Control Analysis of Cooperativity and Complementarity in Metabolic Regulations: The Case of NADPH Homeostasis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Distribution of Control Coefficients in Absence of Feedback Regulation
3.2. Feedback Inhibitions of PPP and Upper Glycolysis Synergistically Cooperate for Efficient PPP Flux Rerouting
3.3. Ros-Dependent Inhibition of Glycolytic Enzymes Expands NADPH Homeostatic Abilities
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MCA | Metabolic control analysis |
PPP | Pentose phosphate pathway |
ROS | Reactive oxygen species |
G6P | Glucose-6-phosphate |
F6P | Fructose-6-phosphate |
FBP | Fructose-1,6-bisphosphate |
GAP | Glyceraldehyde-3-phosphate |
6PG | 6-phosphogluconate |
R5P | Ribose 5-phosphate |
PKM2 | Pyruvate kinase muscle isozyme M2 |
PFKFB3 | Phosphofructo-2-kinase fructose-2,6-bisphosphatase-3 |
NH,NADPH | Nicotinamide adenine dinucleotide phosphate hydrogen |
N,NADP | Nicotinamide adenine dinucleotide phosphate |
OX | Oxidative stress |
GR | Glutathione reductase |
HK | Hexokinase |
G6PD | G6P dehydrogenase |
6PGD | 6PG dehydrogenase |
PRP | Phosphoribosyl pyrophosphate |
PGI | Phosphoglucose isomerase |
PFK | Phosphofructokinase (type 1) |
FBPase | Fructose-1,6-bisphosphatase |
ALD | Fructose 1,6 bisphosphate aldolase |
GAPD | GAP dehydrogenase |
TKT | Transketolase |
Appendix A. Kinetic Model
- RPI, RPE, TKT1, TKT2, and TAL are pooled to form a single reaction for the nonoxidative branch of the PPP (S7P, E4P metabolites are not included).
- ALD and TPI are pooled (DHAP metabolite is not included).
- GP and GRX are pooled (GSSG, GSH are not included).
- Catalase reaction degrading H2O2 is neglected.
Appendix B. Matrix Equation for Control Coefficients
Appendix C. Computation of Control Manifolds
Appendix C.1. Control Analysis of Regulatory Crosstalk r1,2,3
- All those asymptotic relations are proportional to , justifying the use of the normalized control coefficient (Figure 3).
- Equation (A11a) shows that a PPP flux control driven by NADPH+ cofactor binding to G6PD (no regulation) has an upper bound of .
- Equation (A11b) expresses that promotes PPP flux control (i) independently on , (ii) especially for small .
- Equation (A11c) defines the complex nonlinear interplay between contributions of , , and .
- Equation (A11d) shows indeed that alone, even very large, cannot increase PPP flux control.
Appendix C.2. Control Analysis of Regulatory Crosstalk r 1,4,5
- Positive values of which is increased by regulation following Equation (A12f), but also regulation .
- The effect of those regulations is enhanced by large directional PGI flux from F6P to G6P.
- The effect of is amplified by large directional PGI flux from G6P to F6P.
- The two items above indicate that efficient regulation of NADPH homeostasis by requires high values of both with an upper bound given by:
References
- Kacser, H. The control of flux. Symp. Soc. Exp. Biol. 1973, 27, 65–104. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, R.; Rapoport, T.A. A linear steady-state treatment of enzymatic chains: General properties, control and effector strength. Eur. J. Biochem. 1974, 42, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Birol, I.; Hatzimanikatis, V. Metabolic control analysis under uncertainty: Framework development and case studies. Biophys. J. 2004, 87, 3750–3763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauro, H.M. Control and regulation of pathways via negative feedback. J. R. Soc. Interface 2017, 14, 20160848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Z.; Locasale, J.W. Thermodynamic constraints on the regulation of metabolic fluxes. J. Biol. Chem. 2018, 293, 19725–19739. [Google Scholar] [CrossRef] [Green Version]
- Hameri, T.; Boldi, M.O.; Hatzimanikatis, V. Statistical inference in ensemble modeling of cellular metabolism. PLoS Comput. Biol. 2019, 15, e1007536. [Google Scholar] [CrossRef] [Green Version]
- Cannon, W.R.; Britton, S.R.; Alber, M. Learning Regulation and Optimal Control of Enzyme Activities. Biophys. J. 2020, 118, 134a–135a. [Google Scholar] [CrossRef]
- Tsouka, S.; Ataman, M.; Hameri, T.; Miskovic, L.; Hatzimanikatis, V. Constraint-based metabolic control analysis for rational strain engineering. Metab. Eng. 2021, 66, 191–203. [Google Scholar] [CrossRef]
- Liebermeister, W. Structural thermokinetic modelling. Metabolites 2022, 12, 434. [Google Scholar] [CrossRef]
- Machado, D.; Herrgård, M.J.; Rocha, I. Modeling the contribution of allosteric regulation for flux control in the central carbon metabolism of E. coli. Front. Bioeng. Biotechnol. 2015, 3, 154. [Google Scholar] [CrossRef] [Green Version]
- Reznik, E.; Christodoulou, D.; Goldford, J.E.; Briars, E.; Sauer, U.; Segrè, D.; Noor, E. Genome-scale architecture of small molecule regulatory networks and the fundamental trade-off between regulation and enzymatic activity. Cell Rep. 2017, 20, 2666–2677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millard, P.; Smallbone, K.; Mendes, P. Metabolic regulation is sufficient for global and robust coordination of glucose uptake, catabolism, energy production and growth in Escherichia coli. PLoS Comput. Biol. 2017, 13, e1005396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locasale, J.W. New concepts in feedback regulation of glucose metabolism. Curr. Opin. Syst. Biol. 2018, 8, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Sander, T.; Farke, N.; Diehl, C.; Kuntz, M.; Glatter, T.; Link, H. Allosteric feedback inhibition enables robust amino acid biosynthesis in E. coli by enforcing enzyme overabundance. Cell Syst. 2019, 8, 66–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millard, P.; Enjalbert, B.; Uttenweiler-Joseph, S.; Portais, J.C.; Létisse, F. Control and regulation of acetate overflow in Escherichia coli. eLife 2021, 10, e63661. [Google Scholar] [CrossRef]
- Stincone, A.; Prigione, A.; Cramer, T.; Wamelink, M.M.; Campbell, K.; Cheung, E.; Olin-Sandoval, V.; Grüning, N.M.; Krüger, A.; Tauqeer Alam, M.; et al. The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. 2015, 90, 927–963. [Google Scholar] [CrossRef] [Green Version]
- Kuehne, A.; Emmert, H.; Soehle, J.; Winnefeld, M.; Fischer, F.; Wenck, H.; Gallinat, S.; Terstegen, L.; Lucius, R.; Hildebrand, J.; et al. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol. Cell 2015, 59, 359–371. [Google Scholar] [CrossRef] [Green Version]
- Hurbain, J.; Thommen, Q.; Anquez, F.; Pfeuty, B. Quantitative modeling of pentose phosphate pathway response to oxidative stress reveals a cooperative regulatory strategy. iScience 2022, 25, 104681. [Google Scholar] [CrossRef]
- Xiao, W.; Loscalzo, J. Metabolic responses to reductive stress. Antioxid. Redox Signal. 2020, 32, 1330–1347. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.M.; Chandel, N.S.; Hay, N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012, 485, 661–665. [Google Scholar] [CrossRef] [Green Version]
- Gelman, S.J.; Naser, F.; Mahieu, N.G.; McKenzie, L.D.; Dunn, G.P.; Chheda, M.G.; Patti, G.J. Consumption of NADPH for 2-HG synthesis increases pentose phosphate pathway flux and sensitizes cells to oxidative stress. Cell Rep. 2018, 22, 512–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Ye, J.; Kamphorst, J.J.; Shlomi, T.; Thompson, C.B.; Rabinowitz, J.D. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 2014, 510, 298–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, P.; Sun, H.; Xu, C.; Chen, T.; Zou, B.; Jiang, P.; Du, W. Evidence for a direct cross-talk between malic enzyme and the pentose phosphate pathway via structural interactions. J. Biol. Chem. 2017, 292, 17113–17120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luzzatto, L. Regulation of the activity of glucose-6-phosphate dehydrogenase by NADP+ and NADPH. Biochim. Biophys. Acta 1967, 146, 18–25. [Google Scholar] [CrossRef]
- Yoshida, A.; Lin, M. Regulation of glucose-6-phosphate dehydrogenase activity in red blood cells from hemolytic and nonhemolytic variant subjects. Blood 1973, 41, 877–891. [Google Scholar] [CrossRef]
- Eggleston, L.V.; Krebs, H.A. Regulation of the pentose phosphate cycle. Biochem. J. 1974, 138, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Dubreuil, M.M.; Morgens, D.W.; Okumoto, K.; Honsho, M.; Contrepois, K.; Lee-McMullen, B.; Traber, G.M.; Sood, R.S.; Dixon, S.J.; Snyder, M.P.; et al. Systematic identification of regulators of oxidative stress reveals non-canonical roles for peroxisomal import and the pentose phosphate pathway. Cell Rep. 2020, 30, 1417–1433. [Google Scholar] [CrossRef]
- Ralser, M.; Wamelink, M.M.; Latkolik, S.; Jansen, E.E.; Lehrach, H.; Jakobs, C. Metabolic reconfiguration precedes transcriptional regulation in the antioxidant response. Nat. Biotechnol. 2009, 27, 604–605. [Google Scholar] [CrossRef]
- Seo, M.; Lee, Y.H. PFKFB3 regulates oxidative stress homeostasis via its S-glutathionylation in cancer. J. Mol. Biol. 2014, 426, 830–842. [Google Scholar] [CrossRef] [Green Version]
- Peralta, D.; Bronowska, A.K.; Morgan, B.; Dóka, É.; Van Laer, K.; Nagy, P.; Gräter, F.; Dick, T.P. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 2015, 11, 156–163. [Google Scholar] [CrossRef]
- van der Reest, J.; Lilla, S.; Zheng, L.; Zanivan, S.; Gottlieb, E. Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress. Nat. Commun. 2018, 9, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reder, C. Metabolic control theory: A structural approach. J. Theor. Biol. 1988, 135, 175–201. [Google Scholar] [CrossRef]
- Matsuda, F.; Maeda, K.; Okahashi, N. Computational data mining method for isotopomer analysis in the quantitative assessment of metabolic reprogramming. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dick, T.P.; Ralser, M. Metabolic remodeling in times of stress: Who shoots faster than his shadow? Mol. Cell 2015, 59, 519–521. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, D.; Link, H.; Fuhrer, T.; Kochanowski, K.; Gerosa, L.; Sauer, U. Reserve flux capacity in the pentose phosphate pathway enables Escherichia coli’s rapid response to oxidative stress. Cell Syst. 2018, 6, 569–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webby, C.J.; Jiao, W.; Hutton, R.D.; Blackmore, N.J.; Baker, H.M.; Baker, E.N.; Jameson, G.B.; Parker, E.J. Synergistic allostery, a sophisticated regulatory network for the control of aromatic amino acid biosynthesis in Mycobacterium tuberculosis. J. Biol. Chem. 2010, 285, 30567–30576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghode, A.; Gross, L.Z.; Tee, W.V.; Guarnera, E.; Berezovsky, I.N.; Biondi, R.M.; Anand, G.S. Synergistic allostery in multiligand-protein interactions. Biophys. J. 2020, 119, 1833–1848. [Google Scholar] [CrossRef]
- Höfer, T.; Heinrich, R. A second-order approach to metabolic control analysis. J. Theor. Biol. 1993, 164, 85–102. [Google Scholar] [CrossRef]
- Pearse, B.M.; Rosemeyer, M.A. Human 6-Phosphogluconate Dehydrogenase: Purification of the Erythrocyte Enzyme and the Influence of Ions and NADPH on its Activity. Eur. J. Biochem. 1974, 42, 213–223. [Google Scholar] [CrossRef]
- Pearse, B.M.; Rosemeyer, M.A. 6-Phosphogluconate dehydrogenase from human erythrocytes. Meth. Enzymol. 1975, 41, 220–226. [Google Scholar]
- Du, W.; Jiang, P.; Mancuso, A.; Stonestrom, A.; Brewer, M.D.; Minn, A.J.; Mak, T.W.; Wu, M.; Yang, X. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat. Cell Biol. 2013, 15, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Veech, R.L.; Fell, D.A. Distribution control of metabolic flux. Cell Biochem. Funct. 1996, 14, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Stelling, J.; Klamt, S.; Bettenbrock, K.; Schuster, S.; Gilles, E.D. Metabolic network structure determines key aspects of functionality and regulation. Nature 2002, 420, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; Dinkova-Kostova, A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 2014, 39, 199–218. [Google Scholar] [CrossRef]
- Pfeuty, B.; Thommen, Q. Adaptive benefits of storage strategy and dual AMPK/TOR signaling in metabolic stress response. PLoS ONE 2016, 11, e0160247. [Google Scholar] [CrossRef] [Green Version]
- Hoxhaj, G.; Manning, B.D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 2020, 20, 74–88. [Google Scholar] [CrossRef]
- Park, J.O.; Tanner, L.B.; Wei, M.H.; Khana, D.B.; Jacobson, T.B.; Zhang, Z.; Rubin, S.A.; Li, S.H.J.; Higgins, M.B.; Stevenson, D.M.; et al. Near-equilibrium glycolysis supports metabolic homeostasis and energy yield. Nat. Chem. Biol. 2019, 15, 1001–1008. [Google Scholar] [CrossRef]
- Britt, E.C.; Lika, J.; Giese, M.A.; Schoen, T.J.; Seim, G.L.; Huang, Z.; Lee, P.Y.; Huttenlocher, A.; Fan, J. Switching to the cyclic pentose phosphate pathway powers the oxidative burst in activated neutrophils. Nat. Metab. 2022, 4, 389–403. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfeuty, B.; Hurbain, J.; Thommen, Q. Control Analysis of Cooperativity and Complementarity in Metabolic Regulations: The Case of NADPH Homeostasis. Metabolites 2023, 13, 485. https://doi.org/10.3390/metabo13040485
Pfeuty B, Hurbain J, Thommen Q. Control Analysis of Cooperativity and Complementarity in Metabolic Regulations: The Case of NADPH Homeostasis. Metabolites. 2023; 13(4):485. https://doi.org/10.3390/metabo13040485
Chicago/Turabian StylePfeuty, Benjamin, Julien Hurbain, and Quentin Thommen. 2023. "Control Analysis of Cooperativity and Complementarity in Metabolic Regulations: The Case of NADPH Homeostasis" Metabolites 13, no. 4: 485. https://doi.org/10.3390/metabo13040485
APA StylePfeuty, B., Hurbain, J., & Thommen, Q. (2023). Control Analysis of Cooperativity and Complementarity in Metabolic Regulations: The Case of NADPH Homeostasis. Metabolites, 13(4), 485. https://doi.org/10.3390/metabo13040485