The Role of Endocan in Cardiometabolic Disorders
Abstract
:1. Introduction
1.1. Structure of Endocan
1.2. Secretion and Expression of Endocan
1.3. Mechanism of Action of Endocan
2. Endocan and Obesity
3. Endocan and Polycystic Ovary Syndrome
4. Endocan and Metabolic Syndrome
5. Endocan and Non-Alcoholic Fatty Liver Disease
5.1. Circulating Endocan Levels in Non-Alcoholic Fatty Liver Disease
5.2. Circulating Endocan Levels in Liver Fibrosis
6. Endocan and Type 2 Diabetes Mellitus
6.1. Circulating Endocan Levels in Type 2 Diabetes Mellitus
6.2. Relationship between Endocan, Endothelial Dysfunction, and Subclinical Atherosclerosis in Type 2 Diabetes Mellitus
6.3. Endocan and Microvascular Complications of Type 2 Diabetes Mellitus
6.4. Endocan and Macrovascular Complications of Type 2 Diabetes Mellitus
7. Endocan and Arterial Hypertension
7.1. Circulating Endocan Levels in Arterial Hypertension
7.2. Relationship between Endocan Levels and Atherosclerotic Cardiovascular Disease in Subjects with Hypertension
8. Endocan and Atherosclerotic Cardiovascular Disease
8.1. Circulating Endocan Levels in Coronary Artery Disease
8.2. Circulating Endocan Levels and Cerebrovascular Disease
8.3. Circulating Endocan Levels and Heart Failure
9. Endocan and Renal Disease
Circulating Endocan Levels and Chronic Kidney Disease
10. The Impact of Cardiometabolic-Targeted Therapies on Endocan Levels
11. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Chen, J.; Jiang, L.; Yu, X.-H.; Hu, M.; Zhang, Y.-K.; Liu, X.; He, P.; Ouyang, X. Endocan: A Key Player of Cardiovascular Disease. Front. Cardiovasc. Med. 2022, 8, 798699. [Google Scholar] [CrossRef]
- Bessa, J.; Albino-Teixeira, A.; Reina-Couto, M.; Sousa, T. Endocan: A novel biomarker for risk stratification, prognosis and therapeutic monitoring in human cardiovascular and renal diseases. Clin. Chim. Acta 2020, 509, 310–335. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Q.; Yu, S.; Zhang, X. Endocan: A new marker for cancer and a target for cancer therapy. Biomed. Rep. 2015, 3, 279–283. [Google Scholar] [CrossRef]
- Wellner, M.; Herse, F.; Janke, J.; Gorzelniak, K.; Engeli, S.; Bechart, D.; Lasalle, P.; Luft, F.C.; Sharma, A.M. Endothelial Cell Specific Molecule-1—A Newly Identified Protein in Adipocytes. Horm. Metab. Res. 2003, 35, 217–221. [Google Scholar] [CrossRef]
- Lee, W.; Ku, S.K.; Kim, S.W.; Bae, J.S. Endocan elicits severe vascular inflammatory responses in vitro and in vivo. J. Cell. Physiol. 2014, 229, 620–630. [Google Scholar] [CrossRef]
- Klisić, A.; Kavarić, N.; Spasojević-Kalimanovska, V.; Kotur-Stevuljević, J.; Ninić, A. Serum endocan levels in relation to traditional and non-traditional anthropometric indices in adult population. J. Med. Biochem. 2021, 40, 41–48. [Google Scholar] [CrossRef]
- Klisic, A.; Kavaric, N.; Stanisic, V.; Vujcic, S.; Spasojevic-Kalimanovska, V.; Ninic, A.; Kotur-Stevuljevic, J. Endocan and a novel score for dyslipidemia, oxidative stress and inflammation (DOI score) are independently correlated with glycated hemoglobin (HbA1c) in patients with prediabetes and type 2 diabetes. Arch. Med. Sci. 2020, 16, 42–50. [Google Scholar] [CrossRef]
- Ekiz-Bilir, B.; Bilir, B.; Aydın, M.; Soysal-Atile, N. Evaluation of endocan and endoglin levels in chronic kidney disease due to diabetes mellitus. Arch. Med. Sci. 2019, 15, 86–91. [Google Scholar] [CrossRef]
- Klisic, A.; Kavaric, N.; Abenavoli, L.; Stanisic, V.; Spasojevic-Kalimanovska, V.; Kotur-Stevuljevic, J.; Ninic, A. Is endocan a novel potential biomarker of liver steatosis and fibrosis? J. Med. Biochem. 2020, 39, 363–371. [Google Scholar] [CrossRef]
- Bicer, M.; Guler, A.; Unal Kocabas, G.; Imamoglu, C.; Baloglu, A.; Bilgir, O.; Yuksel, A.; Bozkaya, G.; Calan, M. Endocan is a predictor of increased cardiovascular risk in women with polycystic ovary syndrome. Endocr. Res. 2017, 42, 145–153. [Google Scholar] [CrossRef]
- Klisic, A.; Kavaric, N.; Vujcic, S.; Spasojevic-Kalimanovska, V.; Ninic, A.; Kotur-Stevuljevic, J. Endocan and advanced oxidation protein products in adult population with hypertension. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 7131–7137. [Google Scholar]
- Maksimovic, M.; Vlajinac, H.; Radak Dj Marinkovic, J.; Maksimovic, J.; Jorga, J. Association of overweight and obesity with cardiovascular risk factors in patients with atherosclerotic diseases. J. Med. Biochem. 2020, 39, 215–223. [Google Scholar] [CrossRef]
- Tong, J.; Guo, J.-J. Key molecular pathways in the progression of non-alcoholic steatohepatitis. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8515–8522. [Google Scholar]
- Elkamshoushi, A.M.; Omar, S.S.; El Abd, A.M.; Hassan, S.Z.; Sultan, E.A.; Abd Elkawy, E. Subclinical atherosclerosis in psoriatic disease: Relation to endocan, TNF-a, age of onset, and body fat. Int. J. Dermatol. 2019, 58, 456–464. [Google Scholar] [CrossRef]
- Gungor, A.; Palabiyik, S.S.; Bayraktutan, Z.; Dursun, H.; Gokkaya, N.; Bilen, A.; Bilen, H. Levels of endothelial cell-specific molecule-1 (ESM-1) in overt hypothyroidisim. Endocr. Res. 2016, 41, 275–280. [Google Scholar] [CrossRef]
- Janke, J.; Engeli, S.; Gorzelniak, K.; Feldpausch, M.; Heintze, U.; Böhnke, J.; Wellner, M.; Herse, F.; Lassalle, P.; Luft, F.C.; et al. Adipose Tissue and Circulating Endothelial Cell Specific Molecule-1 in Human Obesity. Horm. Metab. Res. 2006, 38, 28–33. [Google Scholar] [CrossRef]
- Yilmaz, M.I.; Siriopol, D.; Saglam, M.; Kurt, Y.G.; Unal, H.U.; Eyileten, T.; Gok, M.; Cetinkaya, H.; Oguz, Y.; Sari, S.; et al. Plasma endocan levels associate with inflammation, vascular abnormalities, cardiovascular events, and survival in chronic kidney disease. Kidney Int. 2014, 86, 1213–1220. [Google Scholar] [CrossRef]
- Musialowska, D.; Zbroch, E.; Koc-Zorawska, E.; Musialowski, P.; Malyszko, J. Endocan Concentration in Patients With Primary Hypertension. Angiology 2018, 69, 483–489. [Google Scholar] [CrossRef]
- Delibas, I.B.; Yapca, O.E.; Laloglu, E. Does endocan level increase in women with polycystic ovary syndrome? A case—control study. Ginekol. Pol. 2018, 89, 500–505. [Google Scholar] [CrossRef]
- Murthi, P.; Sarkis, R.; Lim, R.; Nguyen-Ngo, C.; Pratt, A.; Liong, S.; Lappas, M. Endocan expression is increased in the placenta from obese women with gestational diabetes mellitus. Placenta 2016, 48, 38–48. [Google Scholar] [CrossRef]
- Wakabayashi, I.; Daimon, T. The “cardiometabolic index” as a new marker determined by adiposity and blood lipids for discrimination of diabetes mellitus. Clin. Chim. Acta 2015, 438, 274–278. [Google Scholar] [CrossRef]
- de Almeida, R.T.; Pereira, A.D.C.; Fonseca, M.D.J.M.D.; de Matos, S.M.A.; Aquino, E.M.L. Association between body adiposity index and coronary risk in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Clin. Nutr. 2019, 39, 1423–1431. [Google Scholar] [CrossRef]
- Nalbantoğlu, A.; Kızılca, Ö.; Güzel, S.; Emeksiz, H.C.; Nalbantoğlu, B. Increased Carotid Intima–Media Thickness and Endothelial Cell-Specific Molecule-1 (Endocan) Levels in Obese Children. Angiology 2021, 72, 633–639. [Google Scholar] [CrossRef]
- Abdalla, M.A.; Deshmukh, H.; Atkin, S.; Sathyapalan, T. The potential role of incretin-based therapies for polycystic ovary syndrome: A narrative review of the current evidence. Ther. Adv. Endocrinol. Metab. 2021, 12, 2042018821989238. [Google Scholar] [CrossRef]
- Alexandraki, K.I.; Kandaraki, E.A.; Poulia, K.-A.; Piperi, C.; Papadimitriou, E.; Papaioannou, T.G.; Practice, A.E. Assessment of Early Markers of Cardiovascular Risk in Polycystic Ovary Syndrome. Eur. Endocrinol. 2021, 1, 37–53. [Google Scholar] [CrossRef]
- Iwańczyk, S.; Smukowska-Gorynia, A.; Woźniak, P.; Grygier, M.; Lesiak, M.; Araszkiewicz, A. Increased endocan expression as a biomarker of endothelial dysfunction in patients with metabolic syndrome. Pol. Arch. Intern. Med. 2022, 132, 16292. [Google Scholar] [CrossRef]
- Halici, I.; Palabiyik, S.S.; Guducu-Tufekci, F.; Ozbek-Bilgin, A.; Cayir, A. Endothelial dysfunction biomarker, endothelial cell-specific molecule-1, and pediatric metabolic syndrome. Pediatr. Int. 2016, 58, 1124–1129. [Google Scholar] [CrossRef]
- Arman, Y.; Atici, A.; Altun, O.; Sarikaya, R.; Yoldemir, S.A.; Akarsu, M.; Kutlu, O.; Ozturk, G.Z.; Demir, P.; Ozcan, M.; et al. O Nível de Endocan Sérico pode ser Usado como Biomarcador para Prever Aterosclerose Subclínica em Pacientes Pré-Diabéticos? Arq. Bras. De Cardiol. 2022, 119, 544–550. [Google Scholar] [CrossRef]
- Boyuk, B.; Cetin, S.I.; Erman, H.; Sevinc, S.; Bulut, U.; Guzel, S. Evaluation of serum endocan levels in relation to epicardial fat tissue thickness in metabolic syndrome patients. Arch. Med. Sci.—Atheroscler. Dis. 2020, 5, e290–e296. [Google Scholar] [CrossRef]
- Klisic, A.; Kavaric, N.; Vujcic, S.; Mihajlovic, M.; Zeljkovic, A.; Ivanisevic, J.; Spasojevic-Kalimanovska, V.; Ninic, A.; Kotur-Stevuljevic, J.; Vekic, J. Inverse association between serum endocan levels and small LDL and HDL particles in patients with type 2 diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 8127–8135. [Google Scholar] [CrossRef]
- Yaman, S.O.; Yucesan, F.B.; Orem, C.; Kural, B.V.; Orem, A. Elevated Circulating Endocan Levels Are Associated with Increased Levels of Endothelial and Inflammation Factors in Postprandial Lipemia. J. Clin. Med. 2023, 12, 1267. [Google Scholar] [CrossRef]
- Nordestgaard, B.G. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights From Epidemiology, Genetics, and Biology. Circ. Res. 2016, 118, 547–563. [Google Scholar] [CrossRef]
- Klisic, A.; Kavaric, N.; Jovanovic, M.; Soldatovic, I.; Gligorovic-Barhanovic, N.; Kotur-Stevuljevic, J. Bioavailable testosterone is independently associated with Fatty Liver Index in postmenopausal women. Arch. Med. Sci. 2017, 5, 1188–1196. [Google Scholar] [CrossRef]
- Klisic, A.; Isakovic, A.; Kocic, G.; Kavaric, N.; Jovanovic, M.; Zvrko, E.; Skerovic, V.; Ninic, A. Relationship between Oxidative Stress, Inflammation and Dyslipidemia with Fatty Liver Index in Patients with Type 2 Diabetes Mellitus. Exp. Clin. Endocrinol. Diabetes 2018, 126, 371–378. [Google Scholar] [CrossRef]
- Wu, S.; Wu, F.; Ding, Y.; Hou, J.; Bi, J.; Zhang, Z. Association of non-alcoholic fatty liver disease with major adverse cardiovascular events: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 33386. [Google Scholar] [CrossRef]
- Begriche, K.; Massart, J.; Robin, M.-A.; Bonnet, F.; Fromenty, B. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology 2013, 58, 1497–1507. [Google Scholar] [CrossRef]
- Elsheikh, E.; Younoszai, Z.; Otgonsuren, M.; Hunt, S.; Raybuck, B.; Younossi, Z.M. Markers of endothelial dysfunction in patients with non-alcoholic fatty liver disease and coronary artery disease. J. Gastroenterol. Hepatol. 2014, 29, 1528–1534. [Google Scholar] [CrossRef]
- Dallio, M.; Masarone, M.; Caprio, G.G.; Di Sarno, R.; Tuccillo, C.; Sasso, F.C.; Persico, M.; Loguercio, C.; Federico, A. Endocan Serum Levels in Patients with Non-Alcoholic Fatty Liver Disease with or without Type 2 Diabetes Mellitus: A Pilot Study. J. Gastrointest. Liver Dis. 2017, 26, 261–268. [Google Scholar] [CrossRef]
- Tok, D.; Ekiz, F.; Basar, O.; Coban, S.; Ozturk, G. Serum endocan levels in patients with chronic liver disease. Int. J. Clin. Exp. Med. 2014, 7, 1802–1807. [Google Scholar]
- Erman, H.; Beydogan, E.; Cetin, S.I.; Boyuk, B. Endocan: A Biomarker for Hepatosteatosis in Patients with Metabolic Syndrome. Mediat. Inflamm. 2020, 2020, 3534042. [Google Scholar] [CrossRef]
- Ustyol, A.; Ustyol, E.A.; Gurdol, F.; Kokali, F.; Bekpınar, S. P-selectin, endocan, and some adhesion molecules in obese children and adolescents with non-alcoholic fatty liver disease. Scand. J. Clin. Lab. Investig. 2017, 77, 205–209. [Google Scholar] [CrossRef]
- Bălănescu, A.; Codreanu, I.F.; Comanici, V.D.; Stan, I.V.; Bălănescu, E.; Bălănescu, P. Endocan and Lumican in Relation to Cardiometabolic Risk in a Pediatric Overweight and Obese Cohort: A Cross-Sectional Study. BioMed Res. Int. 2020, 2020, 2102401. [Google Scholar] [CrossRef]
- Moin, A.S.; Sathyapalan, T.; Atkin, S.L.; Butler, A.E. Diagnostic and Prognostic Protein Biomarkers of β-Cell Function in Type 2 Diabetes and Their Modulation with Glucose Normalization. Metabolites 2022, 12, 196. [Google Scholar] [CrossRef]
- Belongie, K.J.; Ferrannini, E.; Johnson, K.; Andrade-Gordon, P.; Hansen, M.K.; Petrie, J.R. Identification of novel biomarkers to monitor β-cell function and enable early detection of type 2 diabetes risk. PLoS ONE 2017, 12, e0182932. [Google Scholar] [CrossRef]
- Balamir, I.; Ates, I.; Topcuoglu, C.; Turhan, T. Association of Endocan, Ischemia-Modified Albumin, and hsCRP Levels With Endothelial Dysfunction in Type 2 Diabetes Mellitus. Angiology 2018, 69, 609–616. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, Y.; Shi, W.; Liu, J.; Li, Y.; Zhou, Z.; He, Q.; Wei, S.; Liu, J.; Quan, J. The Association between Endocan Levels and Subclinical Atherosclerosis in Patients with Type 2 Diabetes Mellitus. Am. J. Med. Sci. 2017, 353, 433–438. [Google Scholar] [CrossRef]
- Bilir, B.E.; Yilmaz, I.; Atile, N.S.; Yildirim, T.; Kara, S.P.; Gumustas, S.A.; Orhan, A.E.; Aydin, M. Association of apelin, endoglin and endocan with diabetic peripheral neuropathy in type 2 diabetic patients. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 892–898. [Google Scholar]
- Cikrikcioglu, M.A.; Erturk, Z.; Kilic, E.; Celik, K.; Ekinci, I.; Cetin, A.I.Y.; Ozkan, T.; Cetin, G.; Dae, S.A.; Kazancioglu, R.; et al. Endocan and albuminuria in type 2 diabetes mellitus. Ren. Fail. 2016, 38, 1647–1653. [Google Scholar] [CrossRef]
- Abu El-Asrar, A.M.; Nawaz, M.; De Hertogh, G.; Al-Kharashi, A.S.; Eynde, K.V.D.; Mohammad, G.; Geboes, K. The Angiogenic Biomarker Endocan is Upregulated in Proliferative Diabetic Retinopathy and Correlates with Vascular Endothelial Growth Factor. Curr. Eye Res. 2015, 40, 321–331. [Google Scholar] [CrossRef]
- Celik, F.; Aydin, S. Blood and aqueous humor phoenixin, endocan and spexin in patients with diabetes mellitus and cataract with and without diabetic retinopathy. Peptides 2022, 150, 170728. [Google Scholar] [CrossRef]
- Qiu, C.-R.; Fu, Q.; Sui, J.; Zhang, Q.; Wei, P.; Wu, Y.; Zhu, K.; Lu, Y.; Wan, P. Analysis of Serum Endothelial Cell-Specific Molecule 1 (Endocan) Level in Type 2 Diabetes Mellitus With Acute ST-Segment Elevation Myocardial Infarction and its Correlation. Angiology 2017, 68, 74–78. [Google Scholar] [CrossRef]
- Lorenzo-Almorós, A.; Cepeda-Rodrigo, J.; Lorenzo, Ó. Diabetic cardiomyopathy. Rev. Clin. Esp. 2022, 222, 100–111. [Google Scholar] [CrossRef]
- Cas, A.D.; Spigoni, V.; Ridolfi, V.; Metra, M. Diabetes and Chronic Heart Failure: From Diabetic Cardiomyopathy to Therapeutic Approach. Endocr. Metab. Immune Disord.-Drug Targets 2013, 13, 38–50. [Google Scholar] [CrossRef]
- Oktar, S.F.; Guney, I.; Eren, S.A.; Oktar, L.; Kosar, K.; Buyukterzi, Z.; Alkan, E.; Biyik, Z.; Erdem, S.S. Serum endocan levels, carotid intima-media thickness and microalbuminuria in patients with newly diagnosed hypertension. Clin. Exp. Hypertens. 2019, 41, 787–794. [Google Scholar] [CrossRef]
- Balta, S.; Mikhailidis, D.P.; Demirkol, S.; Ozturk, C.; Kurtoglu, E.; Demir, M.; Celik, T.; Turker, T.; Iyisoy, A. Endocan—A novel inflammatory indicator in newly diagnosed patients with hypertension: A pilot study. Angiology 2014, 65, 773–777. [Google Scholar] [CrossRef]
- Çelik, M.; Sökmen, E.; Sivri, S.; Uçar, C.; Nar, R.; Erer, M. The Relationship Between Serum Endocan Level and Aortic Elastic Properties in Patients With Newly Diagnosed Essential Hypertension. Angiology 2019, 70, 662–668. [Google Scholar] [CrossRef]
- Ağaç, M.T.; Kahyaoğlu, B.; Aksoy MM, N.; Cinemre, F.B.; Vatan, M.B.; Gündüz, Y. Is Endocan a Biochemical Marker for Asymptomatic Target Organ Damage in Hypertensive Patients? Anatol. J. Cardiol. 2019, 21, 76–82. [Google Scholar] [CrossRef]
- Turgunova, L.; Koichubekov, B.; Turmuhambetova, A.; Sorokina, M.; Laryushina, Y.; Korshukov, I.; Shalygina, A.; Baidildina, B. Biochemical markers of hypertension, prehypertension. Ann. De Cardiol. Et D’angeiologie 2018, 67, 161–166. [Google Scholar] [CrossRef]
- Can, M.; Kocabaş, M.; Burgucu, H.; Yarar, Z.; Karadeniz, Y.; Karaköse, M.; Yerlikaya, F.H.; Kulaksızoğlu, M.; Karakurt, F. Evaluation of arterial stiffness and serum endocan levels in patients with primary aldosteronism with new-onset hypertension and long-term hypertension. J. Endocrinol. Investig. 2023, 46, 103–110. [Google Scholar] [CrossRef]
- Çimen, T.; Bilgin, M.; Akyel, A.; Felekoğlu, M.A.; Nallbani, A.; Özdemir, Ş.; Erden, G.; Öztürk, A.; Doğan, M.; Yeter, E. Endocan and Non-Dipping Circadian Pattern in Newly Diagnosed Essential Hypertension. Korean Circ. J. 2016, 46, 827–833. [Google Scholar] [CrossRef]
- Xiong, C.; Zhao, Z.-W.; Chen, Z.-Y.; Wu, L.-Z.; Luo, Y.-K.; Hu, F.-D.; Lin, C.-G.; Chen, L.-L. Elevated Human Endothelial Cell-Specific Molecule-1 Level and Its Association with Coronary Artery Disease in Patients with Hypertension. J. Investig. Med. 2015, 63, 867–870. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-S.; Yang, W.; Luo, T.; Wang, J.-M.; Jing, Y.-Y. Serum Endocan Levels Are Correlated with the Presence and Severity of Coronary Artery Disease in Patients with Hypertension. Genet. Test. Mol. Biomark. 2015, 19, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Turan, Y.; Demir, V. The relation of endocan and galectin-3 with ST-segment resolution in patients with ST-segment elevation myocardial infarction. Adv. Clin. Exp. Med. 2020, 29, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Dogdus, M.; Yenercag, M.; Ozyasar, M.; Yilmaz, A.; Can, L.H.; Kultursay, H. Serum Endocan Levels Predict Angiographic No-Reflow Phenomenon in Patients With ST-Segment Elevation Myocardial Infarction Undergoing Primary Coronary Intervention. Angiology 2021, 72, 221–227. [Google Scholar] [CrossRef]
- Ziaee, M.; Mashayekhi, S.; Ghaffari, S.; Mahmoudi, J.; Sarbakhsh, P.; Garjani, A. Predictive Value of Endocan Based on TIMI Risk Score on Major Adverse Cardiovascular Events After Acute Coronary Syndrome. Angiology 2019, 70, 952–959. [Google Scholar] [CrossRef]
- Han, F.; Liao, W.; Duan, X.; Shi, Y.; Hu, Z. The Association Between Serum Endocan Level and Short-Term Prognosis of Patients With Acute Ischemic Stroke. Angiology 2022, 73, 344–349. [Google Scholar] [CrossRef]
- He, X.-W.; Ke, S.-F.; Bao, Y.-Y.; Hong, W.-J.; Shen, Y.-G.; Li, C.; Zhu, F.; Wang, E.; Jin, X.-P. Serum levels of endocan and endoglin are associated with large-artery atherosclerotic stroke. Clin. Chim. Acta 2018, 478, 157–161. [Google Scholar] [CrossRef]
- Kosir, G.; Jug, B.; Novakovic, M.; Mijovski, M.B.; Ksela, J. Endocan Is an Independent Predictor of Heart Failure-Related Mortality and Hospitalizations in Patients with Chronic Stable Heart Failure. Dis. Mrk. 2019, 2019, 9134096. [Google Scholar] [CrossRef]
- El-Senosy, F.M.; El Aziz, R.E.M.A.; Kasim, S.A.; Gad, L.A.; Hassan, D.A.; Sabry, S.; El Mancy, I.M.; Shawky, T.A.; Mohamed, I.G.R.; Elmonier, R.; et al. Serum Endocan Levels and Subclinical Atherosclerosis in Patients with Chronic Kidney and End-Stage Renal Diseases. Int. J. Clin. Pract. 2022, 2022, 4524637. [Google Scholar] [CrossRef]
- Poon, P.Y.-K.; Ng, J.K.-C.; Fung, W.W.-S.; Chow, K.-M.; Kwan, B.C.-H.; Li, P.K.-T.; Szeto, C.-C. Relationship between Plasma Endocan Level and Clinical Outcome of Chinese Peritoneal Dialysis Patients. Kidney Blood Press. Res. 2019, 44, 1259–1270. [Google Scholar] [CrossRef]
- Celik, T.; Balta, S.; Karaman, M.; Ay, S.A.; Demırkol, S.; Ozturk, C.; Dinc, M.; Unal, H.U.; Yılmaz, M.I.; Kılıc, S.; et al. Endocan, a novel marker of endothelial dysfunction in patients with essential hypertension: Comparative effects of amlodipine and valsartan. Blood Press. 2015, 24, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Tunçez, A.; Altunkeser, B.B.; Öztürk, B.; Ateş, M.S.; Tezcan, H.; Aydoğan, C.; Kırık, E.C.; Yalçın, U.; Aygül, N.; Demir, K.; et al. Comparative Effects of Atorvastatin 80 mg and Rosuvastatin 40 mg On The Levels of Serum Endocan, Galectin-3 and Chemerin in Patients With Acute Myocardial Infarction. Anatol. J. Cardiol. 2019, 22, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Arman, Y.; Akpinar, T.S.; Kose, M.; Emet, S.; Yuruyen, G.; Akarsu, M.; Ozcan, M.; Yegit, O.; Cakmak, R.; Altun, O.; et al. Effect of Glycemic Regulation on Endocan Levels in Patients With Diabetes: A Preliminary Study. Angiology 2016, 67, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Zolali, E.; Rezabakhsh, A.; Nabat, E.; Jaberi, H.; Rahbarghazi, R.; Garjani, A. Metformin Effect on Endocan Biogenesis in Human Endothelial Cells Under Diabetic Condition. Arch. Med. Res. 2019, 50, 304–314. [Google Scholar] [CrossRef]
Endothelial Cells | Leukocytes | Vascular Smooth-Muscle Cells | Tumor Cells |
---|---|---|---|
↑ VEGF, ↑ permeability of blood vessels [1,2] | ↑ Modulation of leukocytes’ migration [2,5] | ↑ Vascular smooth-muscle cell proliferation [1,2,5] | ↑ Cell proliferation [1,2,5] |
↑ Upregulation of cell adhesion molecules’ expression (↑ VCAM-1, ↑ ICAM-1, ↑ E-Selectin) [1,2] | ↑ Leukocytes’ adhesion and activation [2,5] | ↑ Neointima formation ↑atherogenesis [1,2,5] | ↑ Tumor development and neo-angiogenesis [3,5] |
Endocan Level (Serum/Plasma) | Cardiometabolic Disorder | Sample Size | Reference |
---|---|---|---|
↑ positive correlation with BMI, WC, WHtR, BRI, BAI, VAI, LAP, and CMI | Obesity | n = 177 adults free of diabetes, CVD, and CKD | Klisic et al. [6] |
↑ | Obesity and gestational diabetes mellitus | n = 40 women with obesity and gestational diabetes mellitus vs. n = 10 pregnant women with normal glucose tolerance | Murthi et al. [20] |
↑ positive correlation with cIMT | Obesity | n = 80 children with obesity vs. n = 80 healthy controls | Nalbantoğlu et al. [23] |
↓ negative correlation with CRP | Obesity | n = 70 overweight/obese postmenopausal women | Janke et al. [16] |
↑ positive correlation with HDL-c level, but an inverse association with BMI and CRP | PCOS | n = 88 women with PCOS vs. n = 87 age- and BMI-matched controls n = 54 normal weight PCOS women vs. n = 34 overweight/obese PCOS women | Delibas et al. [19] |
↑ positive correlation with BMI, WC, hs-CRP, HOMA-IR, FAI, cIMT | PCOS | n = 80 women with PCOS vs. n = 80 controls | Bicer et al. [10] |
↑ | MetS | n = 34 adults with MetS vs. n = 56 MetS-free | Iwańczyk et al. [26] |
↑ | MetS | n = 30 children with MetS vs. n = 30 healthy children | Halici et al. [27] |
↑ | Prediabetes | n = 59 adults with prediabetes vs. n = 117 controls | Klisic et al. [7] |
↓ | Prediabetes | n = 42 adults with prediabetes vs. n = 42 controls | Arman et al. [28] |
↓ | MetS | n = 44 adults with MetS vs. n = 26 controls | Boyuk et al. [29] |
↑ positive correlation with TG, glucose, and HbA1c; negative correlation with HDL-c | T2DM | n = 42 adults with T2DM vs. n = 64 diabetes-free controls | Klisic et al. [30] |
↑ positive correlation with other endothelial factors (ICAM-1, VCAM-1, VEGF), and inflammation factors (IL-6), remnant lipoprotein cholesterol, and the atherogenic index of plasma | Postprandial lipemia | n = 54 hyperlipidemic adults vs. n = 28 normolipidemic controls | Ozer Yaman et al. [31] |
↑ | NAFLD (determined by ultrasonography) and CAD (determined by coronary angiography) | n = 66 adults with NAFLD and CAD vs. n = 11 adults with NAFLD and CAD-free | Elsheikh et al. [37] |
↑ positive correlation with BMI, WC, glucose, HbA1c, TG, ALT, GGT, and hsCRP; negative correlation with HDL-c | NAFLD (determined by FLI) | n = 147 adults with NAFLD (FLI ≥ 60) vs. n = 64 (FLI < 30) | Klisic et al. [9] |
↑ | NAFLD (determined by ultrasonography and/or a liver biopsy) | n = 37 adults with NAFLD with T2DM and n = 19 adults with NAFLD but T2DM-free vs. n = 25 healthy controls | Dallio et al. [38] |
↓ | NAFLD (determined by liver biopsy) | n = 38 adults with NAFLD vs. n = 34 controls | Tok et al. [39] |
↓ negative correlation with BMI | NAFLD (determined by ultrasonography) and MetS | n = 40 adults with MetS and NAFLD vs. n = 20 healthy controls | Erman et al. [40] |
↔ | NAFLD (determined by ultrasonography) and obesity | n = 40 obese children/adolescents with and without NAFLD (n = 60) vs. n = 40 controls | Ustyol et al. [41] |
↔ | NAFLD (determined by ultrasonography) and obesity | n = 26 overweight/obese children/adolescents with NAFLD vs. n = 48 overweight/obese children/adolescents without NAFLD | Bălănescu et al. [42] |
↑ positive correlation with glucose and HbA1c; negative correlation with TG and ALT | Liver fibrosis (determined by BARD score) | n = 124 adults with advanced fibrosis vs. n = 23 with no/mild fibrosis | Klisic et al. [9] |
↔ | Liver fibrosis (determined by liver biopsy) | n = 55 adults with chronic hepatitis B and n = 19 adults with chronic hepatitis C with no/mild fibrosis vs. severe fibrosis | Tok et al. [39] |
↑ | T2DM | n = 102 adults with T2DM vs. n = 59 controls | Klisic et al. [7] |
↓ | T2DM | n = 23 adults with T2DM vs. n = 23 healthy controls | Moin et al. [43] |
↑ positive correlation with cITM and 24 h urine protein excretion level | T2DM | n = 88 adults with T2DM with and without endothelial dysfunction vs. n = 88 healthy controls | Balamir et al. [45] |
↑ positive correlation with glucose, HbA1c, and cIMT | T2DM with subclinical atherosclerosis | n = 69 adults with T2DM with (n = 27) and without (n = 42) subclinical atherosclerosis vs. n = 28 healthy controls | Lv et al. [46] |
↑ | T2DM and DN | n = 46 adults with T2DM with DN and n = 53 adults with T2DM without DN vs. n = 53 healthy controls | Bilir et al. [47] |
↓ negative correlation with urine albumin–creatinine ratio | T2DM and diabetic nephropathy | n = 137 adults with T2DM with macroalbuminuria (n = 35) had lower circulating endocan levels vs. T2DM with normoalbuminuria (n = 55) and microalbuminuria (n = 47) | Cikrikcioglu et al. [48] |
↑ | T2DM and DR | n = 44 adults with T2DM and DR vs. n = 29 diabetes-free controls | Abu El-Asrar et al. [49] |
↑ positive correlation with hsCRP and neutrophil-to-lymphocyte ratio | T2DM and AMI | n = 38 adults with T2DM and AMI and n = 34 adults with T2DM with no cardiovascular disease vs. n = 33 normotensive controls | Qiu et al. [51] |
↑ | HTN | n = 90 adults with HTN vs. n = 44 healthy controls | Klisic et al. [11] |
↑ positive correlation with hsCRP and cIMT | HTN | n = 18 adults with HTN vs. n = 23 normotensive controls | Oktar et al. [54] |
↑ positive correlation with cIMT | HTN | n = 61 adults with HTN vs. n = 30 healthy controls | Balta et al. [55] |
↑ negative correlation with aortic distensibility and aortic strain | HTN | n = 67 adults with HTN vs. n = 70 healthy controls | Çelik et al. [56] |
↑ negative correlation with BMI and leukocyte count | HTN | n = 104 adults with HTN vs. n = 21 healthy controls | Musialowska et al. [18] |
↑ | HTN | n = 938 adults, i.e., normotensive (n = 291), pre-hypertensive (n = 268), and hypertensive (n = 379) adults | Turgunova et al. [58] |
↑ | HTN and CAD | n = 164 adults with HTN with CAD (n = 72) and without CAD (n = 92) vs. n = 55 controls having only background HTN | Wang et al. [62] |
↑ progressively higher across advanced stages of CKD positive correlation with cIMT, hsCRP, and diabetes | CKD | n = 251 adults with CKD stages 1–5 vs. n= 60 controls | Yilmaz et al. [17] |
↑ positive correlation with cIMT | CKD | n = 30 adults with CKD stage 5 under hemodialysis, n = 30 adults with CKD not receiving hemodialysis vs. n= 30 controls | El-Senosy et al. [69] |
↑ | T2DM and diabetic nephropathy | n = 56 adults with nephropathy (microalbuminuria or macroalbuminuria) vs. n = 40 adults with normoalbuminuria and n = 35 healthy non-diabetic controls | Ekiz-Bilir et al. [8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klisic, A.; Patoulias, D. The Role of Endocan in Cardiometabolic Disorders. Metabolites 2023, 13, 640. https://doi.org/10.3390/metabo13050640
Klisic A, Patoulias D. The Role of Endocan in Cardiometabolic Disorders. Metabolites. 2023; 13(5):640. https://doi.org/10.3390/metabo13050640
Chicago/Turabian StyleKlisic, Aleksandra, and Dimitrios Patoulias. 2023. "The Role of Endocan in Cardiometabolic Disorders" Metabolites 13, no. 5: 640. https://doi.org/10.3390/metabo13050640
APA StyleKlisic, A., & Patoulias, D. (2023). The Role of Endocan in Cardiometabolic Disorders. Metabolites, 13(5), 640. https://doi.org/10.3390/metabo13050640