Vitamin D Deficiency in Obese Children Is Associated with Some Metabolic Syndrome Components, but Not with Metabolic Syndrome Itself
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Anthropometric Parameters
2.3. Biochemical Assay
2.4. Statistical Analyses
2.5. Ethical Considerations
3. Results
4. Discussion
4.1. Anthropometric Measures
4.2. Lipid Metabolism
4.3. Adiponectin
4.4. Glucose Metabolism
4.5. Metabolic Syndrome
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Şengenç, E.; Kıykım, E.; Saltik, S. Vitamin D levels in children and adolescents with autism. Clinical Research Report. J. Int. Med. Res. 2020, 48. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.W.; Lee, H.C. Vitamin D and health—The missing vitamin in humans. Pediatr. Neonatol. 2019, 60, 237–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Kardas, F.; Kendirci, M.; Kurtoglu, S. Cardiometabolic risk factors related to vitamin D and adiponectin in obese children and adolescents. Int. J. Endocrinol. 2013, 2013, 503270. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.M.; Fraser, A.; Sayers, A.; Fraser, W.D.; Hingorani, A.; Deanfield, J.; Smith, G.D.; Sattar, N.; Lawlor, D.A. Associations of 25-hydroxyvitamin D2 and D3 with cardiovascular risk factors in childhood: Cross-sectional findings from the Avon Longitudinal study of Parents and children. J. Clin. Endocrinol. Metab. 2012, 97, 1563–1571. [Google Scholar] [CrossRef] [Green Version]
- Ghobadi, S.; Rostami, Z.H.; Marzijarani, M.; Faghih, S. Association of vitamin D status and metabolic syndrome components in Iranian children. Int. J. Prev. Med. 2019, 10, 77. [Google Scholar] [CrossRef]
- Yahyaoui, S.; Jmal, L.; Sammoud, A.; Abdenebi, M.; Aouatef, J.; Boukthir, S. Vitamin D Deficiency Is Associated with Metabolic Syndrome in Tunisian Children with Obesity. La Carence En Vitamine D Est Associée Au Syndrome Métabolique Chez Les Enfants Tunisiens Souffrant d’obésité. Tunis Med. 2019, 97, 1353–1356. [Google Scholar]
- Teixeira, J.S.; Campos, A.B.F.; Cordeiro, A.; Pereira, S.E.; Saboya, C.J.; Ramalho, A. Vitamin D nutritional status and its relationship with metabolic changes in adolescents and adults with severe obesity. Nutr. Hosp. Organo Of. De La Soc. Española De Nutr. Parenter. Y Enter. 2018, 35, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.L.; Judd, S.E.; Panwar, B.; Howard, V.J.; Wadley, V.G.; Jenny, N.S.; Gutiérrez, O.M. Associations of 25-hydroxyvitamin D with markers of inflammation, insulin resistance and obesity in black and white community-dwelling adults. J. Clin. Transl. Endocrinol. 2016, 5, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Makariou, S.E.; Challa, A.; Siomou, E.; Tellis, C.; Tselepis, A.; Elisaf, M.; Liberopoulos, E. Vitamin D status and cardiometabolic risk factors in Greek adolescents with obesity—The effect of vitamin D supplementation: A pilot study. Arch. Med. Sci. Atheroscler. Dis. 2020, 5, 64–71. [Google Scholar] [CrossRef]
- Khan, R.J.; Gebreab, S.Y.; Riestra, P.; Sims, M.; Gaye, A.; Xu, R.; Davis, S.K. Associations between vitamin D and cardiovascular disease risk factors in African Americans are partly explained by circulating adipokines and C-reactive protein: The Jackson heart study. J. Nutr. 2016, 146, 2537–2543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Rajput, R.; Rajput, M.; Bairwa, M.; Singh, J.; Saini, O.; Shankar, V. Waist height ratio: A universal screening tool for prediction of metabolic syndrome in urban and rural population of Haryana. Indian J. Endocrinol. Metab. 2014, 18, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.R.; Jeong, S.J. Relationship between Vitamin D Level and Lipid Profile in Non-Obese Children. Metabolites 2019, 9, 125. [Google Scholar] [CrossRef] [Green Version]
- Magge, S.N.; Prasad, D.; Zemel, B.S.; Kelly, A. Vitamin D3 supplementation in obese, African-American, vitamin D deficient adolescents. J. Clin. Transl. Endocrinol. 2018, 12, 1–7. [Google Scholar] [CrossRef]
- Censani, M.; Hammad, H.T.; Christos, P.J.; Schumaker, T. Vitamin D Deficiency Associated with Markers of Cardiovascular Disease in Children With Obesity. Glob. Pediatr. Health 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Bemanalizadeh, M.; Heidari-Beni, M.; Ejtahed, H.-S.; Heshmat, R.; Baygi, F.; Seif, E.; Mahdavi-Gorab, A.; Kasaeian, A.; Khademian, M.; Qorbani, M.; et al. Association of serum 25-hydroxyvitamin D concentration with anthropometric measures in children and adolescents: The CASPIAN-V study. Eat. Weight Disord.-Stud. Anorex. Bulim. Obes. 2021, 26, 2219–2226. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Sabico, S.; Al-Saleh, Y.; Al-Attas, O.S.; Alnaami, A.M.; AlRehaili, M.M.; Al-Harbi, M.; Alfawaz, H.; Chrousos, G.; Alokail, M.S. Calculated adiposity and lipid indices in healthy Arab children as influenced by vitamin D status. J. Clin. Lipidol. 2016, 10, 775–781. [Google Scholar] [CrossRef]
- Flot, C.; Porquet-Bordes, V.; Bacchetta, J.; Rothenbuhler, A.; Lienhardt-Roussie, A.; Giabicani, E.; Gueorguieva, I.; Storey, C.; Linglart, A.; Salles, J.-P.; et al. Demographic Characteristics, Risk Factors, and Presenting Features of Children with Symptomatic Nutritional Rickets: A French Series. Horm. Res. Paediatr. 2020, 93, 304–312. [Google Scholar] [CrossRef]
- Yoo, E.-G. Waist-to-height ratio as a screening tool for obesity and cardiometabolic risk. Korean J. Pediatr. 2016, 59, 425–431. [Google Scholar] [CrossRef]
- Silvana, C.; Miralles, W.; Wollinger, L.M.; Genro, J.P.; Contini, V.; Bosco, S.M.D. Waist-to-height ratio (WHtR) and triglyceride to HDL-c ratio (TG/HDL-c) as predictors of cardiometabolic risk. Nutr. Hosp. 2015, 31, 2115–2121. [Google Scholar] [CrossRef]
- Julve, J.; Escolà-Gil, J.C. High-Density Lipoproteins and Cardiovascular Disease: The Good, the Bad, and the Future. Int. J. Mol. Sci. 2021, 22, 7488. [Google Scholar] [CrossRef]
- Yahya, R.; Jainandunsing, S.; Rashid, M.; van der Zee, L.; Touw, A.; de Rooij, F.; Sijbrands, E.; Verhoeven, A.; Mulder, M. HDL associates with insulin resistance and beta-cell dysfunction in South Asian families at risk of type 2 diabetes. J. Diabetes Its Complicat. 2021, 35, 107993. [Google Scholar] [CrossRef] [PubMed]
- Cissé, K.; Samadoulougou, D.R.S.; Bognini, J.D.; Kangoye, T.D.; Kirakoya-Samadoulougou, F. Using the first nationwide survey on non-communicable disease risk factors and different definitions to evaluate the prevalence of metabolic syndrome in Burkina Faso. PLoS ONE 2021, 16, e0255575. [Google Scholar] [CrossRef] [PubMed]
- Sperling, L.S.; Mechanick, J.I.; Neeland, I.J.; Herrick, C.J.; Després, J.-P.; Ndumele, C.E.; Vijayaraghavan, K.; Handelsman, Y.; Puckrein, G.A.; Araneta, M.R.G.; et al. The CardioMetabolic Health Alliance: Working Toward a New Care Model for the Metabolic Syndrome. J. Am. Coll. Cardiol. 2015, 66, 1050–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinkūnienė, E.; Dženkevičiūtė, V.; Petrulionienė, Ž.; Majauskienė, E.; Ryliškytė, L.; Puronaitė, R.; Badarienė, J.; Navickas, R.; Laucevičius, A. Hypertriglyceridemia impact on arterial parameters in patients with metabolic syndrome. BMC Cardiovasc. Disord. 2021, 21, 393. [Google Scholar] [CrossRef]
- Ellulu, M.S.; Naser, I.A.; Abuhajar, S.M.; Najim, A.A. Determination of risk factors associated with inflammation in hypertensive patients with type-2 diabetes mellitus in a Palestinian Diabetes Study. Curr. Med. Res. Opin. 2021, 37, 1451–1459. [Google Scholar] [CrossRef]
- Kaze, A.D.; Musani, S.K.; Bidulescu, A.; Correa, A.; Golden, S.H.; Bertoni, A.G.; Echouffo-Tcheugui, J.B. Plasma Adiponectin and Blood Pressure Progression in African Americans: The Jackson Heart Study. Am. J. Hypertens. 2021, 34, 1163–1170. [Google Scholar] [CrossRef]
- Li, S.; Shin, H.J.; Ding, E.L.; Van Dam, R.M. Adiponectin levels and risk of type 2 diabetes: A systematic review and meta-analysis. JAMA 2009, 302, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Yaghootkar, H.; Lamina, C.; Scott, R.A.; Dastani, Z.; Hivert, M.-F.; Warren, L.L.; Stancáková, A.; Buxbaum, S.G.; Lyytikäinen, L.-P.; Henneman, P.; et al. Mendelian randomization studies do not support a causal role for reduced circulating adiponectin levels in insulin resistance and type 2 diabetes. Diabetes 2013, 62, 3589–3598. [Google Scholar] [CrossRef] [Green Version]
- Liao, P.-J.; Ting, M.-K.; Wu, I.-W.; Chen, S.-W.; Yang, N.-I.; Hsu, K.-H. Higher Leptin-to-Adiponectin Ratio Strengthens the Association Between Body Measurements and Occurrence of Type 2 Diabetes Mellitus. Front. Public Health 2021, 9, 678681. [Google Scholar] [CrossRef] [PubMed]
- Kalaycıoğlu, E.; Çetin, M.; Özyıldız, A.G.; Kırış, T.; Turan, T. Is Adiponectin Elevation Associated with Left Atrial Remodeling and Impaired Mechanical Functions? (a Speckle Tracking Study). Kardiologiia 2021, 61, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Rambhojan, C.; Larifla, L.; Clepier, J.; Bouaziz-Amar, E.; Velayoudom-Cephise, F.-L.; Blanchet-Deverly, A.; Armand, C.; Plumasseau, J.; Lacorte, J.-M.; Foucan, L. Vitamin D Status, Insulin Resistance, Leptin-To-Adiponectin Ratio in Adolescents: Results of a 1-Year Lifestyle Intervention. Open Access Maced. J. Med. Sci. 2016, 4, 596–602. [Google Scholar] [CrossRef] [Green Version]
- Ferira, A.J.; Laing, E.M.; Hausman, D.B.; Hall, D.B.; McCabe, G.P.; Martin, B.R.; Gallant, K.M.H.; Warden, S.J.; Weaver, C.M.; Peacock, M.; et al. Vitamin D Supplementation Does Not Impact Insulin Resistance in Black and White Children. J. Clin. Endocrinol. Metab. 2016, 101, 1710–1718. [Google Scholar] [CrossRef] [Green Version]
- Torun, E.; Gönüllü, E.; Özgen, I.T.; Cindemir, E.; Öktem, F. Vitamin D Deficiency and Insufficiency in Obese Children and Adolescents and Its Relationship with Insulin Resistance. Int. J. Endocrinol. 2013, 2013, 631845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AlQuaiz, A.M.; Kazi, A.; Fouda, M.; Alyousefi, N. Age and gender differences in the prevalence and correlates of vitamin D deficiency. Arch. Osteoporos. 2018, 13, 49. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhang, N.; Cheng, S.; Wang, Z.; Qin, Y. Gender Differences in Vitamin D Status in China. Experiment 2019, 25, 7094–7099. [Google Scholar] [CrossRef]
- Płudowski, P.; Ducki, C.; Konstantynowicz, J.; Jaworski, M. Vitamin D status in Poland. Pol. Arch. Intern. Med. 2016, 126, 530–539. [Google Scholar] [CrossRef] [Green Version]
- Niculescu, D.A.; Capatina, C.A.M.; Dusceac, R.; Caragheorgheopol, A.; Ghemigian, A.; Poiana, C. Seasonal variation of serum vitamin D levels in Romania. Arch. Osteoporos. 2017, 12, 113. [Google Scholar] [CrossRef]
- Ramankutty, P.; de Klerk, N.H.; Miller, M.; Fenech, M.; O’Callaghan, N.; Armstrong, B.K.; Milne, E. Ultraviolet radiation exposure and serum vitamin D levels in young children. J. Paediatr. Child Health 2014, 50, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Rizza, S.; Pietroiusti, A.; Farcomeni, A.; Mina, G.G.; Caruso, M.; Virgilio, M.; Magrini, A.; Federici, M.; Coppeta, L. Monthly fluctuations in 25-hydroxy-vitamin D levels in day and rotating night shift hospital workers. J. Endocrinol. Investig. 2020, 43, 1655–1660. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Mean VDD ± SD VDD (n = 61) | Mean VDS ± SD VDS (n = 18) | p |
---|---|---|---|---|
Age | Years | 14.50 ± 2.49 | 13.04 ± 2.98 | <0.05 |
Gender | M/F | 33/28 | 2/16 | <0.005 |
WHR | - | 0.97 ± 0.07 | 0.95 ± 0.06 | NS |
W/HtR | - | 0.64 ± 0.06 | 0.60 ± 0.04 | <0.03 |
BMI-z score | - | 3.06 ± 0.96 | 2.71 ± 0.78 | NS |
Severe ob | - | 1.48 ± 0.50 | 1.33 ± 0.49 | NS |
FAT% | % | 39.78 ± 7.50 | 37.47 ± 5.15 | NS |
FFM% | % | 60.22 ± 7.50 | 62.48 ± 5.21 | NS |
PMM% | % | 56.78 ± 7.21 | 59.40 ± 4.85 | NS |
Chol | mg/dL | 178.43 ± 32.69 | 184.00 ± 29.42 | NS |
HDL | mg/dL | 45.00 ± 9.29 | 50.13 ± 6.87 | <0.05 |
LDL | mg/dL | 99.90 ± 29.64 | 103.43 ± 36.39 | NS |
TG | mg/dL | 171.31 ± 80.75 | 121.76 ± 51.93 | <0.05 |
AlAT | IU/L | 40.28 ± 37.42 | 30.83 ± 23.61 | NS |
AspAT | IU/L | 33.13 ± 20.54 | 25.63 ± 7.47 | NS |
glu0 | mg/dL | 90.41 ± 9.35 | 89.12 ± 8.35 | NS |
glu120 | mg/dL | 119.24 ± 19.57 | 110.82 ± 24.47 | NS |
ins0 | mIU/L | 20.68 ± 16.51 | 15.27 ± 7.24 | NS |
ins120 | mIU/L | 103.83 ± 80.11 | 97.98 ± 39.88 | NS |
HOMA IR | - | 4.68 ± 3.83 | 3.39 ± 1.71 | NS |
IR | - | 1.58 ± 0.50 | 1.53 ± 0.51 | NS |
25OHD | ng/mL | 12.66 ± 4.76 | 27.78 ± 5.59 | <0.0001 |
Leptin | ng/mL | 57.11 ± 45.61 | 63.52 ± 52.30 | NS |
Adiponectin | μg/mL | 7.21 ± 1.64 | 8.84 ± 3.95 | <0.02 |
Leptin/Adiponectin ratio | - | 8.33 ± 6.72 | 7.79 ± 6.29 | NS |
Parameter | Mean MetS ± SD MetS | Mean nMetS ± SD nMets | p |
---|---|---|---|
25OHD | 15.43 ± 6.19 | 16.44 ± 9.25 | NS |
Authors; Year | Present Study | Kim et al., 2019 [14] | Magge et al., 2018 [15] | Censani et al., 2018 [16] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Groups | 1. VDD vs. 2. VDS | 1. VDD vs. 2. VDS | 1. VDD vs. 2. VDS | 1. VDD vs. 2. VDS | ||||||||
Mean 1 | Mean 2 | p-Value | Mean 1 | Mean 2 | p-Value | Mean 1 | Mean 2 | p-Value | Mean 1 | Mean 2 | p-Value | |
25OHD (ng/mL) | 12.7 ± 4.8 | 27.8 ± 5.6 | <0.0001 | 13.6 ± 3.6 | 25.7 ± 4.9 | - | 12.0 | 24.1 | <0.0001 | 15.2 | 27.5 | - |
W/HtR | 0.6 ± 0.1 | 0.6 ± 0.0 | <0.05 | - | - | - | - | - | - | - | - | - |
TG (mg/dL) | 171.3 ± 80.8 | 121.8 ± 51.9 | <0.05 | 90.3 ± 49.4 | 74.7 ± 31.0 | <0.01 | 78.3 | 65.4 | NS | 130.2 | 78.9 | <0.05 |
Cholesterol (mg/dL) | 178.4 ± 32.7 | 184.0 ± 29.4 | NS | 169.0 | 169.6 | NS | 155.9 | 166.0 | NS | 184.2 | 158.9 | <0.01 |
LDL (mg/dL) | 99.9 ± 29.6 | 103.4 ± 36.4 | NS | 95.0 | 94.7 | NS | 95.3 | 103.7 | NS | 112.5 | 93.7 | <0.05 |
HDL (mg/dL) | 45.0 ± 9.3 | 50.1 ± 6.9 | <0.05 | 56.6 ± 12.5 | 59.1 ± 1 | NS | 43.0 | 51.0 | NS | 45.3 | 50.0 | NS |
Adiponectin (μg/mL) | 7.2 ± 1.6 | 8.8 ± 4.0 | <0.05 | - | - | - | 3.0 | 3.3 | NS | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofman-Hutna, J.; Hutny, M.; Matusik, E.; Olszanecka-Glinianowicz, M.; Matusik, P. Vitamin D Deficiency in Obese Children Is Associated with Some Metabolic Syndrome Components, but Not with Metabolic Syndrome Itself. Metabolites 2023, 13, 914. https://doi.org/10.3390/metabo13080914
Hofman-Hutna J, Hutny M, Matusik E, Olszanecka-Glinianowicz M, Matusik P. Vitamin D Deficiency in Obese Children Is Associated with Some Metabolic Syndrome Components, but Not with Metabolic Syndrome Itself. Metabolites. 2023; 13(8):914. https://doi.org/10.3390/metabo13080914
Chicago/Turabian StyleHofman-Hutna, Jagoda, Michał Hutny, Edyta Matusik, Magdalena Olszanecka-Glinianowicz, and Pawel Matusik. 2023. "Vitamin D Deficiency in Obese Children Is Associated with Some Metabolic Syndrome Components, but Not with Metabolic Syndrome Itself" Metabolites 13, no. 8: 914. https://doi.org/10.3390/metabo13080914
APA StyleHofman-Hutna, J., Hutny, M., Matusik, E., Olszanecka-Glinianowicz, M., & Matusik, P. (2023). Vitamin D Deficiency in Obese Children Is Associated with Some Metabolic Syndrome Components, but Not with Metabolic Syndrome Itself. Metabolites, 13(8), 914. https://doi.org/10.3390/metabo13080914