Horkko, S.; Witztum, J.L. Lipid peroxidation is enhanced in patients with systemic lupus erythematosus and is associated with arterial and renal disease manifestations. Arthritis Rheum. 2005, 52, 192–200. [Google Scholar] [CrossRef]
- Svenungsson, E.; Jensen-Urstad, K.; Heimburger, M.; Silveira, A.; Hamsten, A.; de Faire, U.; Witztum, J.L.; Frostegard, J. Risk factors for cardiovascular disease in systemic lupus erythematosus. Circulation 2001, 104, 1887–1893. [Google Scholar] [CrossRef] [PubMed]
- Gora, S.; Maouche, S.; Atout, R.; Wanherdrick, K.; Lambeau, G.; Cambien, F.; Ninio, E.; Karabina, S.A. Phospholipolyzed LDL induces an inflammatory response in endothelial cells through endoplasmic reticulum stress signaling. Faseb J. 2010, 24, 3284–3297. [Google Scholar] [CrossRef] [PubMed]
- Miller, Y.I.; Tsimikas, S. Oxidation-specific epitopes as targets for biotheranostic applications in humans: Biomarkers, molecular imaging and therapeutics. Curr. Opin. Lipidol. 2013, 24, 426–437. [Google Scholar] [CrossRef]
- Que, X.; Hung, M.Y.; Yeang, C.; Gonen, A.; Prohaska, T.A.; Sun, X.; Diehl, C.; Maatta, A.; Gaddis, D.E.; Bowden, K.; et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 2018, 558, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Gearhart, P.J.; Johnson, N.D.; Douglas, R.; Hood, L. IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts. Nature 1981, 291, 29–34. [Google Scholar] [CrossRef]
- Briles, D.E.; Forman, C.; Hudak, S.; Claflin, J.L. Anti-phosphorylcholine antibodies of the T15 idiotype are optimally protective against Streptococcus pneumoniae. J. Exp. Med. 1982, 156, 1177–1185. [Google Scholar] [CrossRef]
- Szu, S.C.; Clarke, S.; Robbins, J.B. Protection against pneumococcal infection in mice conferred by phosphocholine-binding antibodies: Specificity of the phosphocholine binding and relation to several types. Infect. Immun. 1983, 39, 993–999. [Google Scholar] [CrossRef]
- Skovsted, I.C.; Kerrn, M.B.; Sonne-Hansen, J.; Sauer, L.E.; Nielsen, A.K.; Konradsen, H.B.; Petersen, B.O.; Nyberg, N.T.; Duus, J.O. Purification and structure characterization of the active component in the pneumococcal 22F polysaccharide capsule used for adsorption in pneumococcal enzyme-linked immunosorbent assays. Vaccine 2007, 25, 6490–6500. [Google Scholar] [CrossRef]
- Al-Riyami, L.; Harnett, W. Immunomodulatory properties of ES-62, a phosphorylcholine-containing glycoprotein secreted by Acanthocheilonema viteae. Endocr. Metab. Immune Disord. Drug Targets 2012, 12, 45–52. [Google Scholar] [CrossRef]
- Pery, P.; Petit, A.; Poulain, J.; Luffau, G. Phosphorylcholine-bearing components in homogenates of nematodes. Eur. J. Immunol. 1974, 4, 637–639. [Google Scholar] [CrossRef]
- Grabitzki, J.; Ahrend, M.; Schachter, H.; Geyer, R.; Lochnit, G. The PCome of Caenorhabditis elegans as a prototypic model system for parasitic nematodes: Identification of phosphorylcholine-substituted proteins. Mol. Biochem. Parasitol. 2008, 161, 101–111. [Google Scholar] [CrossRef]
- Salonen, J.T.; Yla-Herttuala, S.; Yamamoto, R.; Butler, S.; Korpela, H.; Salonen, R.; Nyyssonen, K.; Palinski, W.; Witztum, J.L. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 1992, 339, 883–887. [Google Scholar] [CrossRef]
- Bergmark, C.; Wu, R.; de Faire, U.; Lefvert, A.K.; Swedenborg, J. Patients with early-onset peripheral vascular disease have increased levels of autoantibodies against oxidized LDL. Arterioscler. Thromb. Vasc. Biol. 1995, 15, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Puurunen, M.; Manttari, M.; Manninen, V.; Tenkanen, L.; Alfthan, G.; Ehnholm, C.; Vaarala, O.; Aho, K.; Palosuo, T. Antibody against oxidized low-density lipoprotein predicting myocardial infarction. Arch. Intern. Med. 1994, 154, 2605–2609. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Nityanand, S.; Berglund, L.; Lithell, H.; Holm, G.; Lefvert, A.K. Antibodies against cardiolipin and oxidatively modified LDL in 50-year-old men predict myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 3159–3163. [Google Scholar] [CrossRef] [PubMed]
- Lehtimaki, T.; Lehtinen, S.; Solakivi, T.; Nikkila, M.; Jaakkola, O.; Jokela, H.; Yla-Herttuala, S.; Luoma, J.S.; Koivula, T.; Nikkari, T. Autoantibodies against oxidized low density lipoprotein in patients with angiographically verified coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 23–27. [Google Scholar] [CrossRef]
- Wu, R.; de Faire, U.; Lemne, C.; Witztum, J.L.; Frostegard, J. Autoantibodies to OxLDL are decreased in individuals with borderline hypertension. Hypertension 1999, 33, 53–59. [Google Scholar] [CrossRef]
- Vaarala, O.; Alfthan, G.; Jauhiainen, M.; Leirisalo-Repo, M.; Aho, K.; Palosuo, T. Crossreaction between antibodies to oxidised low-density lipoprotein and to cardiolipin in systemic lupus erythematosus. Lancet 1993, 341, 923–925. [Google Scholar] [CrossRef]
- Su, J.; Georgiades, A.; Wu, R.; Thulin, T.; de Faire, U.; Frostegard, J. Antibodies of IgM subclass to phosphorylcholine and oxidized LDL are protective factors for atherosclerosis in patients with hypertension. Atherosclerosis 2006, 188, 160–166. [Google Scholar] [CrossRef]
- Geller, B.J.; Mega, J.L.; Morrow, D.A.; Guo, J.; Hoffman, E.B.; Gibson, C.M.; Ruff, C.T. Autoantibodies to phosphorylcholine and cardiovascular outcomes in patients with acute coronary syndromes in the ATLAS ACS-TIMI 46 trial. J. Thromb. Thrombolysis 2014, 37, 310–316. [Google Scholar] [CrossRef]
- Gigante, B.; Leander, K.; Vikstrom, M.; Baldassarre, D.; Veglia, F.; Strawbridge, R.J.; McLeod, O.; Gertow, K.; Sennblad, B.; Shah, S.; et al. Low levels of IgM antibodies against phosphorylcholine are associated with fast carotid intima media thickness progression and cardiovascular risk in men. Atherosclerosis 2014, 236, 394–399. [Google Scholar] [CrossRef]
- Nguyen, T.G.; McKelvey, K.J.; March, L.M.; Hunter, D.J.; Xue, M.; Jackson, C.J.; Morris, J.M. Aberrant levels of natural IgM antibodies in osteoarthritis and rheumatoid arthritis patients in comparison to healthy controls. Immunol. Lett. 2016, 170, 27–36. [Google Scholar] [CrossRef]
- Wilde, B.; Slot, M.; van Paassen, P.; Theunissen, R.; Kemna, M.; Witzke, O.; Cohen Tervaert, J.W. Phosphorylcholine antibodies are diminished in ANCA-associated vasculitis. Eur. J. Clin. Investig. 2015, 45, 686–691. [Google Scholar] [CrossRef]
- Ohori, J.; Jimura, T.; Kurono, Y. Role of Phosphorylcholine-Specific Immunoglobulin M in Acute Upper Respiratory Tract Infections. Ann. Otol. Rhinol. Laryngol. 2019, 128, 111S–116S. [Google Scholar] [CrossRef]
- Anania, C.; Gustafsson, T.; Hua, X.; Su, J.; Vikstrom, M.; de Faire, U.; Heimburger, M.; Jogestrand, T.; Frostegård, J. Increased prevalence of vulnerable atherosclerotic plaques and low levels of natural IgM antibodies against phosphorylcholine in patients with systemic lupus erythematosus. Arthritis Res. Ther. 2010, 12, R214. [Google Scholar] [CrossRef]
- Thiagarajan, D.; Fiskesund, R.; Frostegard, A.; Steen, J.; Rahman, M.; Vikstrom, M.; Lundstrom, S.; Frostegard, J. Immunoglobulin G1 Antibodies Against Phosphorylcholine Are Associated with Protection in Systemic Lupus Erythematosus and Atherosclerosis: Potential Underlying Mechanisms. ACR Open Rheumatol. 2020, 2, 344–356. [Google Scholar] [CrossRef]
- Thiagarajan, D.; Oparina, N.; Lundstrom, S.; Zubarev, R.; Sun, J.; Consortium, P.C.; Alarcon-Riquelme, M.; Frostegard, J. IgM antibodies against malondialdehyde and phosphorylcholine in different systemic rheumatic diseases. Sci. Rep. 2020, 10, 11010. [Google Scholar] [CrossRef] [PubMed]
- Gronwall, C.; Akhter, E.; Oh, C.; Burlingame, R.W.; Petri, M.; Silverman, G.J. IgM autoantibodies to distinct apoptosis-associated antigens correlate with protection from cardiovascular events and renal disease in patients with SLE. Clin. Immunol. 2012, 142, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Gleissner, C.A.; Erbel, C.; Haeussler, J.; Akhavanpoor, M.; Domschke, G.; Linden, F.; Doesch, A.O.; Conradson, G.; Buss, S.J.; Hofmann, N.P.; et al. Low levels of natural IgM antibodies against phosphorylcholine are independently associated with vascular remodeling in patients with coronary artery disease. Clin. Res. Cardiol. Off. J. Ger. Card. Soc. 2015, 104, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Imhof, A.; Koenig, W.; Jaensch, A.; Mons, U.; Brenner, H.; Rothenbacher, D. Long-term prognostic value of IgM antibodies against phosphorylcholine for adverse cardiovascular events in patients with stable coronary heart disease. Atherosclerosis 2015, 243, 414–420. [Google Scholar] [CrossRef]
- Sobel, M.; Yagi, M.; Moreno, K.; Kohler, T.R.; Tang, G.L.; Wijelath, E.S.; Marshall, J.; Kenagy, R.D. Anti-phosphorylcholine IgM, an Anti-inflammatory Mediator, Predicts Peripheral Vein Graft Failure: A Prospective Observational Study. Eur. J. Vasc. Endovasc. Surg. 2019, 57, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Iseme, R.A.; McEvoy, M.; Kelly, B.; Agnew, L.; Walker, F.R.; Handley, T.; Oldmeadow, C.; Attia, J.; Boyle, M. A role for autoantibodies in atherogenesis. Cardiovasc. Res. 2017, 113, 1102–1112. [Google Scholar] [CrossRef]
- Eichinger, S.; Kyrle, P.A.; Kammer, M.; Eischer, L.; Ozsvar Kozma, M.; Binder, C.J. Natural antibodies to oxidation-specific epitopes: Innate immune response and venous thromboembolic disease. J. Thromb. Haemost. 2018, 16, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Vas, J.; Gronwall, C.; Marshak-Rothstein, A.; Silverman, G.J. Natural antibody to apoptotic cell membranes inhibits the proinflammatory properties of lupus autoantibody immune complexes. Arthritis Rheum. 2012, 64, 3388–3398. [Google Scholar] [CrossRef] [PubMed]
- Manzi, S.; Meilahn, E.N.; Rairie, J.E.; Conte, C.G.; Medsger, T.A.; Jansen-McWilliams, L., Jr.; D’Agostino, R.B.; Kuller, L.H. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: Comparison with the Framingham Study. Am. J. Epidemiol. 1997, 145, 408–415. [Google Scholar] [CrossRef]
- Frostegard, J. Systemic lupus erythematosus and cardiovascular disease. J. Intern. Med. 2023, 293, 48–62. [Google Scholar] [CrossRef]
- Roman, M.J.; Salmon, J.E.; Sobel, R.; Lockshin, M.D.; Sammaritano, L.; Schwartz, J.E.; Devereux, R.B. Prevalence and relation to risk factors of carotid atherosclerosis and left ventricular hypertrophy in systemic lupus erythematosus and antiphospholipid antibody syndrome. Am. J. Cardiol. 2001, 87, 663–666. [Google Scholar] [CrossRef]
- Roman, M.J.; Shanker, B.A.; Davis, A.; Lockshin, M.D.; Sammaritano, L.; Simantov, R.; Crow, M.K.; Schwartz, J.E.; Paget, S.A.; Devereux, R.B.; et al. Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus. N. Engl. J. Med. 2003, 349, 2399–2406. [Google Scholar] [CrossRef]
- Kwee, R.M.; van Oostenbrugge, R.J.; Hofstra, L.; Teule, G.J.; van Engelshoven, J.M.; Mess, W.H.; Kooi, M.E. Identifying vulnerable carotid plaques by noninvasive imaging. Neurology 2008, 70, 2401–2409. [Google Scholar] [CrossRef]
- Mathiesen, E.B.; Bonaa, K.H.; Joakimsen, O. Echolucent plaques are associated with high risk of ischemic cerebrovascular events in carotid stenosis: The tromso study. Circulation 2001, 103, 2171–2175. [Google Scholar] [CrossRef]
- Waliszewska-Prosol, M.; Ejma, M. Hashimoto Encephalopathy-Still More Questions than Answers. Cells. 2022, 11, 2873. [Google Scholar] [CrossRef] [PubMed]
- Samal, S.K.; Panda, P.K.; Vikstrom, M.; Leander, K.; de Faire, U.; Ahuja, R.; Frostegard, J. Antibodies against Phosphorylcholine Among 60-Year-Olds: Clinical Role and Simulated Interactions. Front. Cardiovasc. Med. 2022, 9, 809007. [Google Scholar] [CrossRef] [PubMed]
- Samal, S.K.; Qureshi, A.R.; Rahman, M.; Stenvinkel, P.; Frostegard, J. Different subclasses and isotypes of antibodies against phosphorylcholine in haemodialysis patients: Association with mortality. Clin. Exp. Immunol. 2020, 201, 94–104. [Google Scholar] [CrossRef]
- Scott, M.G.; Shackelford, P.G.; Briles, D.E.; Nahm, M.H. Human-igg subclasses and their relation to carbohydrate antigen immunocompetence. Diagn. Clin. Immunol. 1988, 5, 241–248. [Google Scholar] [PubMed]
- Goldenberg, H.B.; McCool, T.L.; Weiser, J.N. Cross-reactivity of human immunoglobulin G2 recognizing phosphorylcholine and evidence for protection against major bacterial pathogens of the human respiratory tract. J. Infect. Dis. 2004, 190, 1254–1263. [Google Scholar] [CrossRef] [PubMed]
- Blaizot, A.; Vergnes, J.N.; Nuwwareh, S.; Amar, J.; Sixou, M. Periodontal diseases and cardiovascular events: Meta-analysis of observational studies. Int. Dent. J. 2009, 59, 197–209. [Google Scholar]
- Schenkein, H.A.; Gunsolley, J.C.; Best, A.M.; Harrison, M.T.; Hahn, C.L.; Wu, J.H.; Tew, J.G. Antiphosphorylcholine antibody levels are elevated in humans with periodontal diseases. Infect. Immun. 1999, 67, 4814–4818. [Google Scholar] [CrossRef]
- Rudikoff, S.; Potter, M. Size differences among immunoglobulin heavy chains from phosphorylcholine-binding proteins. Proc. Natl. Acad. Sci. USA 1976, 73, 2109–2112. [Google Scholar] [CrossRef]
- Fiskesund, R.; Steen, J.; Amara, K.; Murray, F.; Szwajda, A.; Liu, A.; Douagi, I.; Malmstrom, V.; Frostegard, J. Naturally occurring human phosphorylcholine antibodies are predominantly products of affinity-matured B cells in the adult. J. Immunol. 2014, 192, 4551–4559. [Google Scholar] [CrossRef]
- Thiagarajan, D.; Lundstrom, S.L.; Pershagen, G.; Almqvist Malmros, C.; Andolf, E.; Hedman, A.; Berg, O.; Oparina, N.; Frostegard, J. Antibodies against Phosphorylcholine and Malondialdehyde during the First Two Years of Life. J. Immunol. 2020, 205, 2109–2116. [Google Scholar] [CrossRef]
- Samal, S.K.; Frobert, O.; Kindberg, J.; Stenvinkel, P.; Frostegard, J. Potential natural immunization against atherosclerosis in hibernating bears. Sci. Rep. 2021, 11, 12120. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gustafsson, S.; Whitington, T.; Borne, Y.; Lorentzen, E.; Sun, J.; Almgren, P.; Su, J.; Karlsson, R.; Song, J.; et al. A genome-wide association study of IgM antibody against phosphorylcholine: Shared genetics and phenotypic relationship to chronic lymphocytic leukemia. Hum. Mol. Genet. 2018, 27, 1809–1818. [Google Scholar] [CrossRef] [PubMed]
- Rees, F.; Doherty, M.; Grainge, M.J.; Lanyon, P.; Zhang, W. The worldwide incidence and prevalence of systemic lupus erythematosus: A systematic review of epidemiological studies. Rheumatology 2017, 56, 1945–1961. [Google Scholar] [CrossRef] [PubMed]
- Dorner, T.; Furie, R. Novel paradigms in systemic lupus erythematosus. Lancet 2019, 393, 2344–2358. [Google Scholar] [CrossRef] [PubMed]
- Tektonidou, M.G.; Lewandowski, L.B.; Hu, J.; Dasgupta, A.; Ward, M.M. Survival in adults and children with systemic lupus erythematosus: A systematic review and Bayesian meta-analysis of studies from 1950 to 2016. Ann. Rheum. Dis. 2017, 76, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
- Aringer, M.; Costenbader, K.; Daikh, D.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.S.; Wofsy, D.; Boumpas, D.T.; Kamen, D.L.; et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019, 71, 1400–1412. [Google Scholar] [CrossRef]
- Yang, F.; He, Y.; Zhai, Z.; Sun, E. Programmed Cell Death Pathways in the Pathogenesis of Systemic Lupus Erythematosus. J. Immunol. Res. 2019, 2019, 3638562. [Google Scholar] [CrossRef]
- Ren, Y.; Tang, J.; Mok, M.Y.; Chan, A.W.; Wu, A.; Lau, C.S. Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum. 2003, 48, 2888–2897. [Google Scholar] [CrossRef]
- Miyara, M.; Amoura, Z.; Parizot, C.; Badoual, C.; Dorgham, K.; Trad, S.; Nochy, D.; Debre, P.; Piette, J.C.; Gorochov, G. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J. Immunol. 2005, 175, 8392–8400. [Google Scholar] [CrossRef]
- Rother, N.; van der Vlag, J. Disturbed T Cell Signaling and Altered Th17 and Regulatory T Cell Subsets in the Pathogenesis of Systemic Lupus Erythematosus. Front. Immunol. 2015, 6, 610. [Google Scholar] [CrossRef]
- Sun, J.; Lundstrom, S.L.; Zhang, B.; Zubarev, R.A.; Steuer, J.; Gillgren, P.; Rahman, M.; Ajeganova, S.; Liu, A.; Frostegard, J. IgM antibodies against phosphorylcholine promote polarization of T regulatory cells from patients with atherosclerotic plaques, systemic lupus erythematosus and healthy donors. Atherosclerosis 2018, 268, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Postal, M.; Vivaldo, J.F.; Fernandez-Ruiz, R.; Paredes, J.L.; Appenzeller, S.; Niewold, T.B. Type I interferon in the pathogenesis of systemic lupus erythematosus. Curr. Opin. Immunol. 2020, 67, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Blanco, P.; Palucka, A.K.; Gill, M.; Pascual, V.; Banchereau, J. Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 2001, 294, 1540–1543. [Google Scholar] [CrossRef]
- Garcia-Romo, G.S.; Caielli, S.; Vega, B.; Connolly, J.; Allantaz, F.; Xu, Z.; Punaro, M.; Baisch, J.; Guiducci, C.; Coffman, R.L.; et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 2011, 3, 73ra20. [Google Scholar] [CrossRef]
- Ghodke-Puranik, Y.; Niewold, T.B. Immunogenetics of systemic lupus erythematosus: A comprehensive review. J. Autoimmun. 2015, 64, 125–136. [Google Scholar] [CrossRef]
- Ha, E.; Bae, S.C.; Kim, K. Recent advances in understanding the genetic basis of systemic lupus erythematosus. In Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Kwon, Y.C.; Chun, S.; Kim, K.; Mak, A. Update on the Genetics of Systemic Lupus Erythematosus: Genome-Wide Association Studies and Beyond. Cells 2019, 8, 1180. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhang, Y.; Lin, Z.; Zhang, H.; Wang, T.Y.; Cao, Y.; Morris, D.L.; Sheng, Y.; Yin, X.; Zhong, S.L.; et al. Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups. Nat. Commun. 2021, 12, 772. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Guo, F.; Huang, Y.; Li, A.; Chen, S.; Chen, J.; Liu, H.F.; Pan, Q. Gut Microbiota Dysbiosis in Systemic Lupus Erythematosus: Novel Insights into Mechanisms and Promising Therapeutic Strategies. Front. Immunol. 2021, 12, 799788. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Choi, S.J.; Ji, J.D.; Song, G.G. Overall and cause-specific mortality in systemic lupus erythematosus: An updated meta-analysis. Lupus 2016, 25, 727–734. [Google Scholar] [CrossRef]
- Barber, M.R.W.; Drenkard, C.; Falasinnu, T.; Hoi, A.; Mak, A.; Kow, N.Y.; Svenungsson, E.; Peterson, J.; Clarke, A.E.; Ramsey-Goldman, R. Global epidemiology of systemic lupus erythematosus. Nat. Rev. Rheumatol. 2021, 17, 515–532. [Google Scholar] [CrossRef]
- Stojan, G.; Petri, M. Epidemiology of systemic lupus erythematosus: An update. Curr. Opin. Rheumatol. 2018, 30, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Pons-Estel, G.J.; Ugarte-Gil, M.F.; Alarcon, G.S. Epidemiology of systemic lupus erythematosus. Expert Rev. Clin. Immunol. 2017, 13, 799–814. [Google Scholar] [CrossRef] [PubMed]
- Carter, E.E.; Barr, S.G.; Clarke, A.E. The global burden of SLE: Prevalence, health disparities and socioeconomic impact. Nat. Rev. Rheumatol. 2016, 12, 605–620. [Google Scholar] [CrossRef] [PubMed]
- Urowitz, M.B.; Bookman, A.A.; Koehler, B.E.; Gordon, D.A.; Smythe, H.A.; Ogryzlo, M.A. The bimodal mortality pattern of systemic lupus erythematosus. Am. J. Med. 1976, 60, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Sturfelt, G.; Eskilsson, J.; Nived, O.; Truedsson, L.; Valind, S. Cardiovascular Disease in Systemic Lupus Erythematosus, A Study of 75 Patients from a Defined Population. Medicine 1992, 71, 216–223. [Google Scholar] [CrossRef]
- Bjornadal, L.; Yin, L.; Granath, F.; Klareskog, L.; Ekbom, A. Cardiovascular disease a hazard despite improved prognosis in patients with systemic lupus erythematosus: Results from a Swedish population based study 1964–95. J. Rheumatol. 2004, 31, 713–719. [Google Scholar]
- Petri, M.; Roubenoff, R.; Dallal, G.E.; Nadeau, M.R.; Selhub, J.; Rosenberg, I.H. Plasma homocysteine as a risk factor for atherothrombotic events in systemic lupus erythematosus. Lancet 1996, 348, 1120–1124. [Google Scholar] [CrossRef]
- Petri, M.; Pereez-Gutthann, S.; Spence, D.; Hochberg, M.C. Risk Factors for coronary Artery Disease in Patients with Systemic Lupus Erythematosus. Am. J. Med. 1992, 93, 513–519. [Google Scholar] [CrossRef]
- Manzi, S.; Wasko, M. Inflammation-mediated rheumatic diseases and atherosclerosis. Ann. Rheum. Dis. 2000, 59, 321–325. [Google Scholar] [CrossRef]
- Kannel, W.B.; Wilson, P.W. Risk factors that attenuate the female coronary disease advantage. Arch. Intern. Med. 1995, 155, 57–61. [Google Scholar] [CrossRef]
- Esdaile, J.M.; Abrahamowicz, M.; Grodzicky, T.; Li, Y.; Panaritis, C.; du Berger, R.; Cote, R.; Grover, S.A.; Fortin, P.R.; Clarke, A.E.; et al. Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus. Arthritis Rheum. 2001, 44, 2331–2337. [Google Scholar] [CrossRef]
- Bulkeley, B.H.; Roberts, W.C. The Heart in Systemic Lupus Erythematosus and the changes Induced in it by Corticosteroid Therapy. Am. J. Med. 1975, 58, 243–264. [Google Scholar] [CrossRef] [PubMed]
- Mitsias, P.; Levine, S.R. Large cerebral vessel occlusive disease in systemic lupus erythematosus. Neurology 1994, 44, 385–393. [Google Scholar] [CrossRef]
- Fernandez-Nebro, A.; Rua-Figueroa, I.; Lopez-Longo, F.J.; Galindo-Izquierdo, M.; Calvo-Alen, J.; Olive-Marques, A.; Ordonez-Canizares, C.; Martin-Martinez, M.A.; Blanco, R.; Melero-Gonzalez, R.; et al. Cardiovascular Events in Systemic Lupus Erythematosus: A Nationwide Study in Spain From the RELESSER Registry. Medicine 2015, 94, e1183. [Google Scholar] [CrossRef] [PubMed]
- Hermansen, M.L.; Lindhardsen, J.; Torp-Pedersen, C.; Faurschou, M.; Jacobsen, S. The risk of cardiovascular morbidity and cardiovascular mortality in systemic lupus erythematosus and lupus nephritis: A Danish nationwide population-based cohort study. Rheumatology 2017, 56, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.H.; Hsieh, C.Y.; Barnado, A.; Huang, L.C.; Chen, S.C.; Tsai, L.M.; Shyr, Y.; Li, C.Y. Outcomes of acute cardiovascular events in rheumatoid arthritis and systemic lupus erythematosus: A population-based study. Rheumatology 2020, 59, 1355–1363. [Google Scholar] [CrossRef]
- Choi, M.Y.; Li, D.; Feldman, C.H.; Yoshida, K.; Guan, H.; Kim, S.C.; Everett, B.M.; Costenbader, K.H. Comparative risks of cardiovascular disease events among SLE patients receiving immunosuppressive medications. Rheumatology 2021, 60, 3789–3798. [Google Scholar] [CrossRef]
- Barbhaiya, M.; Feldman, C.H.; Chen, S.K.; Guan, H.; Fischer, M.A.; Everett, B.M.; Costenbader, K.H. Comparative Risks of Cardiovascular Disease in Patients With Systemic Lupus Erythematosus, Diabetes Mellitus, and in General Medicaid Recipients. Arthritis Care Res. 2020, 72, 1431–1439. [Google Scholar] [CrossRef]
- Bae, E.H.; Lim, S.Y.; Han, K.D.; Jung, J.H.; Choi, H.S.; Kim, C.S.; Ma, S.K.; Kim, S.W. Systemic lupus erythematosus is a risk factor for cancer: A nationwide population-based study in Korea. Lupus 2019, 28, 317–323. [Google Scholar] [CrossRef]
- Tselios, K.; Gladman, D.D.; Su, J.; Ace, O.; Urowitz, M.B. Evolution of Risk Factors for Atherosclerotic Cardiovascular Events in Systemic Lupus Erythematosus: A Longterm Prospective Study. J. Rheumatol. 2017, 44, 1841–1849. [Google Scholar] [CrossRef]
- Arkema, E.V.; Svenungsson, E.; Von Euler, M.; Sjowall, C.; Simard, J.F. Stroke in systemic lupus erythematosus: A Swedish population-based cohort study. Ann. Rheum. Dis. 2017, 76, 1544–1549. [Google Scholar] [CrossRef] [PubMed]
- Watad, A.; Abu Much, A.; Bracco, D.; Mahroum, N.; Comaneshter, D.; Cohen, A.D.; Amital, H. Association between ischemic heart disease and systemic lupus erythematosus-a large case-control study. Immunol. Res. 2017, 65, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, Y.; Zhang, J.; Pu, D.; Hu, N.; Luo, J.; An, Q.; He, L. Patients with systemic lupus erythematosus face a high risk of cardiovascular disease: A systematic review and Meta-analysis. Int. Immunopharmacol. 2021, 94, 107466. [Google Scholar] [CrossRef]
- Appleton, B.D.; Major, A.S. The latest in systemic lupus erythematosus-accelerated atherosclerosis: Related mechanisms inform assessment and therapy. Curr. Opin. Rheumatol. 2021, 33, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Giannelou, M.; Nezos, A.; Fragkioudaki, S.; Kasara, D.; Maselou, K.; Drakoulis, N.; Ioakeimidis, D.; Moutsopoulos, H.M.; Mavragani, C.P. Contribution of MTHFR gene variants in lupus related subclinical atherosclerosis. Clin. Immunol. 2018, 193, 110–117. [Google Scholar] [CrossRef]
- Clancy, R.; El Bannoudi, H.; Rasmussen, S.E.; Bornkamp, N.; Allen, N.; Dann, R.; Reynolds, H.; Buyon, J.P.; Berger, J.S. Human low-affinity IgG receptor FcgammaRIIA polymorphism H131R associates with subclinical atherosclerosis and increased platelet activity in systemic lupus erythematosus. J. Thromb. Haemost. 2019, 17, 532–537. [Google Scholar] [CrossRef]
- Kao, A.H.; Lertratanakul, A.; Elliott, J.R.; Sattar, A.; Santelices, L.; Shaw, P.; Birru, M.; Avram, Z.; Thompson, T.; Sutton-Tyrrell, K.; et al. Relation of carotid intima-media thickness and plaque with incident cardiovascular events in women with systemic lupus erythematosus. Am. J. Cardiol. 2013, 112, 1025–1032. [Google Scholar] [CrossRef]
- Di Minno, M.N.D.; Emmi, G.; Ambrosino, P.; Scalera, A.; Tufano, A.; Cafaro, G.; Peluso, R.; Bettiol, A.; Di Scala, G.; Silvestri, E.; et al. Subclinical atherosclerosis in asymptomatic carriers of persistent antiphospholipid antibodies positivity: A cross-sectional study. Int. J. Cardiol. 2019, 274, 1–6. [Google Scholar] [CrossRef]
- Leonard, D.; Svenungsson, E.; Dahlqvist, J.; Alexsson, A.; Arlestig, L.; Taylor, K.E.; Sandling, J.K.; Bengtsson, C.; Frodlund, M.; Jonsen, A.; et al. Novel gene variants associated with cardiovascular disease in systemic lupus erythematosus and rheumatoid arthritis. Ann. Rheum. Dis. 2018, 77, 1063–1069. [Google Scholar] [CrossRef]
- Doria, A.; Shoenfeld, Y.; Wu, R.; Gambari, P.F.; Puato, M.; Ghirardello, A.; Gilburd, B.; Corbanese, S.; Patnaik, M.; Zampieri, S.; et al. Risk factors for subclinical atherosclerosis in a prospective cohort of patients with systemic lupus erythematosus. Ann. Rheum. Dis. 2003, 62, 1071–1077. [Google Scholar] [CrossRef]
- George, J.; Harats, D.; Gilburd, B.; Levy, Y.; Langevitz, P.; Shoenfeld, Y. Atherosclerosis-related markers in systemic lupus erythematosus patients: The role of humoral immunity in enhanced atherogenesis. Lupus 1999, 8, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lu, F.; Pan, H.; Zhao, Y.; Wang, S.; Sun, S.; Li, J.; Hu, X.; Wang, L. Correlation of peripheral Th17 cells and Th17-associated cytokines to the severity of carotid artery plaque and its clinical implication. Atherosclerosis 2012, 221, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Erbel, C.; Dengler, T.J.; Wangler, S.; Lasitschka, F.; Bea, F.; Wambsganss, N.; Hakimi, M.; Bockler, D.; Katus, H.A.; Gleissner, C.A. Expression of IL-17A in human atherosclerotic lesions is associated with increased inflammation and plaque vulnerability. Basic Res. Cardiol. 2011, 106, 125–134. [Google Scholar] [CrossRef]
- Foks, A.C.; Lichtman, A.H.; Kuiper, J. Treating atherosclerosis with regulatory T cells. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Ohl, K.; Tenbrock, K. Regulatory T cells in systemic lupus erythematosus. Eur. J. Immunol. 2015, 45, 344–355. [Google Scholar] [CrossRef]
- Fontenot, J.D.; Gavin, M.A.; Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 2003, 4, 330–336. [Google Scholar] [CrossRef]
- Klatzmann, D.; Abbas, A.K. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat. Rev. Immunol. 2015, 15, 283–294. [Google Scholar] [CrossRef]
- Caligiuri, G.; Khallou-Laschet, J.; Vandaele, M.; Gaston, A.T.; Delignat, S.; Mandet, C.; Kohler, H.V.; Kaveri, S.V.; Nicoletti, A. Phosphorylcholine-targeting immunization reduces atherosclerosis. J. Am. Coll. Cardiol. 2007, 50, 540–546. [Google Scholar] [CrossRef]
- Binder, C.J.; Horkko, S.; Dewan, A.; Chang, M.K.; Kieu, E.P.; Goodyear, C.S.; Shaw, P.X.; Palinski, W.; Witztum, J.L.; Silverman, G.J. Pneumococcal vaccination decreases atherosclerotic lesion formation: Molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat. Med. 2003, 9, 736–743. [Google Scholar] [CrossRef]
- Yoshimatsu, H.; Kataoka, K.; Fujihashi, K.; Miyake, T.; Ono, Y. A nasal double DNA adjuvant system induces atheroprotective IgM antibodies via dendritic cell-B-1a B cell interactions. Vaccine 2022, 40, 1116–1127. [Google Scholar] [CrossRef]
- Faria-Neto, J.R.; Chyu, K.Y.; Li, X.; Dimayuga, P.C.; Ferreira, C.; Yano, J.; Cercek, B.; Shah, P.K. Passive immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated vein graft atherosclerosis in apolipoprotein E-null mice. Atherosclerosis 2006, 189, 83–90. [Google Scholar] [CrossRef]
- Pluijmert, N.J.; de Jong, R.C.M.; de Vries, M.R.; Pettersson, K.; Atsma, D.E.; Jukema, J.W.; Quax, P.H.A. Phosphorylcholine Antibodies Preserve Cardiac Function and Reduce Infarct Size by Attenuating the Post-Ischemic Inflammatory Response. JACC Basic Transl. Sci. 2020, 5, 1228–1239. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Khanna, S.; Goodyear, C.S.; Park, Y.B.; Raz, E.; Thiel, S.; Gronwall, C.; Vas, J.; Boyle, D.L.; Corr, M.; et al. Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. J. Immunol. 2009, 183, 1346–1359. [Google Scholar] [CrossRef] [PubMed]
- Aprahamian, T.R.; Zhong, X.; Amir, S.; Binder, C.J.; Chiang, L.K.; Al-Riyami, L.; Gharakhanian, R.; Harnett, M.M.; Harnett, W.; Rifkin, I.R. The immunomodulatory parasitic worm product ES-62 reduces lupus-associated accelerated atherosclerosis in a mouse model. Int. J. Parasitol. 2015, 45, 203–207. [Google Scholar] [CrossRef]
- Su, J.; Hua, X.; Concha, H.; Svenungsson, E.; Cederholm, A.; Frostegard, J. Natural antibodies against phosphorylcholine as potential protective factors in SLE. Rheumatology 2008, 47, 1144–1150. [Google Scholar] [CrossRef]
- de Faire, U.; Su, J.; Hua, X.; Frostegard, A.; Halldin, M.; Hellenius, M.L.; Wikstrom, M.; Dahlbom, I.; Gronlund, H.; Frostegard, J. Low levels of IgM antibodies to phosphorylcholine predict cardiovascular disease in 60-year old men: Effects on uptake of oxidized LDL in macrophages as a potential mechanism. J. Autoimmun. 2010, 34, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Sing, S.; Golabkesh, Z.; Fiskesund, R.; Gustafsson, T.; Jogestrand, T.; Frostegård, A.G.; Hafström, I.; Liu, A.; Frostegård, J. IgM antibodies against malondialdehyde and phosphorylcholine are together strong protection markers for atherosclerosis in systemic lupus erythematosus: Regulation and underlying mechanisms. Clin. Immunol. 2016, 166–167, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Lindeberg, S.; Berntorp, E.; Nilsson-Ehle, P.; Terent, A.; Vessby, B. Age relations of cardiovascular risk factors in a traditional Melanesian society: The Kitava Study. Am. J. Clin. Nutr. 1997, 66, 845–852. [Google Scholar] [CrossRef]
- Strachan, D.P. Hay fever, hygiene, and household size. BMJ 1989, 299, 1259–1260. [Google Scholar] [CrossRef]
- Rook, G.A.; Martinelli, R.; Brunet, L.R. Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr. Opin. Allergy Clin. Immunol. 2003, 3, 337–342. [Google Scholar] [CrossRef]
- Rook, G.A. Hygiene hypothesis and autoimmune diseases. Clin. Rev. Allergy Immunol. 2012, 42, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Versini, M.; Jeandel, P.Y.; Bashi, T.; Bizzaro, G.; Blank, M.; Shoenfeld, Y. Unraveling the Hygiene Hypothesis of helminthes and autoimmunity: Origins, pathophysiology, and clinical applications. BMC Med. 2015, 13, 81. [Google Scholar] [CrossRef] [PubMed]
Atherosclerosis | Atherosclerosis progress during 4 years among hypertensives. (IgM) [29] |
Myocardial infarction and stroke | Incident cases (IgM [1] and IgG1 [52]) |
Rheumatoid arthritis | Cross sectional and prospectively (IgM), Cross sectional (IgG1 [1]) |
Systemic lupus erythematosus | Cross sectional and prospective: SLE manifestations, CVD and atherosclerosis (IgM [36,52])Cross sectional, SLE manifestations and CVD (IgG1 [52]) |
Sjögren´s syndrome | Cross sectional (IgM) [36] |
Systemic sclerosis | Cross sectional (IgM) [36] |
ANCA-associated vasculitis | Cross sectional (IgM) [33] |
Osteoarthritis | Cross sectional (IgM) [32] |
Chronic kidney disease | Mortality, incident CVD and atherosclerosis progress. (IgM and IgG1 [53] |
Alzheimer´s disease | Prevalent cases, cross sectional (IgM) [1] |
Upper respiratory infections | Cross sectional (IgM) [34] |
Chronic lymphatic leukemia | Incident cases (IgM) [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frostegård, J. Antibodies against Phosphorylcholine—Implications for Chronic Inflammatory Diseases. Metabolites 2023, 13, 720. https://doi.org/10.3390/metabo13060720
Frostegård J. Antibodies against Phosphorylcholine—Implications for Chronic Inflammatory Diseases. Metabolites. 2023; 13(6):720. https://doi.org/10.3390/metabo13060720
Chicago/Turabian StyleFrostegård, Johan. 2023. "Antibodies against Phosphorylcholine—Implications for Chronic Inflammatory Diseases" Metabolites 13, no. 6: 720. https://doi.org/10.3390/metabo13060720
APA StyleFrostegård, J. (2023). Antibodies against Phosphorylcholine—Implications for Chronic Inflammatory Diseases. Metabolites, 13(6), 720. https://doi.org/10.3390/metabo13060720