Demographic, Health and Lifestyle Factors Associated with the Metabolome in Older Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Women’s Health Initiative Observational Study
2.2. Study Population
2.3. Metabolomics Analysis
2.3.1. Serum
2.3.2. Urine
2.4. Quality Controls (QC) Used in the Metabolite Analysis
2.5. Data Preprocessing and Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolstikov, V.; Moser, A.J.; Sarangarajan, R.; Narain, N.R.; Kiebish, M.A. Current Status of Metabolomic Biomarker Discovery: Impact of Study Design and Demographic Characteristics. Metabolites 2020, 10, 224. [Google Scholar] [CrossRef]
- Nagana Gowda, G.A.; Raftery, D. Biomarker Discovery and Translation in Metabolomics. Curr. Metab. 2013, 1, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Dang, N.H.; Singla, A.K.; Mackay, E.M.; Jirik, F.R.; Weljie, A.M. Targeted cancer therapeutics: Biosynthetic and energetic pathways characterized by metabolomics and the interplay with key cancer regulatory factors. Curr. Pharm. Des. 2014, 20, 2637–2647. [Google Scholar] [CrossRef] [PubMed]
- Lindon, J.C.; Nicholson, J.K. The emergent role of metabolic phenotyping in dynamic patient stratification. Expert Opin. Drug Metab. Toxicol. 2014, 10, 915–919. [Google Scholar] [CrossRef] [Green Version]
- Rhee, E.P.; Gerszten, R.E. Metabolomics and cardiovascular biomarker discovery. Clin. Chem. 2012, 58, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Mastrangelo, A.; Barbas, C. Chronic diseases and lifestyle biomarkers identification by metabolomics. Adv. Exp. Med. Biol. 2017, 965, 235–263. [Google Scholar]
- Fan, T.W.; Lorkiewicz, P.K.; Sellers, K.; Moseley, H.N.; Higashi, R.M.; Lane, A.N. Stable isotope-resolved metabolomics and applications for drug development. Pharmacol. Ther. 2012, 133, 366–391. [Google Scholar] [CrossRef] [Green Version]
- Nagana Gowda, G.A.; Gowda, Y.N.; Raftery, D. Expanding the limits of human blood metabolite quantitation using NMR spectroscopy. Anal. Chem. 2015, 87, 706–715. [Google Scholar] [CrossRef] [Green Version]
- Bingol, K.; Bruschweiler, R. Multidimensional approaches to NMR-based metabolomics. Anal. Chem. 2014, 86, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Powers, R. The current state of drug discovery and a potential role for NMR metabolomics. J. Med. Chem. 2014, 57, 5860–5870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larive, C.K.; Barding, G.A., Jr.; Dinges, M.M. NMR spectroscopy for metabolomics and metabolic profiling. Anal. Chem. 2015, 87, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Robinette, S.L.; Bruschweiler, R.; Schroeder, F.C.; Edison, A.S. NMR in metabolomics and natural products research: Two sides of the same coin. Acc. Chem. Res. 2012, 45, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Emwas, A.H.; Luchinat, C.; Turano, P.; Tenori, L.; Roy, R.; Salek, R.M.; Ryan, D.; Merzaban, J.S.; Kaddurah-Daouk, R.; Zeri, A.C.; et al. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: A review. Metabolomics 2015, 11, 872–894. [Google Scholar] [CrossRef] [Green Version]
- Nagana Gowda, G.A.; Raftery, D. Advances in NMR Based Metabolomics. In Fundamentals of Advanced Omics Technologies: From Genes to Metabolites; Simó, C., Cifuentes, A., García-Cañas, V., Eds.; Elsevier: New York, NY, USA, 2014. [Google Scholar]
- Fan, T.; Lane, A.N.; Higashi, R.M. The Handbook of Metabolomics. Methods in Pharmacology and Toxicology; Springer: New York, NY, USA, 2012. [Google Scholar]
- Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef]
- Chan, E.C.; Pasikanti, K.K.; Nicholson, J.K. Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat. Protoc. 2011, 6, 1483–1499. [Google Scholar] [CrossRef]
- Want, E.J.; Masson, P.; Michopoulos, F.; Wilson, I.D.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Loftus, N.; Holmes, E.; Nicholson, J.K. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 2013, 8, 17–32. [Google Scholar] [CrossRef]
- Dunn, W.B.; Broadhurst, D.I.; Atherton, H.J.; Goodacre, R.; Griffin, J.L. Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev. 2011, 40, 387–426. [Google Scholar] [CrossRef]
- Yuan, M.; Breitkopf, S.B.; Yang, X.; Asara, J.M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 2012, 7, 872–881. [Google Scholar] [CrossRef] [Green Version]
- Raftery, D. Mass Spectrometry in Metabolomics-Methods and Protocols. In Methods in Molecular Biology; Walker, J., Ed.; Springer: New York, NY, USA, 2014. [Google Scholar]
- Djukovic, D.; Gowda, G.A.N.; Raftery, D. Mass Spectrometry and NMR Spectroscopy–Based Quantitative Metabolomics. In Proteomic and Metabolomic Approaches to Biomarker Discovery; Issaq, H.J., Veenstra, T.D., Eds.; Elsevier: London, UK, 2013; pp. 279–297. [Google Scholar]
- Tebani, A.; Bekri, S. Paving the Way to Precision Nutrition Through Metabolomics. Front. Nutr. 2019, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Bar, N.; Korem, T.; Weissbrod, O.; Zeevi, D.; Rothschild, D.; Leviatan, S.; Kosower, N.; Lotan-Pompan, M.; Weinberger, A.; Le Roy, C.I.; et al. A reference map of potential determinants for the human serum metabolome. Nature 2020, 588, 135–140. [Google Scholar] [CrossRef]
- Chen, C.; Deng, L.; Wei, S.; Nagana Gowda, G.A.; Gu, H.; Chiorean, E.G.; Abu Zaid, M.; Harrison, M.L.; Pekny, J.F.; Loehrer, P.J.; et al. Exploring metabolic profile differences between colorectal polyp patients and controls using seemingly unrelated regression. J. Proteome Res. 2015, 14, 2492–2499. [Google Scholar] [CrossRef] [Green Version]
- Altmaier, E.; Fobo, G.; Heier, M.; Thorand, B.; Meisinger, C.; Romisch-Margl, W.; Waldenberger, M.; Gieger, C.; Illig, T.; Adamski, J.; et al. Metabolomics approach reveals effects of antihypertensives and lipid-lowering drugs on the human metabolism. Eur. J. Epidemiol. 2014, 29, 325–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S. Metabolomic Studies for Metabolic Alterations Induced by Non-Steroidal Anti-Inflammatory Drugs: Mini Review. Biomolecules 2021, 11, 1456. [Google Scholar] [CrossRef] [PubMed]
- Tokarz, J.; Adamski, J. Confounders in metabolomics. In Metabolomics for Biomedical Research; Adamski, J., Ed.; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Posma, J.M.; Garcia-Perez, I.; Ebbels, T.M.D.; Lindon, J.C.; Stamler, J.; Elliott, P.; Holmes, E.; Nicholson, J.K. Optimized phenotypic biomarker discovery and confounder elimination via covariate-adjusted projection to latent structures from metabolic spectroscopy data. J. Proteome Res. 2018, 17, 1586–1595. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Gowda, G.A.N.; Zhu, J.; Deng, L.; Gu, H.; Chiorean, E.G.; Zaid, M.A.; Harrison, M.; Zhang, D.; Zhang, M.; et al. Altered metabolite levels and correlations in patients with colorectal cancer and polyps detected using seemingly unrelated regression analysis. Metabolomics 2017, 13, 125. [Google Scholar] [CrossRef] [PubMed]
- Brennan, L.; Gibbons, H. Sex matters: A focus on the impact of biological sex on metabolomic profiles and dietary interventions. Proc. Nutr. Soc. 2020, 79, 205–209. [Google Scholar] [CrossRef]
- Cirulli, E.T.; Guo, L.; Leon Swisher, C.; Shah, N.; Huang, L.; Napier, L.A.; Kirkness, E.F.; Spector, T.D.; Caskey, C.T.; Thorens, B.; et al. Profound perturbation of the metabolome in obesity is associated with health risk. Cell Metab. 2019, 29, 488–500.e2. [Google Scholar] [CrossRef] [Green Version]
- Anderson, G.L.; Manson, J.; Wallace, R.; Lund, B.; Hall, D.; Davis, S.; Shumaker, S.; Wang, C.Y.; Stein, E.; Prentice, R.L. Implementation of the Women’s Health Initiative study design. Ann. Epidemiol. 2003, 13 (Suppl. 9), S5–S17. [Google Scholar] [CrossRef] [PubMed]
- Neuhouser, M.L.; Di, C.; Tinker, L.F.; Thomson, C.; Sternfeld, B.; Mossavar-Rahmani, Y.; Stefanick, M.L.; Sims, S.; Curb, J.D.; Lamonte, M.; et al. Physical activity assessment: Biomarkers and self-report of activity-related energy expenditure in the WHI. Am. J. Epidemiol. 2013, 177, 576–585. [Google Scholar] [CrossRef]
- The Women’s Health Initiative Study Group. Design of the Women’s Health Initiative clinical trial and observational study. Control Clin. Trials 1998, 19, 61–109. [Google Scholar] [CrossRef]
- Prentice, R.L.; Mossavar-Rahmani, Y.; Huang, Y.; Van Horn, L.; Beresford, S.A.; Caan, B.; Tinker, L.; Schoeller, D.; Bingham, S.; Eaton, C.B.; et al. Evaluation and comparison of food records, recalls, and frequencies for energy and protein assessment by using recovery biomarkers. Am. J. Epidemiol. 2011, 174, 591–603. [Google Scholar] [CrossRef] [Green Version]
- Women Health Initiative Nutrition and Physical Activity Ancillary Study Manual. Available online: https://sp.whi.org/researchers/data/WHIStudies/StudySites/AS218/_layouts/15/WopiFrame.aspx?sourcedoc=/researchers/data/WHIStudies/StudySites/AS218/Study%20Documents/NPAAS%20Manual%20v2%20070307.pdf&action=default (accessed on 22 May 2022).
- Tinker, L.F.; Huang, Y.; Johnson, K.C.; Carbone, L.D.; Snetselaar, L.; Van Horn, L.; Manson, J.E.; Liu, S.; Mossavar-Rahmani, Y.; Prentice, R.L.; et al. Estimating 24-hour urinary excretion of sodium and potassium is more reliable from 24-hour urine than spot urine sample in a feeding study of us older postmenopausal women. Curr. Dev. Nutr. 2021, 5, nzab125. [Google Scholar] [CrossRef] [PubMed]
- Patterson, R.E.; Levy, L.; Tinker, L.F.; Kristal, A.R. Evaluation of a simplified vitamin supplement inventory developed for the Women’s Health Initiative. Public Health Nutr. 1999, 2, 273–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, C.; Gowda, G.A.N.; Raftery, D.; Neuhouser, M.L.; Tinker, L.F.; Prentice, R.L.; Beresford, S.A.A.; Zhang, Y.; Bettcher, L.; Pepin, R.; et al. Evaluation of potential metabolomic-based biomarkers of protein, carbohydrate and fat intakes using a controlled feeding study. Eur. J. Nutr. 2021, 60, 4207–4218. [Google Scholar] [CrossRef]
- Navarro, S.L.; Tarkhan, A.; Shojaie, A.; Randolph, T.W.; Gu, H.; Djukovic, D.; Osterbauer, K.J.; Hullar, M.A.; Kratz, M.; Neuhouser, M.L.; et al. Plasma metabolomics profiles suggest beneficial effects of a low-glycemic load dietary pattern on inflammation and energy metabolism. Am. J. Clin. Nutr. 2019, 110, 984–992. [Google Scholar] [CrossRef]
- Dibay Moghadam, S.; Navarro, S.L.; Shojaie, A.; Randolph, T.W.; Bettcher, L.F.; Le, C.B.; Hullar, M.A.; Kratz, M.; Neuhouser, M.L.; Lampe, P.D.; et al. Plasma lipidomic profiles after a low and high glycemic load dietary pattern in a randomized controlled crossover feeding study. Metabolomics 2020, 16, 121. [Google Scholar] [CrossRef]
- Ghorasaini, M.; Mohammed, Y.; Adamski, J.; Bettcher, L.; Bowden, J.A.; Cabruja, M.; Contrepois, K.; Ellenberger, M.; Gajera, B.; Haid, M.; et al. Cross-Laboratory Standardization of Preclinical Lipidomics Using Differential Mobility Spectrometry and Multiple Reaction Monitoring. Anal. Chem. 2021, 93, 16369–16378. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E.; et al. HMDB 3.0-The Human Metabolome Database in 2013. Nucleic Acids Res. 2013, 41, D801–D807. [Google Scholar] [CrossRef]
- Ulrich, E.L.; Akutsu, H.; Doreleijers, J.F.; Harano, Y.; Ioannidis, Y.E.; Lin, J.; Livny, M.; Mading, S.; Maziuk, D.; Miller, Z.; et al. BioMagResBank. Nucleic Acids Res. 2008, 36, D402–D408. [Google Scholar] [CrossRef] [Green Version]
- Johnsen, L.G.; Skou, P.B.; Khakimov, B.; Bro, R. Gas chromatography-mass spectrometry data processing made easy. J. Chromatogr. A 2017, 1503, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.; Follis, S.; Thomson, C.A.; Breathett, K.; Cene, C.W.; Jimenez, M.; Kooperberg, C.; Masaki, K.; Paskett, E.D.; Pettinger, M.; et al. Taking action to advance the study of race and ethnicity: The Women’s Health Initiative (WHI). Womens Midlife Health 2022, 8, 1. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate-a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Met 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Srivastava, S. Emerging insights into the metabolic alterations in aging using metabolomics. Metabolites 2019, 9, 301. [Google Scholar] [CrossRef] [Green Version]
- Adav, S.S.; Wang, Y. Metabolomics signatures of aging: Recent advances. Aging Dis. 2021, 12, 646–661. [Google Scholar] [CrossRef] [PubMed]
- Carayol, M.; Leitzmann, M.F.; Ferrari, P.; Zamora-Ros, R.; Achaintre, D.; Stepien, M.; Schmidt, J.A.; Travis, R.C.; Overvad, K.; Tjonneland, A.; et al. Blood metabolic signatures of body mass index: A targeted metabolomics study in the EPIC Cohort. J. Proteome Res. 2017, 16, 3137–3146. [Google Scholar] [CrossRef] [PubMed]
- Hancox, T.P.M.; Skene, D.J.; Dallmann, R.; Dunn, W.B. Tick-Tock Consider the Clock: The Influence of Circadian and External Cycles on Time of Day Variation in the Human Metabolome-A Review. Metabolites 2021, 11, 328. [Google Scholar] [CrossRef]
- Minami, Y.; Kasukawa, T.; Kakazu, Y.; Iigo, M.; Sugimoto, M.; Ikeda, S.; Yasui, A.; van der Horst, G.T.; Soga, T.; Ueda, H.R. Measurement of internal body time by blood metabolomics. Proc. Natl. Acad. Sci. USA 2009, 106, 9890–9895. [Google Scholar] [CrossRef] [Green Version]
- Dallmann, R.; Viola, A.U.; Tarokh, L.; Cajochen, C.; Brown, S.A. The human circadian metabolome. Proc. Natl. Acad. Sci. USA 2012, 109, 2625–2629. [Google Scholar] [CrossRef] [Green Version]
- Voutilainen, T.; Karkkainen, O. Changes in the human metabolome associated with alcohol use: A review. Alcohol Alcohol. 2019, 54, 225–234. [Google Scholar] [CrossRef]
- Jaremek, M.; Yu, Z.; Mangino, M.; Mittelstrass, K.; Prehn, C.; Singmann, P.; Xu, T.; Dahmen, N.; Weinberger, K.M.; Suhre, K.; et al. Alcohol-induced metabolomic differences in humans. Transl. Psychiatry 2013, 3, e276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrigan, G.G.; Maguire, G.; Boros, L. Metabolomics in alcohol research and drug development. Alcohol Res. Health 2008, 31, 26–35. [Google Scholar] [PubMed]
- Jeon, S.; Carr, R. Alcohol effects on hepatic lipid metabolism. J. Lipid Res. 2020, 61, 470–479. [Google Scholar] [CrossRef] [Green Version]
- Baraona, E.; Lieber, C.S. Effects of ethanol on lipid metabolism. J. Lipid Res. 1979, 20, 289–315. [Google Scholar] [CrossRef]
- Patterson, R.E.; Kristal, A.R.; Tinker, L.F.; Carter, R.A.; Bolton, M.P.; Agurs-Collins, T. Measurement characteristics of the Women’s Health Initiative food frequency questionnaire. Ann. Epidemiol. 1999, 9, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Kristal, A.R.; Vizenor, N.C.; Patterson, R.E.; Neuhouser, M.L.; Shattuck, A.L.; McLerran, D. Precision and bias of food frequency-based measures of fruit and vegetable intakes. Cancer Epidemiol. Biomark. Prev. 2000, 9, 939–944. [Google Scholar]
- Prentice, R.L.; Huang, Y.; Tinker, L.F.; Beresford, S.A.; Lampe, J.W.; Neuhouser, M.L. Statistical aspects of the use of biomarkers in nutritional epidemiology research. Stat. Biosci. 2009, 1, 112–123. [Google Scholar] [CrossRef] [Green Version]
- Wagner-Golbs, A.; Neuber, S.; Kamlage, B.; Christiansen, N.; Bethan, B.; Rennefahrt, U.; Schatz, P.; Lind, L. Effects of Long-Term Storage at -80 degrees C on the Human Plasma Metabolome. Metabolites 2019, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.; Domingues, M.R.; Galhano, E.; Pita, C.; Almeida Mdo, C.; Carreira, I.M.; Gil, A.M. Human plasma stability during handling and storage: Impact on NMR metabolomics. Analyst 2014, 139, 1168–1177. [Google Scholar] [CrossRef]
- An, Z.; Shi, C.; Li, P.; Liu, L. Stability of amino acids and related amines in human serum under different preprocessing and pre-storage conditions based on iTRAQ((R))-LC-MS/MS. Biol. Open 2021, 10, bio055020. [Google Scholar] [CrossRef]
- Lampe, J.W.; Huang, Y.; Neuhouser, M.L.; Tinker, L.F.; Song, X.; Schoeller, D.A.; Kim, S.; Raftery, D.; Di, C.; Zheng, C.; et al. Dietary biomarker evaluation in a controlled feeding study in women from the Women’s Health Initiative cohort. Am. J. Clin. Nutr. 2017, 105, 466–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prentice, R.L.; Pettinger, M.; Zheng, C.; Neuhouser, M.L.; Raftery, D.; Gowda, G.A.N.; Huang, Y.; Tinker, L.F.; Howard, B.V.; Manson, J.E.; et al. Biomarkers for Components of Dietary Protein and Carbohydrate with Application to Chronic Disease Risk in Postmenopausal Women. J. Nutr. 2022, 152, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Pettinger, M.; Gowda, G.A.N.; Lampe, J.W.; Raftery, D.; Tinker, L.F.; Huang, Y.; Navarro, S.L.; O’Brien, D.M.; Snetselaar, L.; et al. Biomarker-calibrated red and combined red and processed meat intakes with chronic disease risk in a cohort of postmenopausal women. J. Nutr. 2022, 152, 1711–1720. [Google Scholar] [CrossRef] [PubMed]
Variable a | Mean ± SD or n (%) b |
---|---|
Demographic | |
Age (years) | 69.0 (6.1) |
Body mass index (kg/m2) | 28.2 (6.0) |
<25 | 156 (35%) |
25–29 | 120 (27%) |
≥30 | 171 (38%) |
Education | |
≤High school | 64 (14%) |
Some college | 155 (36%) |
≥College degree | 222 (50%) |
Income | |
<USD 50 K/y | 42 (10%) |
≥USD 50 K/y | 402 (90%) |
Married | 285 (64%) |
Race c | |
White | 315 (71%) |
Black | 79 (18%) |
Asian | <10 (<1%) |
American Indian/Alaskan Native | <10 (<1%) |
More than one race | <10 (<1%) |
Unknown/not reported | <10 (<1%) |
Ethnicity | |
Hispanic/Latina | 68 (15%) |
Diet and lifestyle | |
Energy intake (kcal/d) | 1619 (608) |
Alcohol (drinks/week) | 2.3 (4.3) |
Current smoker | 11 (2%) |
Physical activity (MET h/week) | 16.9 (range 0–85) |
Dietary supplements d | |
Multivitamin | 9 (2%) |
Multivitamin plus minerals | 249 (66%) |
Stress multi-supplement | 21 (5%) |
Other supplement mixture (non-stress/multi) | 255 (57%) |
Any combination pills | 347 (78%) |
Single-ingredient supplements | 226 (51%) |
Medications | |
ACE inhibitors | 40 (9%) |
Angiotensin receptor agonists | 24 (5%) |
Betablockers | 38 (9%) |
Bisphosphonates | 38 (9%) |
Calcium channel blockers | 45 (10%) |
Diuretic combinations/thiazides | 60 (14%) |
HMG CoA reductase inhibitors | 83 (19%) |
Non-steroidal anti-inflammatory drugs | 30 (7%) |
Proton pump inhibitors | 36 (8%) |
Thyroid hormones | 56 (13%) |
Other covariates | |
Sample storage time (years) | 11.3 (1.1) |
Season of FFQ completion | |
Fall | 116 (26%) |
Winter | 120 (27%) |
Spring | 126 (28%) |
Summer | 82 (19%) |
LCMS Serum | ||||
---|---|---|---|---|
Covariate | Metabolite | Rho a | p-Value | FDR b |
Age (years; continuous) | Pseudouridine | 0.37 | 1.20 × 10−15 | 1.95 × 10−13 |
Arabitol/Xylitol | 0.34 | 1.60 × 10−13 | 2.57 × 10−11 | |
N2,N2, Dimethylguanosine | 0.33 | 2.20 × 10−12 | 3.38 × 10−10 | |
Inositol | 0.27 | 7.00 × 10−9 | 1.07 × 10−6 | |
7-Methylguanine | 0.27 | 7.30 × 10−9 | 1.11 × 10−6 | |
Homocitrulline | 0.26 | 2.20 × 10−8 | 3.27 × 10−6 | |
5-Hydroxyl-indole-3-acetic acid | 0.26 | 3.60 × 10−8 | 5.50 × 10−6 | |
N6, Acetyllysine | 0.25 | 9.50 × 10−8 | 1.43 × 10−5 | |
Glucuronate | 0.25 | 1.40 × 10−7 | 2. × 10−5 | |
N-formylmethionine | 0.24 | 1.80 × 10−7 | 2.63 × 10−5 | |
2-Oxoisocaproic acid | −0.23 | 5.80 × 10−7 | 8.45 × 10−5 | |
N-Acetylneuraminate | 0.23 | 6.20 × 10−7 | 9.13 × 10−5 | |
Threonic/Erythronic acid | 0.23 | 1.10 × 10−6 | 0.0002 | |
SAH | 0.22 | 4.00 × 10−6 | 0.0006 | |
N-Acetylalanine | 0.21 | 5.80 × 10−6 | 0.0008 | |
Orotate | 0.20 | 2.40 × 10−5 | 0.003 | |
N-Carbamoylbalanine | 0.20 | 2.40 × 10−5 | 0.005 | |
Phenylacetylglutamine | 0.19 | 6.80 × 10−5 | 0.009 | |
Body Mass Index (continuous) | Urate | 0.41 | 2.10 × 10−19 | 3.22 × 10−17 |
N-Acetylglycine | −0.29 | 3.50 × 10−10 | 5.49 × 10−8 | |
Glutamic acid | 0.27 | 5.30 × 10−9 | 8.18 × 10−7 | |
Cortisol | −0.27 | 1.10 × 10−8 | 1.76 × 10−6 | |
Oxalacetate | −0.25 | 7.00 × 10−8 | 1.07 × 10−5 | |
Glycine | −0.25 | 8.00 × 10−8 | 1.21 × 10−5 | |
Pyruvate | 0.24 | 3.10 × 10−7 | 4.74 × 10−5 | |
Tyrosine | 0.24 | 4.90 × 10−7 | 7.32 × 10−5 | |
Isovalerylcarnitine | 0.23 | 8.70 × 10−7 | 0.0001 | |
Asparagine | −0.23 | 1.30 × 10−6 | 0.0002 | |
Citrulline | −0.23 | 1.70 × 10−6 | 0.0003 | |
Guanidinoacetate | −0.21 | 8.80 × 10−6 | 0.001 | |
Proline | 0.20 | 1.70 × 10−5 | 0.002 | |
Glucose | 0.20 | 2.70 × 10−5 | 0.004 | |
4-Pyridoxic acid | −0.19 | 4.60 × 10−5 | 0.007 | |
Valine | 0.19 | 5.20 × 10−5 | 0.007 | |
Race (Blacks versus non-Hispanic whites) | Ornithine | −0.29 | 8.39 × 10−9 | 1.32 × 10−6 |
Inosine | 0.28 | 6.53 × 10−8 | 1.02 × 10−5 | |
Trigonelline | −0.28 | 7.10 × 10−8 | 1.1 × 10−5 | |
γ-Tocopherol | 0.27 | 2.11 × 10−7 | 3.24 × 10−5 | |
Guanosine | 0.26 | 3.72 × 10−7 | 5.69 × 10−5 | |
Pantothenate | −0.26 | 7.19 × 10−7 | 0.0001 | |
Taurine | −0.24 | 5.22 × 10−6 | 0.0008 | |
Hydroxyproline | 0.23 | 6.16 × 10−6 | 0.0009 | |
Genistate | −0.21 | 4.83 × 10−5 | 0.007 | |
Creatinine | 0.21 | 5.12 × 10−5 | 0.008 | |
N-Acetylglutamine | 0.21 | 5.13 × 10−5 | 0.008 | |
Xanthosine | 0.21 | 6.03 × 10−5 | 0.009 | |
Ethnicity (Hispanic whites versus non-Hispanic whites) | Taurine | −0.23 | 1.56 × 10−5 | 0.002 |
Chenodeoxycholate | 0.23 | 1.89 × 10−5 | 0.003 | |
Threonic acid/Erythronic acid | −0.22 | 2.83 × 10−5 | 0.004 | |
Alcohol (drinks/week; continuous) | 2-Hydroxyisovaleric acid | 0.33 | 1.30 × 10−12 | 2.04 × 10−10 |
Aarabitol/Xylitol | 0.22 | 2.75 × 10−6 | 0.0004 | |
Inositol | 0.20 | 1.68 × 10−5 | 0.003 | |
Multivitamin use (yes/no) | Pantothenate | 0.47 | 1.87 × 10−25 | 2.93 × 10−23 |
4-Pyridoxic acid | 0.34 | 3.48 × 10−13 | 5.42 × 10−11 | |
Riboflavin | 0.19 | 5.71 × 10−5 | 0.009 | |
Non-stress combination supplement (yes/no) | Pantothenate | 0.30 | 1.91 × 10−10 | 3.00 × 10−8 |
4-Pyridoxic acid | 0.28 | 3.35 × 10−9 | 5.23 × 10−7 | |
Any combination supplement (yes/no) | Pantothenate | 0.46 | 4.00 × 10−24 | 6.28 × 10−22 |
4-Pyridoxic acid | 0.40 | 2.20 × 10−18 | 3.43 × 10−16 | |
A-Tocopherol | 0.20 | 1.48 × 10−5 | 0.002 | |
2-Hydroxyisovaleric acid | −0.20 | 1.83 × 10−5 | 0.003 | |
Proline | −0.19 | 4.23 × 10−5 | 0.006 | |
Leucic acid | −0.19 | 4.44 × 10−5 | 0.007 | |
Single formulation supplement (yes/no) | 4-Pyridoxic acid | 0.21 | 9.99 × 10−6 | 0.002 |
Pantothenate | 0.19 | 6.03 × 10−5 | 0.009 |
LIPID Serum Class Absolute Quantitation | |||
---|---|---|---|
Class a | Rho b | p-Value | FDR c |
Body mass index (continuous) | |||
LPC (8/17) | −0.31 | 1.90 × 10−11 | 2.46 × 10−11 |
LPE (4/8) | −0.30 | 1.50 × 10−10 | 1.76 × 10−9 |
DAG (13/29) | 0.27 | 1.40 × 10−8 | 1.56 × 10−7 |
TAG (258/487) | 0.26 | 2.30 × 10−8 | 2.26 × 10−7 |
Alcohol (drinks/week) | |||
PC (8/68) | 0.23 | 7.50 × 10−7 | 0.0006 |
Race (Black versus non-Hispanic white) | |||
LPC (10/17) | −0.36 | 6.21 × 10−13 | 8.07 × 10−12 |
LPE (4/8) | −0.32 | 6.64 × 10−10 | 7.97 × 10−9 |
PC (25/68) | −0.19 | 0.0003 | 0.004 |
DAG (7/29) | −0.18 | 0.0004 | 0.004 |
TAG (138/487) | −0.18 | 0.0006 | 0.005 |
Non-stress combination supplement (yes/no) | |||
LPC (1/17) | 0.18 | 0.0001 | 0.003 |
Any combination supplement (yes/no) | |||
LPC (2/17) | 0.19 | 0.0004 | 0.0005 |
NMR 24 h Urine | |||
---|---|---|---|
Metabolite | Rho a | p-Value | FDR b |
Age (continuous) | |||
4-Hydroxyhippuric acid | 0.24 | 4.60 × 10−7 | 3.06 × 10−5 |
Glucose | 0.22 | 3.90 × 10−6 | 0.0003 |
Body Mass Index (continuous) | |||
Fumarate | −0.19 | 0.0001 | 0.006 |
Alcohol (drinks/week; continuous) | |||
Ethyl alcohol | 0.58 | 1.15 × 10−39 | 5.16 × 10−46 |
Propanediol | 0.41 | 5.10 × 10−10 | 3.34 × 10−17 |
Fumarate | 0.31 | 3.30 × 10−11 | 2.11 × 10−9 |
3-Hydroxyisovaleric acid | 0.27 | 9.20 × 10−9 | 5.77 × 10−7 |
Succinic acid | 0.26 | 2.80 × 10−9 | 1.72 × 10−6 |
Acetate | 0.25 | 2.00 × 10−7 | 1.2 × 10−5 |
N-Methylnicotinic acid | 0.24 | 7.20 × 10−7 | 4.32 × 10−5 |
Isobutyrate | 0.23 | 1.70 × 10−6 | 0.0001 |
Proline | 0.22 | 3.00 × 10−6 | 0.0002 |
Lactate | 0.21 | 7.10 × 10−6 | 0.0004 |
Glycolate | 0.21 | 7.80 × 10−6 | 0.0004 |
Tyrosine | 0.21 | 9.10 × 10−6 | 0.0005 |
Hippurate | 0.21 | 1.3 × 10−5 | 0.0007 |
Pseudouridine | 0.21 | 1.40 × 10−5 | 0.0007 |
Threonine | 0.20 | 1.9 × 10−5 | 0.001 |
2-Hydroxyisobutyrate | 0.20 | 2.4 × 10−5 | 0.001 |
1-Methylhistidine | 0.20 | 2.6 × 10−5 | 0.001 |
Valine | 0.19 | 5.3 × 10−5 | 0.003 |
N-Methylnicotinamide | 0.19 | 5.7 × 10−5 | 0.003 |
4-Hydroxyphenylacetate | 0.19 | 6.6 × 10−5 | 0.003 |
Acetone | 0.19 | 8.7 × 10−5 | 0.004 |
Glutamine | 0.19 | 8.8 × 10−5 | 0.004 |
Guanidinoacetate | 0.19 | 0.0001 | 0.005 |
Leucine | 0.18 | 0.0002 | 0.009 |
Scylloinositol | 0.18 | 0.0002 | 0.009 |
Sample storage time (years; continuous) | |||
Succinic acid | 0.23 | 1.70 × 10−6 | 0.0001 |
Orotic acid | 0.22 | 3.90 × 10−6 | 0.0003 |
Pseudouridine | 0.21 | 1.4 × 10−5 | 0.0009 |
Tyrosine | 0.20 | 1.8 × 10−5 | 0.001 |
Ascorbic acid | 0.20 | 1.8 × 10−5 | 0.001 |
Fumarate | 0.19 | 5.1 × 10−5 | 0.003 |
1-Methylhistidine | 0.19 | 6.5 × 10−5 | 0.004 |
Proline | 0.19 | 8.1 × 10−5 | 0.005 |
Threonine | 0.19 | 8.6 × 10−5 | 0.005 |
Scylloinositol | 0.19 | 9.4 × 10−5 | 0.005 |
Ureahippurate | 0.18 | 0.0001 | 0.006 |
Acetone | 0.18 | 0.0002 | 0.008 |
Methionine | 0.18 | 0.0002 | 0.008 |
Valine | 0.18 | 0.0002 | 0.009 |
Citrate | 0.18 | 0.0002 | 0.009 |
Race (Blacks versus non-Hispanic whites) | |||
Fumarate | −0.37 | 4.89 × 10−13 | 3.23 × 10−11 |
1-Methylhistidine | −0.36 | 8.74 × 10−13 | 5.68 × 10−11 |
Succinicacid | −0.36 | 3.28 × 10−12 | 2.10 × 10−10 |
Glycolate | −0.34 | 3.60 × 10−11 | 2.27 × 10−9 |
Hippurate | −0.34 | 4.73 × 10−11 | 2.94 × 10−9 |
N-Methylnicotinicacid | −0.33 | 1.88 × 10−10 | 1.15 × 10−8 |
Proline | −0.29 | 1.19 × 10−8 | 7.16 × 10−7 |
Tyrosine | −0.29 | 3.05 × 10−8 | 1.77 × 10−6 |
Formate | −0.28 | 3.65 × 10−8 | 2.08 × 10−6 |
Acetate | −0.27 | 1.11 × 10−7 | 6.09 × 10−6 |
Glycine | −0.27 | 1.15 × 10−7 | 6.22 × 10−6 |
N-Methylnicotinamide | −0.27 | 1.32 × 10−7 | 7.01 × 10−6 |
Citrate | −0.27 | 1.47 × 10−7 | 7.63 × 10−6 |
Creatine | −0.27 | 1.80 × 10−7 | 9.16 × 10−6 |
Ethyl alcohol | −0.27 | 2.13 × 10−7 | 1.07 × 10−5 |
Glucose | −0.27 | 2.92 × 10−7 | 1.41 × 10−5 |
Allantoin | −0.27 | 2.94 × 10−7 | 1.41 × 10−5 |
Isobutyrate | −0.26 | 3.20 × 10−7 | 1.47 × 10−5 |
Glutamine | −0.26 | 4.58 × 10−7 | 2.06 × 10−5 |
Threonine | −0.26 | 7.26 × 10−7 | 3.2 × 10−5 |
Methionine | −0.26 | 7.83 × 10−7 | 3.37 × 10−5 |
Guanidinoacetate | −0.25 | 1.19 × 10−6 | 5.02 × 10−5 |
Ascorbic acid | −0.25 | 1.38 × 10−6 | 5.54 × 10−5 |
Valine | −0.25 | 1.54 × 10−6 | 6.0 × 10−5 |
Acetone | −0.25 | 2.18 × 10−6 | 8.27 × 10−5 |
Uracil | −0.24 | 3.27 × 10−6 | 0.0001 |
Leucine | −0.24 | 3.31 × 10−6 | 0.0001 |
2-Oxoglutarate | −0.24 | 3.79 × 10−6 | 0.0001 |
Pseudouridine | −0.23 | 7.12 × 10−6 | 0.0002 |
Alanine | −0.23 | 1.1 × 10−5 | 0.0004 |
Urea | −0.22 | 1.69 × 10−5 | 0.0005 |
Scylloinositol | −0.22 | 1.86 × 10−5 | 0.0006 |
Methylguanidine | −0.22 | 2.46 × 10−5 | 0.0007 |
3-Hydroxyisovaleric acid | −0.22 | 3.45 × 10−5 | 0.001 |
4-Hydroxyphenylacetate | −0.22 | 3.63 × 10−5 | 0.001 |
Acetoacetate | −0.21 | 4.12 × 10−5 | 0.001 |
Trimethylamine | −0.21 | 5.16 × 10−5 | 0.001 |
Isoleucine | −0.21 | 6.57 × 10−5 | 0.002 |
Histidine | −0.20 | 0.0001 | 0.003 |
Phosphocholine | −0.20 | 0.0001 | 0.003 |
Orotic acid | −0.19 | 0.0002 | 0.004 |
2-Hydroxyisobutyrate | −0.18 | 0.0005 | 0.009 |
Ethnicity (Hispanic whites vs. Non-Hispanic whites) | |||
Citrate | −0.21 | 7.01 × 10−5 | 0.005 |
Ascorbic acid | −0.21 | 7.76 × 10−5 | 0.005 |
GC-MS 24 h Urine | |||
---|---|---|---|
Metabolite | Rho a | p-Value | FDR b |
Alcohol (drinks/week; continuous) | |||
D-Galacturonic acid | 0.37 | 8.20 × 10−16 | 8.77 × 10−14 |
L-Threonine | 0.27 | 6.50 × 10−9 | 6.89 × 10−7 |
Methyl-3,4-dimethoxyphenyl hydroxy acetate | 0.26 | 6.70 × 10−8 | 7.04 × 10−6 |
Decanoic acid | 0.24 | 2.70 × 10−7 | 2.81 × 10−5 |
Indol-5-ol | 0.24 | 5.10 × 10−7 | 5.25 × 10−5 |
D-Talose | 0.23 | 1.10 × 10−6 | 0.0001 |
Methylglycocholate | 0.21 | 6.80 × 10−6 | 0.0007 |
D-Psicose | 0.21 | 1.3 × 10−5 | 0.001 |
Paracetamol | 0.21 | 1.52 × 10−5 | 0.001 |
α-D-Glucopyranoside, methyl-2-(acetylamino)-2-deoxy- cyclicboronate | 0.20 | 2.3 × 10−5 | 0.002 |
Levoglucosan | 0.20 | 2.3 × 10−5 | 0.002 |
Dodecanoic acid | 0.20 | 3.31 × 10−5 | 0.003 |
Tartaric acid | 0.20 | 3.33 × 10−5 | 0.003 |
Quininic acid | 0.20 | 3.5 × 10−5 | 0.003 |
D-Ribofuranose | 0.20 | 3.8 × 10−5 | 0.004 |
Hexadecanoic acid | 0.19 | 8.4 × 10−5 | 0.008 |
D-Glucose, 6-O-α-D- galactopyanosyl | 0.19 | 0.0001 | 0.009 |
Sample storage time (years; continuous) | |||
Tartaric acid | 0.21 | 1.0 × 10−5 | 0.001 |
Gabapentin-lactam | 0.19 | 6.4 × 10−5 | 0.007 |
D-Talose | 0.19 | 9.4 × 10−5 | 0.009 |
Race (Black versus non-Hispanic white) | |||
Pentanedioic acid | −0.24 | 2.20 × 10−7 | 2.35 × 10−5 |
Levoglucosan | −0.22 | 2.00 × 10−6 | 0.0002 |
a-D-Glucopyranoside, methyl-2-(acetylamino)-2-deoxy-3-O | −0.21 | 8.10 × 10−6 | 0.0009 |
Gabapentin-lactam | −0.20 | 2.1 × 10−5 | 0.00 |
D-Tagatose | −0.20 | 3.6 × 10−5 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro, S.L.; Nagana Gowda, G.A.; Bettcher, L.F.; Pepin, R.; Nguyen, N.; Ellenberger, M.; Zheng, C.; Tinker, L.F.; Prentice, R.L.; Huang, Y.; et al. Demographic, Health and Lifestyle Factors Associated with the Metabolome in Older Women. Metabolites 2023, 13, 514. https://doi.org/10.3390/metabo13040514
Navarro SL, Nagana Gowda GA, Bettcher LF, Pepin R, Nguyen N, Ellenberger M, Zheng C, Tinker LF, Prentice RL, Huang Y, et al. Demographic, Health and Lifestyle Factors Associated with the Metabolome in Older Women. Metabolites. 2023; 13(4):514. https://doi.org/10.3390/metabo13040514
Chicago/Turabian StyleNavarro, Sandi L., G. A. Nagana Gowda, Lisa F. Bettcher, Robert Pepin, Natalie Nguyen, Mathew Ellenberger, Cheng Zheng, Lesley F. Tinker, Ross L. Prentice, Ying Huang, and et al. 2023. "Demographic, Health and Lifestyle Factors Associated with the Metabolome in Older Women" Metabolites 13, no. 4: 514. https://doi.org/10.3390/metabo13040514
APA StyleNavarro, S. L., Nagana Gowda, G. A., Bettcher, L. F., Pepin, R., Nguyen, N., Ellenberger, M., Zheng, C., Tinker, L. F., Prentice, R. L., Huang, Y., Yang, T., Tabung, F. K., Chan, Q., Loo, R. L., Liu, S., Wactawski-Wende, J., Lampe, J. W., Neuhouser, M. L., & Raftery, D. (2023). Demographic, Health and Lifestyle Factors Associated with the Metabolome in Older Women. Metabolites, 13(4), 514. https://doi.org/10.3390/metabo13040514