Metabolomic-Based Studies of the Intake of Virgin Olive Oil: A Comprehensive Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Metabolomics Approaches in Humans
3.2. Metabolomics Approaches in Experimental Studies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schwingshackl, L.; Hoffmann, G. Monounsaturated fatty acids, olive oil and health status: A systematic review and meta-analysis of cohort studies. Lipids Health Dis. 2014, 13, 154. [Google Scholar] [CrossRef] [Green Version]
- Weijers, R.N. Membrane flexibility, free fatty acids, and the onset of vascular and neurological lesions in type 2 diabetes. J. Diabetes Metab. Disord. 2016, 15, 13. [Google Scholar] [CrossRef] [Green Version]
- Covas, M.I.; Ruiz-Gutierrez, V.; De La Torre, R.; Kafatos, A.; Lamuela-Raventoos, R.M.; Osada, J.; Owen, R.W.; Visioli, F. Minor components of olive oil: Evidence to date of health benefits in humans. Nutr. Rev. 2006, 64, S20–S30. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive compounds and quality of extra virgin olive oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gomez-Caravaca, A.M.; Segura-Carretero, A.; Fernandez-Gutierrez, A.; Lercker, G. Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority (EFSA). Scientific Opinion on the substantiation of health claims related to polyphenols in olive oil and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal pressure (ID 3781), “anti-inflammatory properties” (ID 1882), “contributes to the upper respiratory tract health” (ID 3468), “can help to maintain a normal fuction of gastrointestinal tract” (3779), and “dontributes to body defences against external agents” (ID 3467) pursuant to Article 13 of Regulation (EC) No. 1924/2006. EFSA J. 2011, 9, 2033. [Google Scholar] [CrossRef]
- Karković-Marković, A.; Torić, J.; Barbarić, M.; Jakobušić-Brala, C. Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules 2019, 24, 2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldsmith, C.; Bond, D.; Jankowski, H.; Weidenhofer, J.; Stathopoulos, C.; Roach, P.; Scarlett, C. The olive biophenols oleuropein and hydroxytyrosol selectively reduce proliferation, influence the cell cycle, and induce apoptosis in pancreatic cancer cells. Int. J. Mol. Sci. 2018, 19, 1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allouche, Y.; Jimenez, A.; Uceda, M.; Aguilera, M.P.; Gaforio, J.J.; Beltran, G. Triterpenic content and chemometric analysis of virgin olive oils from forty olive cultivars. J. Agric. Food Chem. 2009, 57, 3604–3610. [Google Scholar] [CrossRef] [PubMed]
- Pozo, O.J.; Pujadas, M.; Gleeson, S.B.; Mesa-Garcia, M.D.; Pastor, A.; Kotronoulas, A.; Fito, M.; Covas, M.I.; Navarro, J.R.F.; Espejo, J.A.; et al. Liquid chromatography tandem mass spectrometric determination of triterpenes in human fluids: Evaluation of markers of dietary intake of olive oil and metabolic disposition of oleanolic acid and maslinic acid in humans. Anal. Chim. Acta 2017, 990, 84–95. [Google Scholar] [CrossRef]
- De la Torre, R.; Carbo, M.; Pujadas, M.; Biel, S.; Mesa, M.D.; Covas, M.I.; Exposito, M.; Espejo, J.A.; Sanchez-Rodriguez, E.; Diaz-Pellicer, P.; et al. Pharmacokinetics of maslinic and oleanolic acids from olive oil–Effects on endothelial function in healthy adults. A randomized, controlled, dose–response study. Food Chem. 2020, 322, 126676. [Google Scholar] [CrossRef] [PubMed]
- Santos-Lozano, J.M.; Rada, M.; Lapetra, J.; Guinda, A.; Jimenez-Rodriguez, M.C.; Cayuela, J.A.; Angel-Lugo, A.; Vilches-Arenas, A.; Gomez-Martin, A.M.; Ortega-Calvo, M.; et al. Prevention of type 2 diabetes in prediabetic patients by using functional olive oil enriched in oleanolic acid: The PREDIABOLE study, a randomized controlled trial. Diabetes Obes. Metab. 2019, 21, 2526–2534. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Rodriguez, E.; Biel-Glesson, S.; Fernandez-Navarro, J.R.; Calleja, M.A.; Espejo-Calvo, J.A.; Gil-Extremera, B.; La Torre, R.D.; Fito, M.; Covas, M.I.; Vilchez, P.; et al. Effects of virgin olive oils differing in their bioactive compound contents on biomarkers of oxidative stress and inflammation in healthy adults: A randomized double-blind controlled trial. Nutrients 2019, 11, 561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claro-Cala, C.M.; Quintela, J.C.; Perez-Montero, M.; Miñano, J.; de Sotomayor, M.A.; Herrera, M.D.; Rodriguez-Rodriguez, R. Pomace olive oil concentrated in triterpenic acids restores vascular function, glucose tolerance and obesity progression in mice. Nutrients 2020, 12, 323. [Google Scholar] [CrossRef] [Green Version]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Stefanis, D.; Scimè, S.; Accomazzo, S.; Catti, A.; Occhipinti, A.; Bertea, C.M.; Costelli, P. Anti-proliferative effects of an extra-virgin olive oil extract enriched in ligstroside aglycone and oleocanthal on human liver cancer cell lines. Cancers 2019, 11, 1640. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Miranda, B.; Gallardo, I.; Melliou, E.; Cabero, I.; Álvarez, Y.; Hernández, M.; Magiatis, P.; Hernández, M.; Nieto, M.L. Treatment with the olive secoiridoid oleacein protects against the intestinal alterations associated with EAE. Int. J. Mol. Sci. 2023, 24, 4977. [Google Scholar] [CrossRef]
- Rangel-Huerta, O.D.; Pastor-Villaescusa, B.; Aguilera, C.M.; Gil, A. A systematic review of the efficacy of bioactive compounds in cardiovascular disease: Phenolic compounds. Nutrients 2015, 7, 5177–5216. [Google Scholar] [CrossRef] [Green Version]
- Ryan, D.; Robards, K. Metabolomics: The greatest omics of them all? Anal. Chem. 2006, 78, 7954–7958. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, M.A.; Ruiz-Canela, M.; Hruby, A.; Liang, L.; Trichopoulou, A.; Hu, F.B. Intervention trials with the mediterranean diet in cardiovascular prevention: Understanding potential mechanisms through metabolomic profiling. J. Nutr. 2015, 146, 913S–919S. [Google Scholar] [CrossRef] [Green Version]
- Lioupi, A.; Nenadis, N.; Theodoridis, G. Virgin olive oil metabolomics: A review. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1150, 122161. [Google Scholar] [CrossRef] [PubMed]
- Magagna, F.; Valverde-Som, L.; Ruiz-Samblas, C.; Cuadros-Rodriguez, L.; Reichenbach, S.E.; Bicchi, C.; Cordero, C. Combined untargeted and targeted fingerprinting with comprehensive two-dimensional chromatography for volatiles and ripening indicators in olive oil. Anal. Chim. Acta 2016, 936, 245–258. [Google Scholar] [CrossRef]
- Baharum, S.N.; Azizan, K.A. Metabolomics in systems biology. Adv. Exp. Med. Biol. 2018, 1102, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Aszyk, J.; Byliński, H.; Namieśnik, J.; Kot-Wasik, A. Main strategies, analytical trends and challenges in LC-MS and ambient mass spectrometry–based metabolomics. TrAC-Trends Anal. Chem. 2018, 108, 278–295. [Google Scholar] [CrossRef]
- Vaiano, F.; Busardò, F.P.; Palumbo, D.; Kyriakou, C.; Fioravanti, A.; Catalani, V.; Mari, F.; Bertol, E. A novel screening method for 64 new psychoactive substances and 5 amphetamines in blood by LC–MS/MS and application to real cases. J. Pharm. Biomed. Anal. 2016, 129, 441–449. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Fresno, R.; Llorach, R.; Urpi-Sarda, M.; Lupianez-Barbero, A.; Estruch, R.; Corella, D.; Fito, M.; Aros, F.; Ruiz-Canela, M.; Salas-Salvado, J.; et al. Metabolomic pattern analysis after mediterranean diet intervention in a nondiabetic population: A 1- and 3-year follow-up in the PREDIMED study. J. Proteome Res. 2015, 14, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.D.; Toledo, E.; Hruby, A.; Rosner, B.A.; Willett, W.C.; Sun, Q.; Razquin, C.; Zheng, Y.; Ruiz-Canela, M.; Guasch-Ferré, M.; et al. Plasma ceramides, Mediterranean diet, and incident cardiovascular disease in the PREDIMED Trial (Prevención con Dieta Mediterránea). Circulation 2017, 135, 2028–2040. [Google Scholar] [CrossRef] [Green Version]
- Toledo, E.; Wang, D.D.; Ruiz-Canela, M.; Clish, C.B.; Razquin, C.; Zheng, Y.; Guasch-Ferre, M.; Hruby, A.; Corella, D.; Gomez-Gracia, E.; et al. Plasma lipidomic profiles and cardiovascular events in a randomized intervention trial with the Mediterranean diet. Am. J. Clin. Nutr. 2017, 106, 973–983. [Google Scholar] [CrossRef]
- Errazuriz, I.; Dube, S.; Slama, M.; Visentin, R.; Nayar, S.; O’Connor, H.; Cobelli, C.; Das, S.K.; Basu, A.; Kremers, W.K.; et al. Randomized controlled trial of a MUFA or fiber-rich diet on hepatic fat in prediabetes. J. Clin. Endocrinol. Metab. 2017, 102, 1765–1774. [Google Scholar] [CrossRef] [Green Version]
- Yu, E.; Ruiz-Canela, M.; Guasch-Ferre, M.; Zheng, Y.; Toledo, E.; Clish, C.B.; Salas-Salvado, J.; Liang, L.; Wang, D.D.; Corella, D.; et al. Increases in plasma tryptophan are inversely associated with incident cardiovascular disease in the prevención con dieta mediterránea (PREDIMED) Study. J. Nutr. 2017, 147, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Guasch-Ferre, M.; Santos, J.L.; Martinez-Gonzalez, M.A.; Clish, C.B.; Razquin, C.; Wang, D.; Liang, L.; Li, J.; Dennis, C.; Corella, D.; et al. Glycolysis/gluconeogenesis- and tricarboxylic acid cycle–related metabolites, Mediterranean diet, and type 2 diabetes. Am. J. Clin. Nutr. 2020, 111, 835–844. [Google Scholar] [CrossRef]
- Gonzalez-Dominguez, R.; Jauregui, O.; Queipo-Ortuño, M.I.; Andres-Lacueva, C. Characterization of the human exposome by a comprehensive and quantitative large-scale multianalyte metabolomics platform. Anal. Chem. 2020, 92, 13767–13775. [Google Scholar] [CrossRef]
- Fernandez-Castillejo, S.; Pedret, A.; Catalan, U.; Valls, R.M.; Farràs, M.; Rubio, L.; Castañer, O.; Macià, A.; Fito, M.; Motilva, M.J.; et al. Virgin olive oil phenolic compounds modulate the hdl lipidome in hypercholesterolaemic subjects: A lipidomic analysis of the VOHF Study. Mol. Nutr. Food Res. 2021, 65, 2001192. [Google Scholar] [CrossRef] [PubMed]
- Farras, M.; Swann, J.R.; Rowland, I.; Rubio, L.; Subirana, I.; Catalan, U.; Motilva, M.J.; Sola, R.; Covas, M.I.; Blanco-Vaca, F.; et al. Impact of phenol-enriched olive oils on serum metabonome and its relationship with cardiometabolic parameters: A randomized, double-blind, cross-over, controlled trial. Antioxidants 2022, 11, 1964. [Google Scholar] [CrossRef]
- Ferreiro-Vera, C.; Priego-Capote, F.; Calderon-Santiago, M.; Luque de Castro, M.D. Global metabolomic profiling of human serum from obese individuals by liquid chromatography-time-of-flight/mass spectrometry to evaluate the intake of breakfasts prepared with heated edible oils. Food Chem. 2013, 141, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, K.; Melliou, E.; Li, X.; Pedersen, T.L.; Wang, S.C.; Magiatis, P.; Newman, J.W.; Holt, R.R. Oleocanthal-rich extra virgin olive oil demonstrates acute anti-platelet effects in healthy men in a randomized trial. J. Funct. Foods 2017, 36, 84–93. [Google Scholar] [CrossRef]
- Wang, P.S.; Kuo, C.H.; Yang, H.C.; Liang, Y.J.; Huang, C.J.; Sheen, L.Y.; Pan, W.H. Postprandial metabolomics response to various cooking oils in humans. J. Agric. Food Chem. 2018, 66, 4977–4984. [Google Scholar] [CrossRef]
- Mellert, W.; Kapp, M.; Strauss, V.; Wiemer, J.; Kamp, H.; Walk, T.; Looser, R.; Prokoudine, A.; Fabian, E.; Krennrich, G.; et al. Nutritional impact on the plasma metabolome of rats. Toxicol. Lett. 2011, 207, 173–181. [Google Scholar] [CrossRef]
- Poudyal, H.; Lemonakis, N.; Efentakis, P.; Gikas, E.; Halabalaki, M.; Andreadou, I.; Skaltsounis, L.; Brown, L. Hydroxytyrosol ameliorates metabolic, cardiovascular and liver changes in a rat model of diet-induced metabolic syndrome: Pharmacological and metabolism-based investigation. Pharmacol. Res. 2017, 117, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Lemonakis, N.; Poudyal, H.; Halabalaki, M.; Brown, L.; Tsarbopoulos, A.; Skaltsounis, A.L.; Gikas, E. The LC–MS-based metabolomics of hydroxytyrosol administration in rats reveals amelioration of the metabolic syndrome. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1041–1042, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Dagla, I.; Benaki, D.; Baira, E.; Lemonakis, N.; Poudyal, H.; Brown, L.; Tsarbopoulos, A.; Skaltsounis, A.L.; Mikros, E.; Gikas, E. Alteration in the liver metabolome of rats with metabolic syndrome after treatment with hydroxytyrosol. A mass spectrometry and nuclear magnetic resonance-based metabolomics study. Talanta 2018, 178, 246–257. [Google Scholar] [CrossRef]
- Ma, Q.Q.; Chen, Q.; Shen, Z.H.; Li, D.L.; Han, T.; Qin, J.G.; Chen, L.Q.; Du, Z.Y. The metabolomics responses of Chinese mitten-hand crab (Eriocheir sinensis) to different dietary oils. Aquaculture 2017, 479, 188–199. [Google Scholar] [CrossRef]
- Ma, Q.Q.; Wang, X.D.; Cui, Y.Y.; Zhang, N.N.; Qin, J.G.; Du, Z.Y.; Chen, L.Q. Untargeted GC-MS metabolomics reveals metabolic differences in the Chinese mitten-hand crab (Eriocheir sinensis) fed with dietary palm oil or olive oil. Aquac. Nutr. 2018, 24, 1623–1637. [Google Scholar] [CrossRef]
- Zhi-hao, Z.; Ai-min, S.; Rui, G.; Hong-zhi, L.; Hui, H.; Qiang, W. Protective effect of high-oleic acid peanut oil and extra-virgin olive oil in rats with diet-induced metabolic syndrome by regulating branched-chain amino acids metabolism. J. Integr. Agric. 2022, 21, 878–891. [Google Scholar] [CrossRef]
- Ruocco, C.; Ragni, M.; Tedesco, L.; Segala, A.; Servili, M.; Riccardi, G.; Carruba, M.O.; Valerio, A.; Nisoli, E.; Visioli, F. Molecular and metabolic effects of extra-virgin olive oil on the cardiovascular gene signature in rodents. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1571–1582. [Google Scholar] [CrossRef]
- Fernandez-Arroyo, S.; Gomez-Martinez, A.; Rocamora-Reverte, L.; Quirantes-Pine, R.; Segura-Carretero, A.; Fernandez-Gutierrez, A.; Ferragut, J.A. Application of nanoLC-ESI-TOF-MS for the metabolomic analysis of phenolic compounds from extra-virgin olive oil in treated colon-cancer cells. J. Pharm. Biomed. Anal. 2012, 63, 128–134. [Google Scholar] [CrossRef]
- Rocchetti, G.; Senizza, B.; Giuberti, G.; Montesano, D.; Trevisan, M.; Lucini, L. Metabolomic study to evaluate the transformations of extra-virgin olive oil’s antioxidant phytochemicals during in vitro gastrointestinal digestion. Antioxidants 2020, 9, 302. [Google Scholar] [CrossRef] [Green Version]
- Estruch, R.; Ros, E.; Salas-Salvado, J.; Covas, M.I.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Lelis-Lopes, L.; Gouveia-Peluzio, M.C.; Hermsdorff, H.H.M. Monounsaturated fatty acid intake and lipid metabolism. J. Vasc. Bras. 2016, 15, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Miro-Casas, E.; Covas, M.I.; Farre, M.; Fito, M.; Ortuño, J.; Weinbrenner, T.; Roset, P.; de la Torre, R. Hydroxytyrosol disposition in humans. Clin Chem. 2003, 49 Pt 1, 945–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serreli, G.; Deiana, M. Biological relevance of extra virgin olive oil polyphenols metabolites. Antioxidants 2018, 7, 170. [Google Scholar] [CrossRef] [Green Version]
- Nikou, T.; Sakavitsi, M.E.; Kalampokis, E.; Halabalaki, M. Metabolism and bioavailability of olive bioactive constituents based on in vitro, in vivo and human studies. Nutrients 2022, 14, 3773. [Google Scholar] [CrossRef] [PubMed]
- Robles-Almazan, M.; Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Rodriguez-Garcia, C.; Quiles, J.L.; Ramirez-Tortosa, M. Hydroxytyrosol: Bioavailability, toxicity, and clinical applications. Food Res. Int. 2018, 105, 654–667. [Google Scholar] [CrossRef]
- Visioli, F.; Galli, C.; Bornet, F.; Mattei, A.; Patelli, R.; Galli, G.; Caruso, D. Olive oil phenolics are dose-dependently absorbed in humans. FEBS Lett. 2000, 468, 159–160. [Google Scholar] [CrossRef]
- Galmés, S.; Reynés, B.; Palou, M.; Palou-March, A.; Palou, A. Absorption, distribution, metabolism, and excretion of the main olive tree phenols and polyphenols: A literature review. J. Agric. Food Chem. 2021, 69, 5281–5296. [Google Scholar] [CrossRef]
- de las Hazas, M.C.; Piñol, C.; Macià, A.; Romero, M.; Pedret, A.; Solà, R.; Rubio, L.; Motilva, M.J. Differential absorption and metabolism of hydroxytyrosol and its precursors oleuropein and secoiridoids. J. Funct. Foods 2016, 22, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Atzeri, A.; Lucas, R.; Incani, A.; Peñalver, P.; Zafra-Gomez, A.; Melis, M.P. Hydroxytyrosol and tyrosol sulfate metabolites protect against the oxidized cholesterol pro-oxidant effect in Caco-2 human enterocyte-like cells. Food Funct. 2016, 7, 337–346. [Google Scholar] [CrossRef]
- George, E.S.; Marshall, S.; Mayr, H.L.; Trakman, G.L.; Tatucu-Babet, O.A.; Lassemillante, A.C.M.; Bramley, A.; Reddy, A.J.; Forsyth, A.; Tierney, A.C.; et al. The effect of high-polyphenol extra virgin olive oil on cardiovascular risk factors: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2019, 59, 2772–2795. [Google Scholar] [CrossRef] [PubMed]
- Dongoran, R.A.; Lin, T.J.; Byekyet, A.; Tang, S.C.; Yang, J.H.; Liu, C.H. Determination of major endogenous FAHFAs in healthy human circulation: The correlations with several circulating cardiovascular-related biomarkers and anti-inflammatory effects on raw 264.7 cells. Biomolecules 2020, 10, 1689. [Google Scholar] [CrossRef]
- Tobias, D.K.; Lawler, P.R.; Harada, P.H.; Demler, O.V.; Ridker, P.M.; Manson, J.E.; Cheng, S.; Mora, S. Circulating branched-chain amino acids and incident cardiovascular disease in a prospective cohort of US women. Circ. Genom. Precis. Med. 2018, 11, e002157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Canela, M.; Toledo, E.; Clish, C.B.; Hruby, A.; Liang, L.; Salas-Salvado, J.; Razquin, C.; Corella, D.; Estruch, R.; Ros, E.; et al. Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED Trial. Clin. Chem. 2016, 62, 582–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakavitsi, M.E.; Breynaert, A.; Nikou, T.; Lauwers, S.; Pieters, L.; Hermans, N.; Halabalaki, M. Availability and Metabolic Fate of Olive Phenolic Alcohols Hydroxytyrosol and Tyrosol in the Human GI Tract Simulated by the In Vitro GIDM-Colon Model. Metabolites 2022, 12, 391. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.J.; Asp, N.G.; Silva, P. Evidence for health claims on foods: How much is enough? Introduction and general remarks. J. Nutr. 2008, 138, 1189S–1191S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibutami, E.; Takebayashi, T. A scoping review of the application of metabolomics in nutrition research: The literature survey 2000–2019. Nutrients 2021, 13, 3760. [Google Scholar] [CrossRef] [PubMed]
Reference | Study Data | Main Metabolites Identified after Olive Oil Consumption | Conclusions | |
---|---|---|---|---|
Vázquez-Fresno et al., 2015 [27] | Subjects | N = 98 [53–79 years] nondiabetic at high CVD risk 70 females 28 males | Up-regulated after 1 y: creatinine, citrate, cis-aconitate Up-regulated after 3 y: creatinine and citrate | Some urine metabolites may discriminate dietary pattern |
Intervention | PREDIMED Study MedDiet + EVOO 1 year vs. 3 years | |||
Technique | Untargeted NMR (1-year results) and targeted (3-year results) NMR | |||
Sample | Urine | |||
MSI | Level 2 | |||
Statistical analysis | Multivariate Unsupervised PCA Supervised OSC-PLS-DA | |||
Wang et al., 2017 [28] | Subjects | N = 980 [55–80 years] high risk CVD 541 females, 476 males | Down-regulated: 4 ceramides (C16:0, C22:0, C24:0 and C24:1) | Positive association between ceramide and CVD risk MedDiet + EVOO may mitigate the potentially deleterious effects of elevated plasma ceramides |
Intervention | PREDIMED Study MedDiet + EVOO Baseline vs. 7,4 years | |||
Technique | Targeted LC-MS | |||
Sample | Plasma | |||
MSI | Level 3 | |||
Statistical analysis | Multivariate | |||
Toledo et al., 2017 [29] | Subjects | N = 983 [55–80 years] high risk CVD 541 females, 479 males | Up-regulated: lysoPE (22:6), PC plasmalogens (34:2), PE plasmalogens (36:1), ceramide (24:1), sphingomyelines (18:1, 18:0 and 24:1) Down-regulated: PC (36:4b), PC (38:4), PE (38:5 and 38:4), PE plasmalogens (36:5 and 38:5), cholesterol esters (16:1), diacylglycerols (32:0), TAG (42:0, 44:0, 46:0, 48:0 and 50:0) No significant differences were found in adjusting p-values for multiple comparisons | Baseline lipid metabolomic profile was associated with the risk of CVD and was reduced after sustained consumption of MedDiet + EVOO |
Intervention | PREDIMED Study MedDiet + EVOO Baseline vs. 1 year | |||
Technique | Targeted UHPLC-Orbitrap MS | |||
Sample | Plasma | |||
MSI | Level 3 | |||
Statistical analysis | Multivariate | |||
Errazuriz et al., 2017 [30] | Subjects | N = 43 [mean value 62 years] Prediabetics 19 females 25 males | TAG fatty acids composition and nonsterified fatty acids: oleic acids, linoleic acids, palmitoleic acids, linolenic acids, eicosapentaenoic acids, docosahexaenoic acids, palmitic acids, arachidonic acids, myristic acids, and TAG | No differences were found in the metabolites analyses in MUFA vs. control diet after 12 wk |
Intervention | MUFA diet (50% olive oil); fiber-rich diet; Control diet (high-carbohydrate, low-fat and low fiber) MUFA vs. fiber-rich vs. control diet | |||
Technique | Targeted LC-MS | |||
Sample | Plasma | |||
MSI | Level 3 | |||
Statistical analysis | Univariate | |||
Yu et al., 2017 [31] | Subjects | N = 985 [55–80 years] high risk CVD 529 females, 456 males | Up-regulated: tryptophan Down-regulated: kynurenine, kynurenic acid, 3-hydroxyanthranilic acid and quinolinic acid | Increases in plasma tryptophan after 1 y was inversely associated with incident CVD MedDiet + EVOO attenuated the deleterious effect of low levels of tryptophan |
Intervention | PREDIMED Study MedDiet + EVOO Baseline vs. 1 year | |||
Technique | Targeted LC-MS | |||
Sample | Plasma | |||
MSI | Level 1 | |||
Statistical analysis | Multivariate | |||
Guasch-Ferre et al., 2020 [32] | Subjects | N = 889 [55–80 years] high risk CVD and T2DM risk 573 females 369 males | Down-regulated: isocitrate and malate No significant interactions were found after adjusting for multiple comparisons | Glycolysis/gluconeogenesis and TCA-related metabolites panel positively associated with T2DM risk MedDiet + EVOO or nuts may counterattack the harmful effects of those metabolites |
Intervention | PREDIMED Study MedDiet + EVOO Baseline vs. 1 year | |||
Technique | Targeted LC-MS | |||
Sample | Plasma | |||
MSI | Level 3 | |||
Statistical analysis | Multivariate | |||
Gonzalez-Dominguez et al., 2020 [33] * | Subjects | N = 10 healthy [Mean value: 40 years) 4 females 6 males | Up-regulated in urine: HT 3-sulfate and HT 4-sulfate Up-regulated in plasma: ethanolamine, urea, s-adenosylmethionine, dimethylglycine, pyroglutamic acid, asymmetric dimethylarginine, trimethylamine, glutaryl-L-carnitine, succinic acid, azelaic acid, leucine, acetyl-L-carnitine, valine, s-adenosylhomocysteine, lysine, methionine, threitol, creatinine, glycochenodeoxycholic acid 3-glucuronide, indoleacetic acid, docosatetraenoic acid, phenylalanine | HT is bioavailable, and its metabolites are excreted in urine after one month of VOO intervention. Ingestion of olive oil modified plasma metabolome |
Intervention | Olive oil 80 g/day Baseline vs. 1 month | |||
Technique | Targeted UHPLC-QTRAP | |||
Sample | Urine and plasma | |||
MSI | Level 2 | |||
Statistical analysis | Univariate | |||
Fernandez-Castillejo et al., 2021 [34] | Subjects | N = 33 [35–80 years] hypercholesterolaemic 14 females 19 males | Up-regulated: TAG(FA18:1), SM(FA22:1), TAG56:5(FA20:3), TAG 54:2(FA20:1), TAG 52:2(FA16:0), TAG 52:2(FA18:1), PC(FA18:1/FA18:1), SM(FA22:1), TAG54:2(FA18:1), TAG 56:4(FA20:2), TAG 54:4(FA20:3), TAG 56:4(FA20:3), TAG 50:3(FA14:1), TAG 52:1(FA18:1), TAG 54:2(FA16:0) and TAG 54:3(FA20:2) Down-regulated: CE(FA22:6), TAG56:8(FA18:2), TAG 51:4(FA18:2), TAG 51:4(FA15:0), TAG54:7(FA22:5), CE(FA22:6), TAG56:8(FA18:2), TAG51:5(FA18:3), TAG 50:4(FA18:2), TAG 52:4(FA18:2), TAG 52:4(FA16:0) and TAG 53:3(FA18:2) | VOO impacts the HDL lipidome, in particular TAG species, independently of polyphenol content |
Intervention | VOHF Study 25 mL/day for 3 weeks of: VOO (80 ppm of TPC); FVOO (500 ppm of TPC); FVOOT (250 ppm of VOO TPC + 250 ppm of thyme TPC). Baseline vs. 3 weeks | |||
Technique | Targeted NMR | |||
Sample | Serum | |||
MSI | Level 2 | |||
Statistical analysis | Multivariate Unsupervised PCA Supervised OPLS-DA | |||
isFarras et al., 2022 [35] | Subjects | N = 33 [35–80 years] hypercholesterolaemic 14 females, 19 males | Down-regulated: glutamine, histidine, DMA, creatine, creatinine, valine, isoleucine Metabolites identified after the consumption of VOO enriched in phenolic compounds vs. a standard VOO | Phenol-enriched olive oils favorably shift circulating metabolites associated with cardiometabolic diseases |
Intervention | VOHF Study 25 mL/day for 3 weeks of: VOO (80 ppm of TPC); FVOO (500 ppm of TPC); FVOOT (250 ppm of VOO TPC + 250 ppm of thyme TPC). Baseline vs. 3 weeks | |||
Technique | Targeted NMR | |||
Sample | Serum | |||
MSI | Level 2 | |||
Statistical analysis | Multivariate supervised M-OPLS-DA, PLS, Machine learning |
Reference | Study Data | Main Metabolites Identified after Olive Oil Consumption | Conclusions | |
---|---|---|---|---|
Ferreiro-Vela et al., 2013 [36] * | Subjects | N= 26 obese 17 females [48–70 years] 9 males [39–70 years] | Up-regulated after 2 h: 3-hydroxydecanoic acid, 3-oxooctadecanoic acid, octadecanedioic acid (12,13-DHOME, 9,10-DHOME), palmitoleic acid (palmitelaidic acid), eicosenoic acid, disaccharide, lysoPE(18:1(9Z)/0:0), lysoPE(18:1(11Z)/0:0) Down-regulated after 2 h: tryptophanol, 9,10-dihydroxyoctadecanoic acid, palmitic acid, 5′-methylthioadenosine, 3-methyladipic acid (pimelic acid) and L-tryptophan Up-regulated after 4 h: 3-hydroxydecanoic acid, 9,10-dihydroxyoctadecanoic acid, 3-oxooctadecanoic acid, octadecanedioic acid (12,13-DHOME, 9,10-DHOME), palmitoleic acid (palmitelaidic acid), palmitic acid, eicosenoic acid and disaccharide Down-regulated after 4 h: L-tyrosine Down-regulated after 4 h vs. 2 h: glucosamine | Serum metabolites may discriminate the intake of different oils and the postprandial phase |
Intervention | Postprandial: Baseline, 2 and 4 h after a breakfast including 0.45 mL of EVOO/kg of body weight (400 µg/mL of TPC) | |||
Technique | Untargeted LC-TOF/MS | |||
Sample | Serum | |||
MSI | Level 3 | |||
Statistical analysis | Multivariate Supervised PLS-DA | |||
Agrawal et al., 2017 [37] | Subjects | N = 9 [20–50 y] healthy males | Up-regulated in responders: glucose, xylose and pinitol (carbohydrates), glycolic acid, gluconic acid and threonic acid (sugar acids) Up-regulated in non-responders: oleic acid (free fatty acid), malic acid, isocitric acid and citric acid (citric acid cycle metabolites) | Plasma metabolomics profiles may discriminate platelet response to EVOO intake |
Intervention | Postprandial: Baseline vs. 2 h after the intake of 40 mL of three EVOO | |||
Technique | Targeted GC-TOF | |||
Sample | Plasma | |||
MSI | Level 3 | |||
Statistical analysis | Multivariate Supervised PLS-DA | |||
Wang et al., 2018 [38] * | Subjects | N = 17 [20–50 years] healthy males | Up-regulated: glycochenodeoxycholic acid, deoxycholic acid and hyodeoxycholic acid (bile acids and salts), 3-hydroxybutyric acid (fatty acid metabolism), uridine (pyrimidine nucleosides), traumatic acid, 2-ethyl-2-hydroxybutyric acid and mandelic acid Down-regulated: 5′-methylthioadenosine | Different metabolic profiles were observed between MUFA and SFA oils |
Intervention | Postprandial: Baseline vs. 2 and 4 h after the intake of 54 g of olive oil | |||
Technique | Untargeted UHPLC-MS/MS QTOF | |||
Sample | Serum | |||
MSI | Level 2 | |||
Statistical analysis | Multivariate Supervised SPLS-DA |
Reference | Study Data | Main Metabolites Identified after Olive Oil and Its Minor Bioactive Components Consumption | Conclusions | |
---|---|---|---|---|
Mellert et al., 2011 [39] | Animals | N = 10 Wistar rats | Up-regulated: ketone bodies (2-, and 3-hydroxybutyrate, only in females) and glycerol-3-phosphate (male and female) Down-regulated: phospholipids and their degradation products (lysoPC (C20:4), palmitoleic acid (C16:cis [9]1), PC (C16:0, C20:4), PC (C16:1, C18:2) and sphingomyelin (d18:1, C24:0) | Lipid metabolism was modified by olive and corn oils in similar ways Lower levels of phospholipids are due to the lower food consumption |
Intervention | Olive oil (65–85% of oleic acid) 5 mL/kg of body weight/day Baseline vs. 28 days | |||
Technique | Untargeted GC-MS and LC-MS/MS | |||
Sample | Plasma | |||
MSI | Level 2 | |||
Statistical analysis | Univariate | |||
Poudyal et al., 2017 [40] | Animals | N = 48 metabolic syndrome rat model | Up-regulated: HT, HT double oxidation, HT 2-ethoxyl acid, HT glucuronidation, HT glutathione conjugation, HT sulfation *, HT acetylation *, HT N-acetylcysteine conjugation, HT acetylation + sulfation *, HT methylation (homovanillic alcohol), homovanillic alcohol first alcohol to aldehyde *, homovanillic alcohol sulfation, homovanillic alcohol methylation, homovanillic alcohol acetylation, homovanillic acid, homovanillic acid aromatic hydroxylation, homovanillic acid glucuronidation, homovanillic acid sulfation, homovanillic acid methylation, homovanillic acid acetylation *, homovanillic acid glycine conjugation (carboxylic acid), homovanillic acid hydroxylation + methylation, 3,4-diphenylacetic acid, 3,4-diphenylacetic acid glucuronidation *, 3,4-diphenylacetic acid glycine conjugation (carboxylic acid) * Indicates discriminant metabolites down-regulated for the obese group compared with the control group, both treated with HT | Cardioprotective effects of HT were observed by attenuation of metabolic risk factors |
Intervention | Group 1: corn starch; Group 2: corn starch + 20 mg HT/kg/day Group 3: HCHF Group 4: HCHF + 20 mg HT/kg/day Baseline vs. 8 weeks | |||
Technique | Targeted UHPLC-HRMS | |||
Sample | Plasma | |||
MSI | Level 3 | |||
Statistical analysis | Univariate | |||
Lemonaski et al., 2017 [41] | Animals | N = 16 metabolic syndrome rat model | UPLC-Orbitrap up-regulated: an unknown metabolite and 3-methoxy-4-hydroxyphenylacetaldehyde (primary amide (fatty acyls)) UPLC-Orbitrap down-regulated: octadecanamide, fatty acid ester, unsaturated fatty acid/C24 bile acid (sterol lipids)/w-3 polyunsaturated fatty acid ethyl ester, unsaturated fatty acid/C24 bile acid (sterol lipids), C24 bile acid (sterol lipids), 1-alkyl,2-acylglycerophosphocholines (glycerophospholipids), retinoid (prenol lipids), oleamide, monoacylglycerophosphocholine, 18-oxocortisol, diacylglycerophosphoinositol, 3beta-(3-methyl-butanoyloxy)-villanovane-13alpha,17-diol, 5-hydroperoxy-7-[3,5-epidioxy-2-(2-octenyl)-cyclopentyl]-6-heptenoic acid, C24 bile acid, diacylglycerophosphoinositol, sn-3-O-(geranylgeranyl)glycerol 1-phosphate QqTOF up-regulated: (glycerol and 3-(3-hydroxyphenyl)propanoic acid) QqTOF down-regulated: lauric acid, linoleic acid, oleic acid, stearic acid, 3,7-dihydroxycholan-24-oic acid, (3beta,5alpha)-4,4-dimethylcholesta-8,14,24-trien-3-ol, myristic acid, palmitelaidic acid, 11,14,17-eicosatrienoic acid/8,11,14-eicosatrienoic acid, arachidonic acid/cis-8,11,14,17-eicosatetraenoic acid | HT decreases the biosynthesis of fatty acids, mainly unsaturated, and the metabolism of linoleic acid, retinol, sphingolipids and arachidonic acid, whereas glycerolipid metabolism is up-regulated These metabolites regulation may explain the positive effect of HT in cardiovascular, liver and metabolic changes induced by high-carbohydrate, high-fat diet-fed rats |
Intervention | Control diet: HCHF Enriched diet: HCHF + 20 mg HT/kg/day Baseline vs. 8 weeks | |||
Technique | Untargeted UPLC-Orbitrap and UPLC-QqTOF | |||
Sample | Plasma | |||
MSI | Level 3 | |||
Statistical analysis | Multivariate Supervised PCA Unsupervised PLS-DA and OPLS-DA | |||
Dagla et al., 2018 [42] | Animals | N = 15 metabolic syndrome rat model | Up-regulated: 9-ή 12-OAHSA (oleic acid hydroxyl stearic acid), unsaturated lipid acids, PC (22:6) or diacylglycerol phosphoserine, PC (20:4), γ-glutamine amino acid, glycerol, glycerol and/or glycine, choline, leucine, isoleucine and/or leucine Down-regulated: glucose and/or mannose, glucose, glucose and/or betaine, glucose-mannose, glucose and/or O-phosphocholine and lactate | HT is effective towards the mobilization of lipids and up-regulates branched fatty acid esters of hydroxy oleic acids, denoting the alleviation of the metabolic syndrome |
Intervention | Control group: HCHF HT group: HCHF+ 20 mg HT/kg/day Baseline vs. 8 weeks | |||
Technique | Untargeted UPLC-HRMS and NMR | |||
Sample | Liver | |||
MSI | Level 2 | |||
Statistical analysis | Multivariate Supervised PCA Unsupervised PLS-DA and OPLS-DA | |||
Ma et al., 2017 [43] | Animals | N = 360 crabs | Up-regulated: pyruvic acid, succinic acid, lactose, L-malic acid, D-gliceric acid, threitol (related to glycolysis and tricarboxylic acid cycle), methionine, 2-keto-isovaleric acid (intermediate for valine and leucine synthesis) and 2-hydroxybutanoic acid (intermediate of ketogenic amino acids breakdown), 6-deoxy-D-glucose, 2-hydroxypyridine and 3-hydroxypropionic acid Down-regulated: glutaconic acid (intermediate of ketogenic amino acids breakdown) | Compared with perilla oil-fed crabs, olive oil increased the degradation of glucose and lipids to provide energy for growth |
Intervention | Olive oil (69% oleic acid) and perilla oil (56% linolenic acid) Baseline vs. 8 weeks | |||
Technique | Untargeted GC-MS | |||
Sample | Serum | |||
MSI | Level 3 | |||
Statistical analysis | Multivariate Supervised PCA Unsupervised PLS-DA and OPLS-DA | |||
Ma et al., 2018 [44] | Animals | N = 360 crabs | Up-regulated: hydroxylamine, 3-hydroxypropionic acid and 2-hydroxypyridine Down-regulated: lysine and citrulline | Compared with palm oil-fed crabs, olive oil provides more energy, lower lipid accumulation and oxidative stress, and improves intestinal microbiota Palmitic acid-enriched palm oil tended to increase protein degradation and lipid accumulation-induced lipotoxicity |
Intervention | Olive oil (69% oleic acid) and palm oil diet (78% of palmitic acid) Baseline vs. 8 weeks | |||
Technique | Untargeted GC-MS | |||
Sample | Serum | |||
MSI | Level 3 | |||
Statistical analysis | MultivariateSupervised PCA Unsupervised PLS-DA and OPLS-DA | |||
Zhi-hao et al., 2022 [45] | Animals | N = 48 metabolic syndrome rat model | Feces up-regulated: proline, valine, cytidine, glutathione (reduced; amino acids, peptides, and analogs), oleic acid and FA 18:0 + 2O + SO4 Feces down-regulated: PE alkenyl 16, PE alkenyl 18, PE 16, PC 15 (glycerophospholipids) FA 18:4 +1O and citrulline Serum up-regulated: alanine-isoleucine, leucine and oleic acid. Serum down-regulated: 3,5-dibromo-L-tyrosine, folic acid and cytidine 5’-diphosphocholine | Supplementation with both high-oleic acid peanut oil and EVOO reduces diet-induced metabolic syndrome. The major pathway implicated in these metabolic effects is the BCAAs biosynthesis pathway. |
Intervention | Normal, HFHF, HFHF diet containing high-oleic acid peanut oil, HFHF containing EVOO. Baseline vs. 12 weeks | |||
Technique | Untargeted UPLC-Q/TOF-MS | |||
Sample | Feces and serum | |||
MSI | Level 2 | |||
Statistical analysis | Multivariate Supervised PLS-DA | |||
Ruocco et al., 2022 [46] | Animals | N = 19 C57BL/6N mice | Plasma down-regulated: proline Urine up-regulated: tyrosol-sulfate, HT, HT-sulfate, HT-acetate-glucuronide, homovanillic acid-glucuronide, oleuropein aglycone, ligstroside Significant differences could not be calculated for oleuropein and oleuropein aglycone-glucuronide because these compounds were non-detected in the SFA group | The replacement of SFA with EVOO cause moderate beneficial cardiometabolic and hepatic effects. |
Intervention | SFA diet and EVOO diet (82% of fat replaced by high polyphenol EVOO) Baseline vs. 16 weeks | |||
Technique | Untargeted and targeted UHPLC-HRMS | |||
Sample | Plasma and urine | |||
MSI | Level 3 | |||
Statistical analysis | Univariate |
Reference | Study Data | Main Metabolites Identified after Olive Oil and Its Minor Bioactive Components Consumption | Conclusions | |
---|---|---|---|---|
Fernandez-Arroyo et al., 2012 [47] | Experimental design | Colon adenocarcinoma HT29 and SW480) 14 olive oil extracts from EVOO at concentrations of 0.01% and 0.1% for 24 h. Control vs. treated cells | Up-regulated in culture medium: vanillin, 4-OH-benzoic acid, vanillic acid, HT acetate, 10-H-oleuropein aglycone, syringaresinol, acetoxy-pinoresinol, pinoresinol, HT, elenolic acid, luteolin, methyl-decarboxymethyl oleuropein aglycone and apigenin (phenolic compounds). Up-regulated in the cytoplasm: decarboxymethyl oleuropein aglycone, oleuropein aglycone, acetoxy-pinoresinol, elenolic acid, methyl-decarboxymethyl oleuropein aglycone (phenolic compounds) and quercetin, methyl-hydroxy- decarboxymethyl oleuropein aglycone and methyl-luteolin (metabolites) | Association of quercetin and oleuropein aglycone (and its derivatives) with the antiproliferative and pro-apoptotic effect |
Technique | Targeted Nano-LC-ESI-TOF-MS | |||
Sample | Culture medium and cytoplasm | |||
MSI | Level 3 | |||
Statistical analysis | Univariate | |||
Rocchetti et al., 2020 [48] * | Experimental design | In vitro gastrointestinal digestion Five commercial EVOOs were compared | Up-regulated: peonidin, luteolin, pelargonidin, hispidulin (flavonoids), oleuropein, HT (other phenolics), 4-hydroxybenzoic acid (phenolic acids), 2α,7β,15β,18-tetraacetoxy-cholest-5-en-3α-ol (cholesterol analogs), nebrosteroid L (ergosterol derivatives), 6-O-(Glcb)-(25R)-5α-spirostan-3β,6α,23S-triol (spirostanol derivatives) | EVOO in vitro digestion modifies the bioaccessibility of minor bioactive molecules: mainly secoiridoides (oleuropein) and phenolic alcohols (tyrosol and HT), and flavonoids (cyanidin and luteolin) |
Technique | Untargeted UHPLC-QTOF | |||
Sample | Serum | |||
MSI | Level 3 | |||
Statistical analysis | Multivariate Unsupervised HCA Supervised OPLS-DA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vazquez-Aguilar, A.; Sanchez-Rodriguez, E.; Rodriguez-Perez, C.; Rangel-Huerta, O.D.; Mesa, M.D. Metabolomic-Based Studies of the Intake of Virgin Olive Oil: A Comprehensive Review. Metabolites 2023, 13, 472. https://doi.org/10.3390/metabo13040472
Vazquez-Aguilar A, Sanchez-Rodriguez E, Rodriguez-Perez C, Rangel-Huerta OD, Mesa MD. Metabolomic-Based Studies of the Intake of Virgin Olive Oil: A Comprehensive Review. Metabolites. 2023; 13(4):472. https://doi.org/10.3390/metabo13040472
Chicago/Turabian StyleVazquez-Aguilar, Alejandra, Estefania Sanchez-Rodriguez, Celia Rodriguez-Perez, Oscar Daniel Rangel-Huerta, and Maria D. Mesa. 2023. "Metabolomic-Based Studies of the Intake of Virgin Olive Oil: A Comprehensive Review" Metabolites 13, no. 4: 472. https://doi.org/10.3390/metabo13040472
APA StyleVazquez-Aguilar, A., Sanchez-Rodriguez, E., Rodriguez-Perez, C., Rangel-Huerta, O. D., & Mesa, M. D. (2023). Metabolomic-Based Studies of the Intake of Virgin Olive Oil: A Comprehensive Review. Metabolites, 13(4), 472. https://doi.org/10.3390/metabo13040472