1. Introduction
Alzheimer’s disease (AD) is a progressive brain disorder. The National Institute on Aging defines it as a degenerative brain disorder that slowly destroys memory and thinking skills, eventually leading to the inability to carry out simple tasks [
1]. The definition from the Alzheimer’s Association describes AD as a progressive and degenerative disorder that affects brain cells, leading to memory loss and changes in behavior and personality [
2]. According to the
Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), AD is classified as a neurocognitive disorder that involves the gradual onset and continued decline of cognitive functioning, including memory, orientation, language, judgement, and reasoning [
3]. Having type 2 diabetes mellitus (T2D), a chronic metabolic illness, is known to raise the chance of AD by at least two-fold [
4,
5]. In 2021, 537 million people (10.5% of the population) were living with diabetes, with an estimated increase to 643 million in 2030 (11.3% of the population). It is believed that 24% of adults over the age of 75 have T2D [
6]. Dementia now affects about 55 million people worldwide and will reach 78 million by 2030. Age is the main risk factor for dementia, and the world’s population is aging, so the number of people affected by a form of dementia will increase, which means declining quality of life, dependency, institutionalization, mortality, and huge social and economic costs [
7]. Chronic hyperglycemia can cause neuronal damage through the formation of advanced glycation end products (AGEs), which trigger the synthesis of reactive oxygen species (ROS) and the production of pro-inflammatory cytokines, contributing to microvascular changes and systemic inflammation [
5]. The Rotterdam study was the first to show an increased risk of AD in patients with T2D [
8], but numerous other studies have since reported lower cognitive performance in people with T2D, compared to healthy controls of the same age [
9], or a faster rate of cognitive decline than that normally associated with natural aging [
10].
The study of global trends in diabetes since 1980 (751 studies on various populations, with 4.4 million participants) found that diabetes is a risk factor for dementia [
11]. Insulin resistance characteristic of T2D has been proposed as a pathogenic factor in the onset of AD by impairing cerebral glucose metabolism, leading to neurodegeneration and cognitive impairment. The explanation can be found in peripheral hyperinsulinemia and insulin deficiency in the brain, which decreases the permeability of the blood–brain barrier to insulin, as well as insulin receptor dysfunction, low levels of glucose-3 transporters (GLUT3) and of components of the insulin-signaling pathway, and IGF-1 in the central nervous system [
12]. Both T2D and AD show evidence of inflammation, oxidative stress, mitochondrial dysfunction, advanced glycation end products, and amyloid deposition [
13].
Diabetes and dementia are a global challenge for screening and management. Diets that can prevent or slow down the progression of the disease are being considered [
14]. Drugs that are effective in the treatment of T2D, including those which decrease insulin resistance and restore insulin-signaling pathways, by diminishing competitive inhibition on the insulin-degrading enzyme (IDE), can be used in AD (intranasal insulin, glucagon-like peptide-1 receptor agonists, peroxisome proliferator-activated receptor-gamma agonists, and others still under study) [
15].
Proper glycemic control in the stages of mild cognitive impairment (MCI) can induce the reversal of these disorders or slow the progression of the disease. Unfortunately, the extent of cognitive impairment is unknown because routine screening is not performed.
In order to be able to offer patients with metabolic syndrome the best care and to be as efficient as possible, it is useful to find a pattern that is easy to apply on a large scale. It needs to be inexpensive for the health systems but able to identify high-risk people and those who already have cognitive disorders in the early stages. In the first step, these patients can benefit from treatment for metabolic pathology that will also have a positive effect on neurodegenerative pathology (ex. GLP-1 RA, SGLT2-i) [
16,
17]. In the second step, the cognitive decline can be slowed down if they reach the psychiatrist/neurologist in the early phases, given the fact that promising evidence has been published on a new drug that results in moderately less decline in measures of cognition and function [
18].
The objectives of the study were to investigate the association between the severity of metabolic imbalances, insulin resistance, leptin levels, and the presence of cognitive disorders and to assess the possible protective roles of some classes of drugs used in the treatment of T2D and dyslipidemia in order to identify a viable target in the near future.
3. Results
We analyzed a group of 148 patients. Of these, 50 were men (33.78%). The mean age of these patients was 67.07 ± 5.79 years (
Table 1). All patients were known to have type 2 diabetes when they were enrolled in the study. The mean duration of diabetes was 8.3 ± 6.23 years (
Table 1). Most patients in the study group had comorbidities, dyslipidemia, and hypertension.
The mean value of WC was 108.52 ± 10.90 cm, and for the BMI, the value was 32.31 ± 5.36 kg/m
2 (
Table 1). The majority of the patients were overweight (n = 47, 31.8%) and obese (n = 95, 64.2%).
We analyzed the metabolic profiles of the patients included in the study, which consisted of a glycemic control outside the treatment targets (mean fasting blood glucose of 149.24 ± 41.48 mg/dL, mean HbA1c of 7.38 ± 1.2%). Additionally, regarding the lipid profiles of these patients, we found LDL-cholesterol outside the target values (100.12 ± 36.04 mg/dL) (
Table 1).
We analyzed the values of insulinemia and serum leptin in the study group. Based on the value of fasting insulinemia and blood glucose, we calculated the HOMA-IR index. This was moderately increased in the study group, thus identifying patients with insulin resistance (
Table 1).
Analyzing the results obtained in the MMSE questionnaire, we found a mean value of 25.55 ± 3.48, with a minimum score of 12 and a maximum score of 30. For the MoCA score, the mean value obtained in the study population was 20.63 ± 5.04 (
Table 1). Cognitive impairment was detected in 26.4% (n = 39) of patients when using the MMSE score and in 17.7% (n = 26) when using MoCA.
Almost all patients in the study group were treated with metformin (93.9%), and about one-third of patients were treated with insulin (27%) (
Table 2). The frequency of statin use was 68.9%.
More than a third of the patients in the study had microvascular complications, and almost one quarter of the patients had macrovascular complications (
Table 3).
We found a statistically significant positive correlation between the MMSE score and the level of education but not with the duration of diabetes. A statistically significant negative correlation was observed between the MMSE score and diabetes control parameters (HbA1c and glycemia). However, the MMSE score was not correlated with other parameters included in the definition of the metabolic syndrome (
Table 4).
On the other hand, the MoCA score was related to the anthropometric characteristics of the study population, with both waist circumference and BMI having a statistically significant negative correlation.
The results also showed a negative correlation between the leptin value and the MoCA score (
Table 4).
We also found no statistically significant correlations between MMSE or MOCA scores with the lipid profile, nor with insulinemia or the HOMA-IR index (
Table 4).
We analyzed the MMSE and MoCA scores based on the treatment of patients who might be affected by cognition, namely by insulin treatment and metformin treatment. We did not find statistically significant differences between the scores of patients receiving insulin treatment or metformin treatment vs. those who did not have this treatment (
Table 5).
The presence of diabetes-specific complications did not influence the MMSE score or the MoCA score, as shown in
Table 6.
Both scores were lower in patients with macrovascular complications; however, a statistically significant relationship was observed only in the case of the MoCA score (
Table 7).
The MMSE total score was related to HbA1c (
Table 4). When adjusted for age, HbA1c predicted the MMSE total score (β = −0.185,
p = 0.02). Thus, in our sample, it was observed that a higher HbA1c value predicted a lower MMSE total score (
Table 8). However, when adjusting for formal education, this relationship was not significant anymore (
Table 8).
The MoCA score was negatively related to clinical and biological parameters, which included WC, BMI, SBP, HbA1c, and leptin (
Table 4). This relationship was preserved for WC (β = −0.205,
p = 0.001), BMI (β = −0.182,
p = 0.003), and leptin (β = −0.136,
p = 0.032) when adjusted for age and formal education (
Table 9). HbA1c predicted the decrease in the MoCA score when adjusted for age (β = −0.181,
p = 0.021) but not for formal education (β = −0.106,
p = 0.083) (
Table 9).
4. Discussions
The field of research to assess mild cognitive impairment (MCI) is still a challenging domain. There are rare longitudinal studies published that note cognitive impairments in relation to metabolic syndrome elements (insulin resistance) [
24,
25,
26]. No test is actually diagnostic for MCI (It only assesses a degree of cognitive dysfunction.).
People with diabetes have many causes of cognitive decline (vascular and/or metabolic), and their screening should be performed periodically, as for any chronic complication. Cases with early impairment in orientation, attention, memory, language, and visual-spatial skills should be sent be to a neurologist for diagnosis (cerebrospinal fluid biomarkers, neuroimaging). For those without cognitive changes, the tests used can be a benchmark for further evolution. The pathology of neurodegenerative diseases is a continuum from the preclinical stages to the prodromal stages without obvious functional impact to dementia. Quantifying the cognitive impairment stage of MCI is a challenge because it appears to be a window of opportunity for diagnosis and treatment. There is no specific test to confirm the diagnosis of MCI [
27].
The diagnosis of MCI is misused, and it should meet the criteria listed in
Table 10.
In our sample, cognitive impairment was detected in 26.4% (n = 39) of patients when using the MMSE score and in 17.7% (n = 26) when using the MoCA score. In another study, MCI was observed in 38 (54.29%) patients with T2D, and normal cognition was observed in 32 (45.71%) [
29]. A study conducted in our country on T2D patients, aged between 33 and 81 years, found that a percentage of 42.03% of the patients presented MCI [
30].
In our study, the degree of formal education and the MMSE score showed a statistically significant positive relationship, but no relation was observed for the duration of diabetes. Diabetes management parameters and the MMSE score showed a statistically significant negative association (HbA1c and glycemia). The MMSE score, however, did not correspond with any of the other factors used to define metabolic syndrome. WC and BMI had a statistically significant negative relationship with the MoCA score, suggesting a link between the anthropometric characteristics of the study population and cognitive disfunction. In another study, performed on a group of 207 T2D patients from Timisoara, who were evaluated with MMSE and with psychological tests and neurological examination, including imaging (computerized tomography and magnetic resonance imaging), those with MCI had a mean age of 63 (57.00–71.00) years, older than patients without MCI, who had a mean age of 52.00 (45.00–61.00) years (
p < 0.001). Duration of diabetes and body fat were also correlated with MCI, similar to other components of macroangiopathy [
30]. In our study, WC, BMI, and leptin were negatively correlated with the MoCA score but not with the MMSE score.
Many studies in this field are on small groups of patients. For instance, in one study, 30 people over 50 years old, with and without DM, were evaluated with MMSE and Modified Mini-Mental Status Examination (3MS). Diabetes was associated with lower levels of cognitive function. The correlations between age, sex, duration of diabetes, and HbA1c among diabetics with impaired cognitive status were not significant [
31].
A larger cohort study on 1519 elderly people with DM grouped into three groups according to HbA1c, to which MMSE was applied, found thatHbA1c ≥ 8% was independently associated with the severity of cognitive decline [
32]. In our sample, there was a correlation between the MMSE total score and HbA1c; a higher HbA1c value predicted a lower MMSE total score. Nevertheless, this association lost significance when accounting for formal schooling.
In the Irish Longitudinal Study on Aging (TILDA), the association between DM in people over 50 years of age and cognitive decline was sought in a 6-year follow-up, using MMSE and MoCA (3687 participants were evaluated). At baseline, the prevalence of diabetes was 6.4%. Participants with DM had significantly lower MoCA and MMSE scores and a higher number of errors than those without DM. Age, male sex, stroke, and hypertension were significantly associated with a higher number of errors in the MMSE score at baseline. Over six years, DM was significantly associated with an accelerated decline in cognition [
33].
A previous study on 138 T2D patients showed a relationship between cognitive disfunction assessed by MMSE and MoCA scores and the BMI, HDL cholesterol, and HbA1c, similar to our results [
34].
Our results showed that clinical and biochemical variables, including leptin, WC, BMI, SBP, and HbA1c were inversely correlated with the MoCA score. When age and formal education were taken into account, this link was still present for WC, BMI, and leptin. When adjusted for age, HbA1c predicted the decline in the MoCA score, but not when the formal education was used as a predictor. These results could be explained by the difference in the sensitivity and specificity of the detection of mild cognitive disfunction by these scales, as shown in different studies. A study evaluated the MoCA test, applied to 70 patients with T2D, and the correlations with HbA1c, fasting, and postprandial blood glucose, age, and duration of diabetes. Those with MCI had higher HbA1c (8.79 ± 1.85 % vs. 7.78 ± 1.60 %), higher fasting blood glucose (177.05 ± 62.48 mg/dL vs. 149.38 ± 54.38 mg/dL), and higher postprandial blood glucose (282.03 ± 85.61 mg/dL vs. 214.50 ± 82.43 mg/dL), relations which were statistically significant [
29]. One pilot study compared MMSE with MoCA for the diagnosis of MCI in 30 patients with T2D (over 50 years in whom depression and dementia were excluded). The authors calculated sensitivity (MMSE 13%, MoCA 67%) and specificity (MMSE 93%, MoCA 93%), positive (MMSE 66%, MoCA 84%) and negative (MMSE 51%, MoCA 56%) predictive values, likelihood ratios (MMSE 1.8, MoCA 9.5), the Kappa statistic (MMSE 0.07, MoCA 0.4), and the area under the curve (AUC) (MMSE 0.46, MoCA 0.7). The MoCA appeared to be a better screening tool than the MMSE for MCI in the diabetic population [
35]. The metanalysis conducted by Ciesielska et al. [
36] suggested that the MoCA score better meets the criteria for screening tests for the detection of MCI among patients over 60 years of age than MMSE. This meta-analysis evaluated the credibility of MoCA vs. MMSE in the detection of MCI while considering sensitivity and specificity using cut-off points (20 studies for MoCA assessment and 13 for MMSE). Diagnostic accuracy for MoCA and MMSE was calculated by ROC curves. The MoCA test better fulfilled the criteria for screening tests in patients over 60 years of age than the MMSE (AUC for MoCA: 0.846, 95% CI 0.823–0.868; for MMSE: 0.736, 95% CI 0.718–0.767) [
36].
A longitudinal study showed that insulin resistance, rather than single elevation of blood glucose, predicts cognitive decline, particularly memory, in people with prediabetes [
37]. One review showed that metabolic syndrome contributes to the development and progression of AD; however, the factors linking this association have not been determined. IR is at the heart of metabolic syndrome and is probably the key link between metabolic syndrome and AD [
38]. Another review argued (through animal studies, as well as clinical studies) that insulin resistance is a risk factor for dementia and that treatments that combat it can be beneficial [
39].
These data and our results suggest that people with diabetes should be cognitively screened periodically, especially those with IR (manifested through as hyperinsulinism or increased WC).
Our study had some limitations. First of all, our sample size was relatively small, and further research is needed to establish the magnitude of the relationship between MetS components and cognitive decline in diabetic patients. Moreover, we did not include a control group consisting of non-diabetic individuals, which could have allowed us to make more inferences and comparisons on the influence of MetS components in the MCI.