Dietary Intake of Micronutrients and Disease Severity in Patients with Amyotrophic Lateral Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Clinical Assessment
2.3. Dietary Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feldman, E.L.; Goutman, S.A.; Petri, S.; Mazzini, L.; Savelieff, M.G.; Shaw, P.J.; Sobue, G. Amyotrophic lateral sclerosis. Lancet 2022, 400, 1363–1380. [Google Scholar] [CrossRef]
- Wang, M.D.; Little, J.; Gomes, J.; Cashman, N.R.; Krewski, D. Identification of risk factors associated with onset and progression of amyotrophic lateral sclerosis using systematic review and meta-analysis. Neurotoxicology 2017, 61, 101–130. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Sun, X.H.; Cai, Z.Y.; Shen, D.C.; Yang, X.Z.; Liu, M.S.; Cui, L.Y. Correlation of weight and body composition with disease progression rate in patients with amyotrophic lateral sclerosis. Sci. Rep. 2022, 12, 13292. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Kim, M.; Baek, S.H.; Sung, J.H.; Yu, J.G.; Kim, B.J. Body Fat Percentage and Availability of Oral Food Intake: Prognostic Factors and Implications for Nutrition in Amyotrophic Lateral Sclerosis. Nutrients 2021, 13, 3704. [Google Scholar] [CrossRef] [PubMed]
- López-Gómez, J.J.; Ballesteros-Pomar, M.D.; Torres-Torres, B.; De la Maza, B.P.; Penacho-Lázaro, M.Á.; Palacio-Mures, J.M.; Abreu-Padín, C.; López-Guzmán, A.; De Luis-Román, D.A. Malnutrition at diagnosis in amyotrophic lateral sclerosis (ALS) and its influence on survival: Using glim criteria. Clin. Nutr. 2021, 40, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Marin, B.; Desport, J.C.; Kajeu, P.; Jesus, P.; Nicolaud, B.; Nicol, M.; Preux, P.M.; Couratier, P. Alteration of nutritional status at diagnosis is a prognostic factor for survival of amyotrophic lateral sclerosis patients. J. Neurol. Neurosurg. Psychiatry 2011, 82, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, D.I. Nutrition Management of Amyotrophic Lateral Sclerosis. Nutr. Clin. Pract. 2013, 28, 392–399. [Google Scholar] [CrossRef]
- Kim, B.; Jin, Y.; Kim, S.H.; Park, Y. Association between macronutrient intake and amyotrophic lateral sclerosis prognosis. Nutr. Neurosci. 2020, 23, 8–15. [Google Scholar] [CrossRef]
- Goncharova, P.S.; Davydova, T.K.; Popova, T.E.; Novitsky, M.A.; Petrova, M.M.; Gavrilyuk, O.A.; Al-Zamil, M.; Zhukova, N.G.; Nasyrova, R.F.; Shnayder, N.A. Nutrient Effects on Motor Neurons and the Risk of Amyotrophic Lateral Sclerosis. Nutrients 2021, 13, 3804. [Google Scholar] [CrossRef]
- Wang, M.; Liu, Z.; Sun, W.; Yuan, Y.; Jiao, B.; Zhang, X.; Shen, L.; Jiang, H.; Xia, K.; Tang, B.; et al. Association Between Vitamins and Amyotrophic Lateral Sclerosis: A Center-Based Survey in Mainland China. Front. Neurol. 2020, 11, 488. [Google Scholar] [CrossRef]
- Xia, K.; Wang, Y.; Zhang, L.; Tang, L.; Zhang, G.; Huang, T.; Huang, N.; Fan, D. Dietary-Derived Essential Nutrients and Amyotrophic Lateral Sclerosis: A Two-Sample Mendelian Randomization Study. Nutrients 2022, 14, 920. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Romero, C.; Mikhail, K.A.; Gennings, C.; Curtin, P.; Bello, G.A.; Botero, T.M.; Goutman, S.A.; Feldman, E.L.; Arora, M.; Austin, C. Early life metal dysregulation in amyotrophic lateral sclerosis. Ann. Clin. Transl. Neurol. 2020, 7, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Peters, T.L.; Beard, J.D.; Umbach, D.M.; Allen, K.; Keller, J.; Mariosa, D.; Sandler, D.P.; Schmidt, S.; Fang, F.; Ye, W.; et al. Blood levels of trace metals and amyotrophic lateral sclerosis. Neurotoxicology 2016, 54, 119–126. [Google Scholar] [CrossRef]
- Qin, X.; Wu, P.; Wen, T.; Jia, R.; Zhang, R.; Jin, J.; Hu, F.; Chen, Q.Y.; Dang, J. Comparative assessment of blood Metal/metalloid levels, clinical heterogeneity, and disease severity in amyotrophic lateral sclerosis patients. Neurotoxicology 2022, 89, 12–19. [Google Scholar] [CrossRef]
- Freedman, D.M.; Kuncl, R.W.; Weinstein, S.J.; Malila, N.; Virtamo, J.; Albanes, D. Vitamin E serum levels and controlled supplementation and risk of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2013, 14, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Lanznaster, D.; Bejan-Angoulvant, T.; Gandía, J.; Blasco, H.; Corcia, P. Is There a Role for Vitamin D in Amyotrophic Lateral Sclerosis? A Systematic Review and Meta-Analysis. Front. Neurol. 2020, 11, 697. [Google Scholar] [CrossRef]
- Larsson, S.C.; Roos, P.M. Serum 25-hydroxyvitamin D in amyotrophic lateral sclerosis: Mendelian randomization study. Neurobiol. Aging 2020, 87, 140.e1–140.e3. [Google Scholar] [CrossRef]
- Alsuntangled Group; Richard, B. ALSUntangled 55: Vitamin E (α-tocopherol). Amyotroph. Lateral Scler. Front. Degener. 2021, 22, 154–160. [Google Scholar] [CrossRef]
- Trojsi, F.; Siciliano, M.; Passaniti, C.; Bisecco, A.; Russo, A.; Lavorgna, L.; Esposito, S.; Ricciardi, D.; Monsurrò, M.R.; Tedeschi, G.; et al. Vitamin D supplementation has no effects on progression of motor dysfunction in amyotrophic lateral sclerosis (ALS). Eur. J. Clin. Nutr. 2020, 74, 167–175. [Google Scholar] [CrossRef]
- Peters, S.; Broberg, K.; Gallo, V.; Levi, M.; Kippler, M.; Vineis, P.; Veldink, J.; van den Berg, L.; Middleton, L.; Travis, R.C.; et al. Blood Metal Levels and Amyotrophic Lateral Sclerosis Risk: A Prospective Cohort. Ann. Neurol. 2021, 89, 125–133. [Google Scholar] [CrossRef]
- Kamalian, A.; Foroughmand, I.; Koski, L.; Darvish, M.; Saghazadeh, A.; Kamalian, A.; Razavi, S.Z.E.; Abdi, S.; Dehgolan, S.R.; Fotouhi, A.; et al. Metal concentrations in cerebrospinal fluid, blood, serum, plasma, hair, and nails in amyotrophic lateral sclerosis: A systematic review and meta-analysis. J. Trace Elem. Med. Biol. 2023, 78, 127165. [Google Scholar] [CrossRef] [PubMed]
- Cicero, C.E.; Mostile, G.; Vasta, R.; Rapisarda, V.; Signorelli, S.S.; Ferrante, M.; Zappia, M.; Nicoletti, A. Metals and neurodegenerative diseases. A systematic review. Environ. Res. 2017, 159, 82–94. [Google Scholar] [CrossRef]
- Camu, W.; Tremblier, B.; Plassot, C.; Alphandery, S.; Salsac, C.; Pageot, N.; Juntas-Morales, R.; Scamps, F.; Daures, J.P.; Raoul, C. Vitamin D confers protection to motoneurons and is a prognostic factor of amyotrophic lateral sclerosis. Neurobiol. Aging 2014, 35, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Juntas-Morales, R.; Pageot, N.; Marin, G.; Dupuy, A.M.; Alphandery, S.; Labar, L.; Esselin, F.; Picot, M.C.; Camu, W. Low 25OH Vitamin D Blood Levels Are Independently Associated With Higher Amyotrophic Lateral Sclerosis Severity Scores: Results From a Prospective Study. Front. Neurol. 2020, 11, 363. [Google Scholar] [CrossRef]
- Kaji, R.; Imai, T.; Iwasaki, Y.; Okamoto, K.; Nakagawa, M.; Ohashi, Y.; Takase, T.; Hanada, T.; Shimizu, H.; Tashiro, K.; et al. Ultra-high-dose methylcobalamin in amyotrophic lateral sclerosis: A long-term phase II/III randomised controlled study. J. Neurol. Neurosurg. Psychiatry 2019, 90, 451–457. [Google Scholar] [CrossRef]
- Hu, N.; Wang, X. The level of homocysteine in amyotrophic lateral sclerosis: A systematic review and meta-analysis. Neurol. Sci. 2022, 44, 1185–1192. [Google Scholar] [CrossRef]
- Ijomone, O.M.; Ifenatuoha, C.W.; Aluko, O.M.; Ijomone, O.K.; Aschner, M. The aging brain: Impact of heavy metal neurotoxicity. Crit. Rev. Toxicol. 2020, 50, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Nieves, J.; Gennings, C.; Factor-Litvak, P.; Hupf, J.; Singleton, J.; Sharf, V.; Oskarsson, B.; Filho, J.A.M.F.; Sorenson, E.J.; D’Amico, E.; et al. Association Between Dietary Intake and Function in Amyotrophic Lateral Sclerosis. JAMA Neurol. 2016, 73, 1425–1432. [Google Scholar] [CrossRef]
- Park, Y.; Park, J.; Kim, Y.; Baek, H.; Kim, S.H. Association between nutritional status and disease severity using the amyotrophic lateral sclerosis (ALS) functional rating scale in ALS patients. Nutrition 2015, 31, 1362–1367. [Google Scholar] [CrossRef]
- Cedarbaum, J.M.; Stambler, N.; Malta, E.; Fuller, C.; Hilt, D.; Thurmond, B.; Nakanishi, A. The ALSFRS-R: A revised ALS functional rating scale that incorporates assessments of respiratory function. J. Neurol. Sci. 1999, 169, 13–21. [Google Scholar] [CrossRef]
- Kimura, F.; Fujimura, C.; Ishida, S.; Nakajima, H.; Furutama, D.; Uehara, H.; Shinoda, K.; Sugino, M.; Hanafusa, T. Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology 2006, 66, 265–267. [Google Scholar] [CrossRef]
- Kollewe, K.; Mauss, U.; Krampfl, K.; Petri, S.; Dengler, R.; Mohammadi, B. ALSFRS-R score and its ratio: A useful predictor for ALS-progression. J. Neurol. Sci. 2008, 275, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Kjældgaard, A.L.; Pilely, K.; Olsen, K.S.; Jessen, A.H.; Lauritsen, A.Ø.; Pedersen, S.W.; Svenstrup, K.; Karlsborg, M.; Thagesen, H.; Blaabjerg, M.; et al. Prediction of survival in amyotrophic lateral sclerosis: A nationwide, Danish cohort study. BMC Neurol. 2021, 21, 164. [Google Scholar] [CrossRef]
- Harttig, U.; Haubrock, J.; Knüppel, S.; Boeing, H. The MSM program: Web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur. J. Clin. Nutr. 2011, 65 (Suppl. 1), S87–S91. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef]
- Brito, A.; Vale, S.; Alves, C.; Castro, J.; Dourado Júnior, M.; Leite, L. Protocolo diferenciado para Terapia Nutricional na Esclerose Lateral Amiotrófica. Revista Brasileira de Ciências da Saúde 2014, 18, 79–86. [Google Scholar] [CrossRef]
- Murphy, S.P.; Poos, M.I. Dietary Reference Intakes: Summary of applications in dietary assessment. Public Health Nutr. 2002, 5, 843–849. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes: Applications in Dietary Assessment; The National Academies Press: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Sales, C.H.; Fontanelli, M.M.; Rogero, M.M.; Sarti, F.M.; Fisberg, R.M. Dietary inadequacies overestimate the blood deficiencies of magnesium, zinc, and vitamins A, C, E, and D among residents of Sao Paulo. Clin. Nutr. ESPEN 2023, 53, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Mantle, D.; Hargreaves, I.P. Mitochondrial Dysfunction and Neurodegenerative Disorders: Role of Nutritional Supplementation. Int. J. Mol. Sci. 2022, 23, 12603. [Google Scholar] [CrossRef]
- Karam, C.; Barrett, M.J.; Imperato, T.; Macgowan, D.J.L.; Scelsa, S. Vitamin D deficiency and its supplementation in patients with amyotrophic lateral sclerosis. J. Clin. Neurosci. 2013, 20, 1550–1553. [Google Scholar] [CrossRef]
- Yang, J.; Park, J.S.; Oh, K.W.; Oh, S.I.; Park, H.M.; Kim, S.H. Vitamin D levels are not predictors of survival in a clinic population of patients with ALS. J. Neurol. Sci. 2016, 367, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, E.; Solomon, J.A.; Gianforcaro, A.; Hamadeh, M.J. Dietary Vitamin D3 Restriction Exacerbates Disease Pathophysiology in the Spinal Cord of the G93A Mouse Model of Amyotrophic Lateral Sclerosis. PLoS ONE 2015, 10, e0126355. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, Y.; Meng, X. Vitamin D and neurodegenerative diseases. Heliyon 2023, 9, e12877. [Google Scholar] [CrossRef] [PubMed]
- Icer, M.A.; Arslan, N.; Gezmen-Karadag, M. Effects of vitamin E on neurodegenerative diseases: An update. Acta Neurobiol. Exp. (Wars) 2021, 81, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Sechi, G.; Sechi, E.; Fois, C.; Kumar, N. Advances in clinical determinants and neurological manifestations of B vitamin deficiency in adults. Nutr. Rev. 2016, 74, 281–300. [Google Scholar] [CrossRef] [PubMed]
- Jesse, S.; Thal, D.R.; Ludolph, A.C. Thiamine deficiency in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1166–1168. [Google Scholar] [CrossRef] [PubMed]
- Carreau, C.; Lenglet, T.; Mosnier, I.; Lahlou, G.; Fargeot, G.; Weiss, N.; Demeret, S.; Salachas, F.; Veauville-Merllié, A.; Acquaviva, C.; et al. A juvenile ALS-like phenotype dramatically improved after high-dose riboflavin treatment. Ann. Clin. Transl. Neurol. 2020, 7, 250–253. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, X.; Li, X.; Wang, H.; Wang, T. Elevated cerebrospinal fluid homocysteine is associated with blood-brain barrier disruption in amyotrophic lateral sclerosis patients. Neurol. Sci. 2020, 41, 1865–1872. [Google Scholar] [CrossRef]
- Hrubša, M.; Siatka, T.; Nejmanová, I.; Vopršalová, M.; Krčmová, L.K.; Matoušová, K.; Javorská, L.; Macáková, K.; Mercolini, L.; Remião, F.; et al. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B1, B2, B3, and B5. Nutrients 2022, 14, 484. [Google Scholar] [CrossRef]
- Oggiano, R.; Solinas, G.; Forte, G.; Bocca, B.; Farace, C.; Pisano, A.; Sotgiu, M.A.; Clemente, S.; Malaguarnera, M.; Fois, A.G.; et al. Trace elements in ALS patients and their relationships with clinical severity. Chemosphere 2018, 197, 457–466. [Google Scholar] [CrossRef]
- Newell, M.E.; Adhikari, S.; Halden, R.U. Systematic and state-of the science review of the role of environmental factors in Amyotrophic Lateral Sclerosis (ALS) or Lou Gehrig’s Disease. Sci. Total Environ. 2022, 817, 152504. [Google Scholar] [CrossRef] [PubMed]
- Pupillo, E.; Bianchi, E.; Chiò, A.; Casale, F.; Zecca, C.; Tortelli, R.; Beghi, E.; SLALOM Group; PARALS Group; SLAP Group. Amyotrophic lateral sclerosis and food intake. Amyotroph. Lateral Scler. Front. Degener. 2018, 19, 267–274. [Google Scholar] [CrossRef]
- Silva, H.F.L.; Brito, A.N.A.; Freitas, E.P.S.; Dourado, M.E.T., Jr.; Evangelista, K.C.M.S.; Leite-Lais, L. Dietary intake and zinc status in amyotrophic lateral sclerosis patients. Nutr. Hosp. 2017, 34, 1361–1367. [Google Scholar] [CrossRef]
- Franklin, R.; Hare, M.; Beckman, J.S. Determining Copper and Zinc Content in Superoxide Dismutase Using Electron Capture Dissociation Under Native Spray Conditions. Methods Mol. Biol. 2022, 2500, 201–210. [Google Scholar] [CrossRef]
- Mandrioli, J.; Michalke, B.; Solovyev, N.; Grill, P.; Violi, F.; Lunetta, C.; Conte, A.; Sansone, V.A.; Sabatelli, M.; Vinceti, M. Elevated Levels of Selenium Species in Cerebrospinal Fluid of Amyotrophic Lateral Sclerosis Patients with Disease-Associated Gene Mutations. Neurodegener. Dis. 2017, 17, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, A.; Cicero, C.E.; Mostile, G.; Giuliano, L.; Luca, A.; Zappia, M. Comment to: Trace elements in ALS patients and their relationships with clinical severity, by Oggiano R. et al. Chemosphere 2019, 233, 986–987. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Malagoli, C.; Violi, F.; Mandrioli, J.; Consonni, D.; Rothman, K.J.; Wise, L.A. Amyotrophic lateral sclerosis incidence following exposure to inorganic selenium in drinking water: A long-term follow-up. Environ. Res. 2019, 179, 108742. [Google Scholar] [CrossRef] [PubMed]
- Maraldi, T.; Beretti, F.; Anselmi, L.; Franchin, C.; Arrigoni, G.; Braglia, L.; Mandrioli, J.; Vinceti, M.; Marmiroli, S. Influence of selenium on the emergence of neuro tubule defects in a neuron-like cell line and its implications for amyotrophic lateral sclerosis. Neurotoxicology 2019, 75, 209–220. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Sies, H. Selenium homeostasis and antioxidant selenoproteins in brain: Implications for disorders in the central nervous system. Arch. Biochem. Biophys. 2013, 536, 152–157. [Google Scholar] [CrossRef]
- Pitts, M.W.; Byrns, C.N.; Ogawa-Wong, A.N.; Kremer, P.; Berry, M.J. Selenoproteins in Nervous System Development and Function. Biol. Trace Elem. Res. 2014, 161, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Solovyev, N.D. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J. Inorg. Biochem. 2015, 153, 1–12. [Google Scholar] [CrossRef]
- Longnecker, M.P.; Kamel, F.; Umbach, D.M.; Munsat, T.L.; Shefner, J.M.; Lansdell, L.W.; Lansdell, L.W.; Sandler, D.P. Dietary Intake of Calcium, Magnesium and Antioxidants in Relation to Risk of Amyotrophic Lateral Sclerosis. Neuroepidemiology 2000, 19, 210–216. [Google Scholar] [CrossRef]
- Tedeschi, V.; Petrozziello, T.; Secondo, A. Ca2+ dysregulation in the pathogenesis of amyotrophic lateral sclerosis. Int. Rev. Cell. Mol. Biol. 2021, 363, 21–47. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, X.; Huo, Z.; Chen, Y.; Liu, J.; Zhao, Z.; Meng, F.; Su, Q.; Bao, W.; Zhang, L.; et al. The Impact of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2022, 11, 2049. [Google Scholar] [CrossRef]
- D’amico, E.; Grosso, G.; Nieves, J.W.; Zanghì, A.; Factor-Litvak, P.; Mitsumoto, H. Metabolic Abnormalities, Dietary Risk Factors and Nutritional Management in Amyotrophic Lateral Sclerosis. Nutrients 2021, 13, 2273. [Google Scholar] [CrossRef]
- Combet, E.; Gray, S.R. Nutrient–nutrient interactions: Competition, bioavailability, mechanism and function in health and diseases. Proc. Nutr. Soc. 2019, 78, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Hamouda, S.; Gomaa, S.; Agboluaje, A.A.; Hariri, M.L.M.; Yousof, S.M. Dietary Micronutrients from Zygote to Senility: Updated Review of Minerals’ Role and Orchestration in Human Nutrition throughout Life Cycle with Sex Differences. Nutrients 2021, 13, 3740. [Google Scholar] [CrossRef] [PubMed]
- Youness, R.A.; Dawoud, A.; ElTahtawy, O.; Farag, M.A. Fat-soluble vitamins: Updated review of their role and orchestration in human nutrition throughout life cycle with sex differences. Nutr. Metab. 2022, 19, 60. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Hafez, H.A.; Kamel, M.A.; Ghamry, H.I.; Shukry, M.; Farag, M.A. Dietary Vitamin B Complex: Orchestration in Human Nutrition throughout Life with Sex Differences. Nutrients 2022, 14, 3940. [Google Scholar] [CrossRef]
- Barone, M.; Leo, A.D.; van der Schueren, M.A.E. Malnutrition assessment by Global Leadership Initiative on Malnutrition criteria in patients with amyotrophic lateral sclerosis. Nutrition 2023, 109, 111997. [Google Scholar] [CrossRef]
- Sarmet, M.; Kabani, A.; Maragakis, N.J.; Mehta, A.K. Appetite and quality of life in amyotrophic lateral sclerosis: A scoping review. Muscle Nerve 2022, 66, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, A.; Swash, M.; De Carvalho, M. Percutaneous gastrostomy in amyotrophic lateral sclerosis: A review. Amyotroph. Lateral Scler. Front. Degener. 2022, 23, 176–189. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (n = 69) | ALSFRS-R Score | p-Value | |
---|---|---|---|---|
≥34 (n = 36) | < 34 (n = 33) | |||
Age, years a | 56.0 (13.6) | 54.5 (14.4) | 57.3 (12.7) | 0.362 * |
BMI, kg/m2 a | 23.7 (3.3) | 23.9 (3.5) | 23.4 (3.2) | 0.546 * |
Age at onset (years) a | 53.0 (14.4) | 52.0 (15.8) | 53.8 (13.0) | 0.576 * |
Symptom duration (months) b | 25.5 (1.3-248) | 31.1 (48.2) | 45.5 (35.7) | 0.166 ** |
Gender c | ||||
Female | 27 (39) | 10 (37) | 17 (63) | 0.052 † |
Male | 42 (61) | 26 (62) | 16 (38) | |
Site of onset c | ||||
Bulbar | 17 (25) | 10 (59) | 7 (41) | 0.585 † |
Spinal | 52 (75) | 26 (50) | 26 (50) | |
ΔFS cd | ||||
Slower (<0.66) | 34 (50) | 21 (62) | 13 (38) | 0.145 † |
Faster (≥0.66) | 34 (50) | 14 (41) | 20 (59) | |
ALS family history c | ||||
No | 63 (91) | 34 (54) | 29 (46) | 0.416 †† |
Yes | 6 (9) | 2 (33) | 4 (67) | |
Use of medication (Riluzole) c | ||||
No | 65 (94) | 34 (52) | 31 (48) | 1.00 †† |
Yes | 4 (6) | 2 (50) | 2 (50) |
Micronutrients | EAR/AI * | Mean (SD) | Intake Percentiles | % Of Inadequacy | ||||
---|---|---|---|---|---|---|---|---|
10th | 25th | 50th | 75th | 90th | ||||
Vitamin A, μg/d | 500 | 1376 (2537) | 193 | 470 | 715 | 1310 | 2069 | 36 |
Vitamin C, mg/d | 60 | 200 (107) | 95 | 124 | 162 | 238 | 360 | 10 |
Vitamin D, μg/d | 10 | 4.3 (2.4) | 0.9 | 3.3 | 4.2 | 5.3 | 7.5 | 99 |
Vitamin E, mg/d | 12 | 15 (8.9) | 2.6 | 8.1 | 15 | 23 | 29 | 40 |
Thiamin, mg/d | 0.9 | 2.0 (0.4) | 1.5 | 1.7 | 1.8 | 2.2 | 2.4 | 0.5 |
Riboflavin, mg/d | 0.9 | 0.8 (0.9) | 0.2 | 0.3 | 0.5 | 1.1 | 1.6 | 55 |
Niacin, mg/d | 11 | 18 (9.2) | 8.6 | 12 | 15 | 23 | 32 | 22 |
Pantothenic Acid, mg | 5 * | 3.4 (2.4) | 1.0 | 1.4 | 3.1 | 4.6 | 6.2 | - |
Pyridoxin, mg/d | ||||||||
19–50y | 1.1 | 1.9 (0.7) | 0.7 | 1.5 | 1.8 | 2.7 | - | 13 |
>50y | 1.3 | 1.4 (0.7) | 0.5 | 0.9 | 1.4 | 2.1 | 2.3 | 42 |
Folate, mcg/d | 320 | 214 (144) | 48 | 105 | 189 | 297 | 469 | 77 |
Cobalamin, mcg/d | 2 | 9.9 (31) | 0.7 | 2.1 | 3.3 | 4.6 | 8.0 | 40 |
Phosphorus, mg/d | 580 | 1055 (182) | 812 | 953 | 1010 | 1156 | 1363 | 0.5 |
Calcium, mg/d 19–50y >50y | 800 1000 | 649 (266) 780 (290) | 324 405 | 487 575 | 600 750 | 794 898 | - 1208 | 68 78 |
Iron, mg/d 19–50y >50y | 8.1 5 | 14 (4.0) 16 (6.1) | 8.1 10 | 11 11 | 14 14 | 15 20 | - 24 | 14 2.3 |
Zinc, mg/d | 6.8 | 9.9 (3.1) | 7.2 | 7.8 | 9.0 | 11 | 14 | 46 |
Copper, mcg/d | 0.7 | 1.5 (1.0) | 0.8 | 0.9 | 1.3 | 1.7 | 2.5 | 22 |
Potassium, mg/d | 2600 * | 2240 (466) | 1516 | 1982 | 2225 | 2541 | 2856 | - |
Magnesium, mg/d | 265 | 241 (62) | 181 | 206 | 232 | 255 | 337 | 64 |
Selenium, μg/d | 45 | 81 (105) | 17 | 28 | 65 | 90 | 156 | 37 |
Manganese, mg/d | 1.8 * | 1.9 (0.7) | 1.1 | 1.5 | 1.8 | 2.0 | 3.0 | - |
Micronutrients | EAR/AI * | Mean (SD) | Intake Percentiles | % of Inadequacy | ||||
---|---|---|---|---|---|---|---|---|
10th | 25th | 50th | 75th | 90th | ||||
Vitamin A, μg/d | 625 | 1445 (2414) | 431 | 577 | 869 | 1212 | 2704 | 37 |
Vitamin C, mg/d | 75 | 277.1 (405.0) | 130 | 139 | 169 | 263 | 497 | 31 |
Vitamin D, μg/d | 10 | 4.8 (2.2) | 2.0 | 3.2 | 4.9 | 6.5 | 7.3 | 99 |
Vitamin E, mg/d | 12 | 15.4 (8.1) | 2.5 | 11 | 16 | 21 | 26 | 34 |
Thiamin, mg/d | 1 | 1.9 (0.4) | 1.4 | 1.7 | 1.9 | 2.1 | 2.6 | 0.8 |
Riboflavin, mg/d | 1.1 | 0.8 (0.9) | 0.2 | 0.3 | 0.7 | 1.1 | 1.5 | 62 |
Niacin, mg/d | 12 | 17 (7.5) | 8.6 | 12 | 15 | 22 | 29 | 25 |
Pantothenic Acid, mg | 5 * | 3.1 (1.8) | 1.2 | 2.0 | 3.2 | 3.8 | 5.0 | - |
Pyridoxin, mg/d 19–50y >50y | 1.1 1.4 | 1.7 (0.8) 1.4 (0.5) | 0.5 0.7 | 0.9 1.0 | 1.4 1.3 | 2.1 1.6 | 2.3 2.4 | 25 52 |
Folate, mcg/d | 320 | 198 (140) | 32 | 119 | 193 | 262 | 371 | 82 |
Cobalamin, mcg/d | 2 | 9.1 (31) | 1.6 | 2.4 | 3.7 | 4.9 | 6.5 | 41 |
Phosphorus, mg/d | 580 | 1080 (205) | 800 | 973 | 1070 | 1165 | 1350 | 0.8 |
Calcium, mg/d 19–70y >70y | 800 1000 | 707 (304) 1177 (266) | 364 972 | 492 988 | 635 1086 | 855 1457 | 1151 - | 61 25 |
Iron, mg/d | 6 | 13 (8.4) | 7.2 | 10 | 12 | 16 | 20 | 4.9 |
Zinc, mg/d | 9.4 | 9.6 (2.9) | 6.2 | 7.7 | 9.3 | 11 | 13 | 49 |
Copper, mcg/d | 0.7 | 1.5 (1.1) | 0.7 | 1.0 | 1.3 | 1.7 | 2.5 | 23 |
Potassium, mg/d | 3400 * | 2303 (521) | 1669 | 2045 | 2243 | 2610 | 2991 | - |
Magnesium, mg/d | 350 | 229 (61) | 144 | 198 | 216 | 261 | 308 | 98 |
Selenium, μg/d | 45 | 53 (32) | 9.3 | 30 | 52 | 71 | 96 | 39 |
Manganese, mg/d | 2.3 * | 1.7 (0.7) | 0.9 | 1.1 | 1.6 | 2.2 | 2.5 | - |
Variable | ALSFRS-R Score a | p-Value | |
---|---|---|---|
≥34 (n = 36) | <34 (n = 33) | ||
Vitamin A, μg/d | 1020 (3386) | 715 (687) | 0.361 |
Vitamin C, mg/d | 152 (451) | 197 (100) | 0.140 |
Vitamin D, μg/d | 4.5 (2.2) | 4.7 (2.4) | 0.505 |
Vitamin E, mg/d | 19 (7.9) | 10 (6.9) | <0.001 |
Thiamin, mg/d | 1.9 (0.3) | 1.8 (0.4) | 0.065 |
Riboflavin, mg/d | 0.7 (1.1) | 0.6 (0.5) | 0.255 |
Niacin, mg/d | 18 (8.3) | 13 (7.8) | 0.033 |
Pantothenic Acid, mg | 3.4 (2.0) | 2.2 (2.1) | 0.037 |
Pyridoxin, mg/d | 1.8 (0.7) | 1.2 (0.6) | 0.008 |
Folate, mcg/d | 223 (146) | 139 (125) | 0.009 |
Cobalamin, mcg/d | 4.1 (43) | 3.3 (4.0) | 0.121 |
Phosphorus, mg/d | 1067 (165) | 1061 (225) | 0.895 |
Calcium, mg/d | 627 (312) | 822 (307) | 0.079 |
Iron, mg/d | 13 (9.2) | 12 (4.7) | 0.073 |
Zinc, mg/d | 9.1 (2.4) | 9.2 (3.1) | 0.266 |
Copper, mcg/d | 1.3 (1.3) | 1.2 (0.8) | 0.749 |
Potassium, mg/d | 2144 (463) | 2277 (552) | 0.349 |
Magnesium, mg/d | 208 (51) | 230 (73) | 0.355 |
Selenium, μg/d | 64 (91) | 35 (35) | 0.001 |
Manganese, mg/d | 1.6 (0.5) | 1.8 (0.8) | 0.057 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barros, A.N.d.A.B.; Felipe, M.L.d.N.; Barbosa, I.R.; Leite-Lais, L.; Pedrosa, L.F.C. Dietary Intake of Micronutrients and Disease Severity in Patients with Amyotrophic Lateral Sclerosis. Metabolites 2023, 13, 696. https://doi.org/10.3390/metabo13060696
Barros ANdAB, Felipe MLdN, Barbosa IR, Leite-Lais L, Pedrosa LFC. Dietary Intake of Micronutrients and Disease Severity in Patients with Amyotrophic Lateral Sclerosis. Metabolites. 2023; 13(6):696. https://doi.org/10.3390/metabo13060696
Chicago/Turabian StyleBarros, Acsa Nara de Araújo Brito, Maria Luisa do Nascimento Felipe, Isabelle Ribeiro Barbosa, Lucia Leite-Lais, and Lucia Fátima Campos Pedrosa. 2023. "Dietary Intake of Micronutrients and Disease Severity in Patients with Amyotrophic Lateral Sclerosis" Metabolites 13, no. 6: 696. https://doi.org/10.3390/metabo13060696
APA StyleBarros, A. N. d. A. B., Felipe, M. L. d. N., Barbosa, I. R., Leite-Lais, L., & Pedrosa, L. F. C. (2023). Dietary Intake of Micronutrients and Disease Severity in Patients with Amyotrophic Lateral Sclerosis. Metabolites, 13(6), 696. https://doi.org/10.3390/metabo13060696