Metabolic and Other Endocrine Elements with Regard to Lifestyle Choices: Focus on E-Cigarettes
Abstract
:1. Introduction
Aim
2. Methods
3. Results
3.1. Diabetes Mellitus, Obesity, and Metabolic Syndrome
3.1.1. Prediabetes
3.1.2. Diabetes Mellitus
3.1.3. Obesity
3.1.4. Metabolic Syndrome
3.2. Other (Non-Metabolic) Endocrine Elements in Relationship with E-Cig
3.2.1. Potential Fertility Issues
A. Female Fertility
B. Male Fertility
3.2.2. EVALI and the Use of Systemic Steroids
4. Discussion
4.1. E-Cig: Is It Time for Taking into Consideration a New Type of Endocrine Disruptor?
4.2. E-Cig and Data with Regard to Prediabetes and Diabetes
4.3. E-Cig Users and Obesity
4.4. Metabolic Syndrome among E-Cig Users
4.5. Fertility Profile Regarding E-Cig
4.6. Thyroid Assessment in Subjects Using E-Cig
4.7. Bone Status, including Peak Bone Mass, in Teenagers and Young Adults Using E-Cig
4.8. Cannabinoid Receptors
4.9. Further Expansion of E-Cig-Related Endocrine Researches
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AMH | Anti-Müllerian hormone |
CI | confidence interval |
BMI | body mass index |
ENDS | electronic nicotine delivery systems |
e-cigarette (or e-cig) | electronic cigarettes |
EVALI | e-cigarette and vaping-associated lung injury |
HDL | high density lipoprotein |
HbA1c | glycated haemoglobin |
THD | tobacco heating device |
VAPI | vaping associated pulmonary illness |
OR | odds ratio |
RR | risk relative |
References
- Awad, K.; Mohammed, M.; Martin, S.S.; Banach, M. Association between electronic nicotine delivery systems use and risk of stroke: A meta-analysis of 1,024,401 participants. Arch. Med. Sci. 2023, 19, 1538–1540. [Google Scholar] [CrossRef]
- Kotewar, S.S.; Pakhale, A.; Tiwari, R.; Reche, A.; Singi, S.R. Electronic Nicotine Delivery System: End to Smoking or Just a New Fancy Cigarette. Cureus 2023, 15, e43425. [Google Scholar] [CrossRef]
- Belkin, S.; Benthien, J.; Axt, P.N.; Mohr, T.; Mortensen, K.; Weckmann, M.; Drömann, D.; Franzen, K.F. Impact of Heated Tobacco Products, E-Cigarettes, and Cigarettes on Inflammation and Endothelial Dysfunction. Int. J. Mol. Sci. 2023, 24, 9432. [Google Scholar] [CrossRef] [PubMed]
- Mravec, B.; Tibensky, M.; Horvathova, L.; Babal, P. E-Cigarettes and Cancer Risk. Cancer Prev. Res. 2020, 13, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Bidulescu, A. The association between e-cigarette use or dual use of e-cigarette and combustible cigarette and prediabetes, diabetes, or insulin resistance: Findings from the National Health and Nutrition Examination Survey (NHANES). Drug Alcohol Depend. 2023, 251, 110948. [Google Scholar] [CrossRef] [PubMed]
- Abelia, X.A.; Lesmana, R.; Goenawan, H.; Abdulah, R.; Barliana, M.I. Comparison impact of cigarettes and e-cigs as lung cancer risk inductor: A narrative review. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 6301–6318. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.J.; Krishnan-Sarin, S.; Exil, V.J.; Hamburg, N.M.; Fetterman, J.L.; Ichinose, F.; Perez-Pinzon, M.A.; Rezk-Hanna, M.; Williamson, E.; American Heart Association Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; et al. Cardiopulmonary Impact of Electronic Cigarettes and Vaping Products: A Scientific Statement from the American Heart Association. Circulation 2023, 148, 703–728. [Google Scholar] [CrossRef]
- Boloña, E.; Felix, M.; Vanegas, E.; Vera Paz, C.; Cherrez-Ojeda, I. A Case of Vaping-associated Pulmonary Illness in South America: Highlighting the Need for Awareness and Surveillance Programs in the Region. Am. J. Respir. Crit. Care Med. 2020, 201, 733–735. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.E.; Brown, J.; Aveyard, P.; Dobbie, F.; Uny, I.; West, R.; Bauld, L. Vaping for weight control: A cross-sectional population study in England. Addict. Behav. 2019, 95, 211–219. [Google Scholar] [CrossRef]
- Kos, K. Cardiometabolic Morbidity and Mortality with Smoking Cessation, Review of Recommendations for People with Diabetes and Obesity. Curr. Diabetes Rep. 2020, 20, 82. [Google Scholar] [CrossRef]
- Jackson, S.E.; Shahab, L.; West, R.; Brown, J. Associations between dual use of e-cigarettes and smoking cessation: A prospective study of smokers in England. Addict. Behav. 2020, 103, 106230. [Google Scholar] [CrossRef]
- Kalkhoran, S.; Glantz, S.A. E-cigarettes and smoking cessation in real-world and clinical settings: A systematic review and meta-analysis. Lancet Respir Med. 2016, 4, 116–128. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, M.; Kim, G.R.; Joo, H.J.; Jang, S.I. Association of Mixed Use of Electronic and Conventional Cigarettes and Exposure to Secondhand Smoke with Prediabetes. J. Clin. Endocrinol. Metab. 2022, 107, e44–e56. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jiao, Z.; Blaha, M.J.; Osei, A.; Sidhaye, V.; Ramanathan, M., Jr.; Biswal, S. The Association Between E-Cigarette Use and Prediabetes: Results from the Behavioral Risk Factor Surveillance System, 2016-2018. Am. J. Prev. Med. 2022, 62, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.Y.; Paek, Y.J.; Seo, H.G.; Cheong, Y.S.; Lee, C.M.; Park, S.M.; Park, D.W.; Lee, K. Dual use of electronic and conventional cigarettes is associated with higher cardiovascular risk factors in Korean men. Sci. Rep. 2020, 10, 5612. [Google Scholar] [CrossRef]
- Leavens, E.L.S.; Ford, B.R.; Ojo-Fati, O.; Winkelman, T.N.A.; Vickery, K.D.; Japuntich, S.J.; Busch, A.M. Electronic cigarette use patterns and chronic health conditions among people experiencing homelessness in MN: A statewide survey. BMC Public Health 2020, 20, 1889. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, M.; Wu, J.; Xu, X.; Yin, P.; Huang, Z.; Zhang, X.; Zhou, Y.; Zhang, X.; Li, C.; et al. E-cigarette use among adults in China: Findings from repeated cross-sectional surveys in 2015-16 and 2018-19. Lancet Public Health 2020, 5, e639–e649. [Google Scholar] [CrossRef]
- Sompa, S.I.; Zettergren, A.; Ekström, S.; Upadhyay, S.; Ganguly, K.; Georgelis, A.; Ljungman, P.; Pershagen, G.; Kull, I.; Melén, E.; et al. Predictors of electronic cigarette use and its association with respiratory health and obesity in young adulthood in Sweden; findings from the population-based birth cohort BAMSE. Environ. Res. 2022, 208, 112760. [Google Scholar] [CrossRef]
- Hoover, L.V.; Yu, H.P.; Cummings, J.R.; Ferguson, S.G.; Gearhardt, A.N. Co-occurrence of food addiction, obesity, problematic substance use, and parental history of problematic alcohol use. Psychol. Addict. Behav. 2022, 37, 928–935. [Google Scholar] [CrossRef]
- Alqahtani, M.M.; Alanazi, A.M.M.; Almutairi, A.S.; Pavela, G. Electronic cigarette use is negatively associated with body mass index: An observational study of electronic medical records. Obes. Sci. Pract. 2020, 7, 226–231. [Google Scholar] [CrossRef]
- Jacobs, W.; Nabors, L.; Mahabee-Gittens, M.E.; Merianos, A.L. E-cigarette and marijuana use and the attainment of obesity prevention guidelines among U.S. adolescents. Prev. Med. Rep. 2021, 23, 101445. [Google Scholar] [CrossRef] [PubMed]
- Mason, T.B.; Leventhal, A.M. Relations among sweet taste preference, body mass index, and use of E-cigarettes for weight control motives in young adults. Eat. Behav. 2021, 41, 101497. [Google Scholar] [CrossRef] [PubMed]
- Mason, T.B.; Leventhal, A.M. Weight Status and Effects of Non-Tobacco Flavors on E-Cigarette Product Appeal. Subst. Use Misuse 2021, 56, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.S.; Jang, J.E.; Lee, D.W.; Park, E.C.; Jang, S.I. Cigarette type or smoking history: Which has a greater impact on the metabolic syndrome and its components? Sci. Rep. 2020, 10, 10467. [Google Scholar] [CrossRef]
- Overbeek, D.L.; Kass, A.P.; Chiel, L.E.; Boyer, E.W.; Casey, A.M.H. A review of toxic effects of electronic cigarettes/vaping in adolescents and young adults. Crit. Rev. Toxicol. 2020, 50, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Kjeld, S.G.; Andersen, S.; Andersen, A.; Glenstrup, S.; Lund, L.; Danielsen, D.; Bast, L.S. Who are the young users of tobacco products? Prevalence and characteristics of Danish adolescents who have either smoked cigarettes, used alternative tobacco products, or used both. Nord. Alkohol. Nark. 2021, 38, 555–572. [Google Scholar] [CrossRef]
- Saygın, H.; Korgalı, E.; Koç, T.; Doğan, K. The effect of smoking and electronic cigarettes on rat testicles. Rev. Int. Androl. 2023, 21, 100365. [Google Scholar] [CrossRef]
- Galanti, F.; Licata, E.; Paciotti, G.; Gallo, M.; Riccio, S.; Miriello, D.; Dal Lago, A.; Meneghini, C.; Fabiani, C.; Antonaci, D.; et al. Impact of different typologies of smoking on ovarian reserve and oocyte quality in women performing ICSI cycles: An observational prospective study. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 5190–5199. [Google Scholar] [CrossRef]
- Harlow, A.F.; Hatch, E.E.; Wesselink, A.K.; Rothman, K.J.; Wise, L.A. Electronic Cigarettes and Fecundability: Results From a Prospective Preconception Cohort Study. Am. J. Epidemiol. 2021, 190, 353–361. [Google Scholar] [CrossRef]
- Holmboe, S.A.; Priskorn, L.; Jensen, T.K.; Skakkebaek, N.E.; Andersson, A.M.; Jørgensen, N. Use of e-cigarettes associated with lower sperm counts in a cross-sectional study of young men from the general population. Hum. Reprod. 2020, 35, 1693–1701. [Google Scholar] [CrossRef]
- Callahan, S.J.; Harris, D.; Collingridge, D.S.; Guidry, D.W.; Dean, N.C.; Lanspa, M.J.; Blagev, D.P. Diagnosing EVALI in the Time of COVID-19. Chest 2020, 158, 2034–2037. [Google Scholar] [CrossRef]
- Nistor, C.E.; Gavan, C.S.; Pantile, D.; Tanase, N.V.; Ciuche, A. Cervico-Thoracic Air Collections in COVID-19 Pneumonia Patients—Our Experience and Brief Review. Chirurgia 2022, 117, 317–327. [Google Scholar] [CrossRef]
- Nistor, C.E.; Pantile, D.; Stanciu-Gavan, C.; Ciuche, A.; Moldovan, H. Diagnostic and Therapeutic Characteristics in Patients with Pneumotorax Associated with COVID-19 versus Non-COVID-19 Pneumotorax. Medicina 2022, 58, 1242. [Google Scholar] [CrossRef]
- Petrache, I.; Gupta, A.; Hume, P.S.; Rivera, T.; Schweitzer, K.S.; Chu, H.W. Pathogenesis of E-Cigarette Vaping Product Use-Associated Lung Injury (EVALI). Compr. Physiol. 2023, 13, 4617–4630. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, B.; Lee, H.; Weerakoon, S.M.; Messiah, S.E.; Harrell, M.B.; Rao, D.R. Clinical manifestations of EVALI in adolescents before and during the COVID-19 pandemic. Pediatr. Pulmonol. 2023, 58, 949–958. [Google Scholar] [CrossRef]
- Melani, A.S.; Croce, S.; Cassai, L.; Montuori, G.; Fabbri, G.; Messina, M.; Viani, M.; Bargagli, E. Systemic Corticosteroids for Treating Respiratory Diseases: Less Is Better, but… When and How Is It Possible in Real Life? Pulm. Ther. 2023, 9, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Grotberg, J.C.; Reynolds, D.; Kraft, B.D. Management of severe acute respiratory distress syndrome: A primer. Crit. Care 2023, 27, 289. [Google Scholar] [CrossRef]
- Lee, S.A.; Sayad, E.; Yenduri, N.J.S.; Wang, K.Y.; Guillerman, R.P.; Farber, H.J. Improvement in Pulmonary Function Following Discontinuation of Vaping or E-Cigarette Use in Adolescents with EVALI. Pediatr. Allergy Immunol. Pulmonol. 2021, 34, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Kaous, M.; Xian, J.; Rongo, D.; McDonald, M.; Ocasionez, D.; Mathew, R.; Estrada-Y-Martin, R.M.; Patel, B.; Cherian, S.V.; Jani, P.P. Clinical, radiology, pathologic patterns and outcomes of vaping related pulmonary injury in a single institution; A case series. Respir. Med. 2020, 173, 106153. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, A.; Carl, J.C.; Rezaee, F. The importance of anti-vaping vigilance-EVALI in seven adolescent pediatric patients in Northeast Ohio. Pediatr. Pulmonol. 2020, 55, 1719–1724. [Google Scholar] [CrossRef]
- Kass, A.P.; Overbeek, D.L.; Chiel, L.E.; Boyer, E.W.; Casey, A.M.H. Case series: Adolescent victims of the vaping public health crisis with pulmonary complications. Pediatr. Pulmonol. 2020, 55, 1224–1236. [Google Scholar] [CrossRef]
- Carey, D.E.; Golden, N.H. Bone Health in Adolescence. Adolesc. Med. State Art Rev. 2015, 26, 291–325. [Google Scholar]
- Carroll, B.J.; Kim, M.; Hemyari, A.; Thakrar, P.; Kump, T.E.; Wade, T.; De Vela, G.; Hall, J.; Diaz, C.D.; D’Andrea, L.A. Impaired lung function following e-cigarette or vaping product use associated lung injury in the first cohort of hospitalized adolescents. Pediatr. Pulmonol. 2020, 55, 1712–1718. [Google Scholar] [CrossRef]
- Fryman, C.; Lou, B.; Weber, A.G.; Steinberg, H.N.; Khanijo, S.; Iakovou, A.; Makaryus, M.R. Acute Respiratory Failure Associated with Vaping. Chest 2020, 157, e63–e68. [Google Scholar] [CrossRef] [PubMed]
- Rao, D.R.; Maple, K.L.; Dettori, A.; Afolabi, F.; Francis, J.K.R.; Artunduaga, M.; Lieu, T.J.; Aldy, K.; Cao, D.J.; Hsu, S.; et al. Clinical Features of E-cigarette, or Vaping, Product Use-Associated Lung Injury in Teenagers. Pediatrics 2020, 146, e20194104. [Google Scholar] [CrossRef] [PubMed]
- Zou, R.H.; Tiberio, P.J.; Triantafyllou, G.A.; Lamberty, P.E.; Lynch, M.J.; Kreit, J.W.; McVerry, B.J.; Gladwin, M.T.; Morris, A.; Chiarchiaro, J.; et al. Clinical Characterization of E-Cigarette, or Vaping, Product Use-associated Lung Injury in 36 Patients in Pittsburgh, Pennsylvania. Am. J. Respir. Crit. Care Med. 2020, 201, 1303–1306. [Google Scholar] [CrossRef] [PubMed]
- Tattan-Birch, H.; Hartmann-Boyce, J.; Kock, L.; Simonavicius, E.; Brose, L.; Jackson, S.; Shahab, L.; Brown, J. Heated tobacco products for smoking cessation and reducing smoking prevalence. Cochrane Database Syst. Rev. 2020, 11, 13790. [Google Scholar] [CrossRef]
- Hartmann-Boyce, J.; McRobbie, H.; Butler, A.R.; Lindson, N.; Bullen, C.; Begh, R.; Theodoulou, A.; Notley, C.; Rigotti, N.A.; Turner, T.; et al. Electronic cigarettes for smoking cessation. Cochrane Database Syst. Rev. 2021, 9, 14651858. [Google Scholar] [CrossRef]
- Clapp, P.W.; Jaspers, I. Electronic cigarettes: Their constituents and potentiall inks to asthma. Curr. Allergy Asthma Rep. 2017, 17, 79. [Google Scholar] [CrossRef]
- Cao, D.J.; Aldy, K.; Hsu, S.; McGetrick, M.; Verbeck, G.; De Silva, I.; Feng, S.Y. Review of health consequences of electronic cigarettes and the outbreak of electronic cigarette, or vaping product use-associated lung injury. J. Med. Toxicol. 2020, 16, 295–310. [Google Scholar] [CrossRef]
- DeVito, E.E.; Krishnan-Sarin, S. E-cigarettes: Impact of E-Liquid Components and Device Characteristics on Nicotine Exposure. Curr. Neuropharmacol. 2018, 16, 438–459. [Google Scholar] [CrossRef] [PubMed]
- Auer, R.; Concha-Lozano, N.; Jacot-Sadowski, I.; Cornuz, J.; Berthet, A. Heat-not-burn tobacco cigarettes: Smoke by any other name. JAMA Intern. Med. 2017, 177, 1050–1052. [Google Scholar] [CrossRef] [PubMed]
- Hecht, S.; Park, S.L.; Carmella, S.; Stram, D.; Haiman, C.; Marchand, L.; Murphy, S.; Yuan, J.M. Tobacco Carcinogens and Lung Cancer Susceptibility. J. Thorac. Oncol. 2017, 12, 19–20. [Google Scholar] [CrossRef]
- Morean, M.E.; Kong, G.; Bold, K.W.; Davis, D.R.; Krishnan-Sarin, S. Accurately classifying cannabis blunt use as tobacco-cannabis co-use versus exclusive cannabis use. Drug Alcohol Depend. 2023, 249, 109941. [Google Scholar] [CrossRef] [PubMed]
- Lüdicke, F.; Picavet, P.; Baker, G.; Haziza, C.; Poux, V.; Lama, N.; Weitkunat, R. Effects of switching to the tobacco heating system 2.2 menthol, smoking abstinence, or continued cigarette smoking on biomarkers of exposure: A randomized, controlled, open-label, multicenter study in sequential confinement and ambulatory settings (Part 1). Nicotine Tob. Res. 2018, 20, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Gale, N.; McEwan, M.; Camacho, O.M.; Hardie, G.; Murphy, J.; Proctor, C.J. Changes in Biomarkers of Exposure on Switching from a Conventional Cigarette to the glo Tobacco Heating Product: A Randomized, Controlled Ambulatory Study. Nicotine Tob. Res. 2021, 23, 584–591. [Google Scholar] [CrossRef]
- Barhdadi, S.; Courselle, P.; Deconinck, E.; Vanhee, C. The analysis of cannabinoids in e-cigarette liquids using LC-HRAM-MS and LC-UV. J. Pharm. Biomed. Anal. 2023, 230, 115394. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Henningfield, J.E. Reducing the nicotine content to make cigarettes less addictive. Tob. Control 2013, 22 (Suppl. 1), i14–i17. [Google Scholar] [CrossRef]
- Szumilas, K.; Szumilas, P.; Grzywacz, A.; Wilk, A. The Effects of E-Cigarette Vapor Components on the Morphology and Function of the Male and Female Reproductive Systems: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 6152. [Google Scholar] [CrossRef]
- Montjean, D.; Godin Pagé, M.H.; Bélanger, M.C.; Benkhalifa, M.; Miron, P. An Overview of E-Cigarette Impact on Reproductive Health. Life 2023, 13, 827. [Google Scholar] [CrossRef]
- Vivarelli, F.; Granata, S.; Rullo, L.; Mussoni, M.; Candeletti, S.; Romualdi, P.; Fimognari, C.; Cruz-Chamorro, I.; Carrillo-Vico, A.; Paolini, M.; et al. On the toxicity of e-cigarettes consumption: Focus on pathological cellular mechanisms. Pharmacol. Res. 2022, 182, 106315. [Google Scholar] [CrossRef]
- El Golli, N.; Rahali, D.; Jrad-Lamine, A.; Dallagi, Y.; Jallouli, M.; Bdiri, Y.; Ba, N.; Lebret, M.; Rosa, J.P.; El May, M.; et al. Impact of electronic-cigarette refill liquid on rat testis. Toxicol. Mech. Methods 2016, 26, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Rahali, D.; Jrad-Lamine, A.; Dallagi, Y.; Bdiri, Y.; Ba, N.; El May, M.; El Fazaa, S.; El Golli, N. Semen Parameter Alteration, Histological Changes and Role of Oxidative Stress in Adult Rat Epididymis on Exposure to Electronic Cigarette Refill Liquid. Chin. J. Physiol. 2018, 61, 75–84. [Google Scholar] [CrossRef]
- Fadeyi, O.; Randhawa, A.; Shankar, A.; Garabetian, C.; Singh, H.; Topacio, A. Thromboembolism Triggered by a Combination of Electronic Cigarettes and Oral Contraceptives: A Case Report and Review of Literature. J. Investig. Med. High. Impact Case Rep. 2023, 11, 23247096231181072. [Google Scholar] [CrossRef] [PubMed]
- Kechter, A.; Ceasar, R.C.; Simpson, K.A.; Schiff, S.J.; Dunton, G.F.; Bluthenthal, R.N.; Barrington-Trimis, J.L. A chocolate cake or a chocolate vape? Young adults describe their relationship with food and weight in the context of nicotine vaping. Appetite 2022, 175, 106075. [Google Scholar] [CrossRef] [PubMed]
- Mason, T.B.; Tackett, A.P.; Smith, C.E.; Leventhal, A.M. Tobacco product use for weight control as an eating disorder behavior: Recommendations for future clinical and public health research. Int. J. Eat. Disord. 2022, 55, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Ganson, K.T.; Nagata, J.M. Associations between vaping and eating disorder diagnosis and risk among college students. Eat. Behav. 2021, 43, 101566. [Google Scholar] [CrossRef]
- Naveed, A.; Dang, N.; Gonzalez, P.; Choi, S.H.; Mathew, A.; Wardle, M.; Garey, L.; Hamidovic, A. E-Cigarette Dependence and Weight-Related Attitudes/Behaviors Associated with Eating Disorders in Adolescent Girls. Front. Psychiatry 2021, 12, 713094. [Google Scholar] [CrossRef]
- Dunn, C.P.; Riley, J.B.; Hawkins, K.B.; Tercyak, K.P. Factors Associated With Disordered Eating Behavior Among Adolescent Girls: Screening and Education. J. Prim. Care Community Health 2022, 13, 21501319211062673. [Google Scholar] [CrossRef]
- Hedman, L.; Backman, H.; Stridsman, C.; Lundbäck, M.; Andersson, M.; Rönmark, E. Predictors of electronic cigarette use among Swedish teenagers: A population-based cohort study. BMJ Open 2020, 10, e040683. [Google Scholar] [CrossRef]
- Wang, M.; Wang, H.; Hu, R.Y.; Gong, W.W.; Pan, J.; Yu, M. Associations between trying to control weight, weight control behaviors and current electronic cigarette usage in middle and high school students: A cross-sectional study in Zhejiang Province, China. Tob. Induc. Dis. 2020, 18, 28. [Google Scholar] [CrossRef]
- Ganson, K.T.; Lavender, J.M.; Rodgers, R.F.; Cunningham, M.; Nagata, J.M. Compulsive exercise and vaping among a sample of U.S. College students aged 18–26 years. Eat. Weight Disord. 2022, 27, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Hod, R.; Mohd Nor, N.H.; Maniam, S. Systematic review on e-cigarette and its effects on weight gain and adipocytes. PLoS ONE 2022, 17, e0270818. [Google Scholar] [CrossRef]
- Atuegwu, N.C.; Perez, M.F.; Oncken, C.; Mead, E.L.; Maheshwari, N.; Mortensen, E.M. E-cigarette use is associated with a self-reported diagnosis of prediabetes in never cigarette smokers: Results from the behavioral risk factor surveillance system survey. Drug Alcohol Depend. 2019, 205, 107692. [Google Scholar] [CrossRef]
- Fagan, P.; Pokhrel, P.; Herzog, T.A.; Moolchan, E.T.; Cassel, K.D.; Franke, A.A.; Li, X.; Pagano, I.; Trinidad, D.R.; Sakuma, K.K.; et al. Sugar and Aldehyde Content in Flavored Electronic Cigarette Liquids. Nicotine Tob. Res. 2018, 20, 985–992. [Google Scholar] [CrossRef] [PubMed]
- El Golli, N.; Dkhili, H.; Dallagi, Y.; Rahali, D.; Lasram, M.; Bini-Dhouib, I.; Lebret, M.; Rosa, J.P.; El Fazaa, S.; Allal-El Asmi, M. Comparison between electronic cigarette refill liquid and nicotine on metabolic parameters in rats. Life Sci. 2016, 146, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Y.; Youn, J.Y.; Zhang, Y.; Makino, A.; Yuan, J.X.; Cai, H. Flavored and Nicotine-Containing E-Cigarettes Induce Impaired Angiogenesis and Diabetic Wound Healing via Increased Endothelial Oxidative Stress and Reduced NO Bioavailability. Antioxidants 2022, 11, 904. [Google Scholar] [CrossRef]
- Sun, K.; Liu, J.; Ning, G. Active smoking and risk of metabolic syndrome: A meta-analysis of prospective studies. PLoS ONE 2012, 7, e47791. [Google Scholar] [CrossRef]
- Matsushita, Y.; Nakagawa, T.; Yamamoto, S.; Takahashi, Y.; Noda, M.; Mizoue, T. Associations of smoking cessation with visceral fat area and prevalence of metabolic syndrome in men: The Hitachi health study. Obesity 2011, 19, 647–651. [Google Scholar] [CrossRef]
- Górna, I.; Napierala, M.; Florek, E. Electronic Cigarette Use and Metabolic Syndrome Development: A Critical Review. Toxics 2020, 8, 105. [Google Scholar] [CrossRef]
- Tsai, M.; Byun, M.K.; Shin, J.; Crotty Alexander, L.E. Effects of e-cigarettes and vaping devices on cardiac and pulmonary physiology. J. Physiol. 2020, 598, 5039–5062. [Google Scholar] [CrossRef]
- Antoniewicz, L.; Brynedal, A.; Hedman, L.; Lundbäck, M.; Bosson, J.A. Acute Effects of Electronic Cigarette Inhalation on the Vasculature and the Conducting Airways. Cardiovasc. Toxicol. 2019, 19, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Berlin, I.; Lin, S.; Lima, J.A.; Bertoni, A.G. Smoking Status and Metabolic Syndrome in the Multi-Ethnic Study of Atherosclerosis. A cross-sectional study. Tob. Induc. Dis. 2012, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Aranyosi, J.K.; Galgoczi, E.; Erdei, A.; Katko, M.; Fodor, M.; Ujhelyi, Z.; Bacskay, I.; Nagy, E.V.; Ujhelyi, B. Different Effects of Cigarette Smoke, Heated Tobacco Product and E-Cigarette Vapour on Orbital Fibroblasts in Graves’ Orbitopathy; a Study by Real Time Cell Electronic Sensing. Molecules 2022, 27, 3001. [Google Scholar] [CrossRef] [PubMed]
- Dumitru, N.; Ghemigian, A.; Carsote, M.; Albu, S.E.; Terzea, D.; Valea, A. Thyroid nodules after initial evaluation by primary health care practitioners: An ultrasound pictorial essay. Arch. Balk. Med. Union 2016, 51, 434–438. [Google Scholar]
- Fiani, B.; Noblett, C.; Nanney, J.M.; Gautam, N.; Pennington, E.; Doan, T.; Nikolaidis, D. The Impact of “Vaping” Electronic Cigarettes on Spine Health. Cureus 2020, 12, e8907. [Google Scholar] [CrossRef] [PubMed]
- Yoon, V.; Maalouf, N.M.; Sakhaee, K. The effects of smoking on bone metabolism. Osteoporos. Int. 2012, 23, 2081–2092. [Google Scholar] [CrossRef]
- Taes, Y.; Lapauw, B.; Vanbillemont, G.; Bogaert, V.; De Bacquer, D.; Goemaere, S.; Zmierczak, H.; Kaufman, J.M. Early smoking is associated with peak bone mass and prevalent fractures in young, healthy men. J. Bone Miner. Res. 2010, 25, 379–387. [Google Scholar] [CrossRef]
- Reumann, M.K.; Schaefer, J.; Titz, B.; Aspera-Werz, R.H.; Wong, E.T.; Szostak, J.; Häussling, V.; Ehnert, S.; Leroy, P.; Tan, W.T.; et al. E-vapor aerosols do not compromise bone integrity relative to cigarette smoke after 6-month inhalation in an ApoE-/- mouse model. Arch. Toxicol. 2020, 94, 2163–2177. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Narain, V.; Bondesson, M. E-cigarette vaping liquids and the flavoring chemical cinnamaldehyde perturb bone, cartilage and vascular development in zebrafish embryos. Aquat. Toxicol. 2021, 240, 105995. [Google Scholar] [CrossRef]
- Wavreil, F.D.M.; Heggland, S.J. Cinnamon-flavored electronic cigarette liquids and aerosols induce oxidative stress in human osteoblast-like MG-63 cells. Toxicol. Rep. 2019, 7, 23–29. [Google Scholar] [CrossRef]
- Nicholson, T.; Davis, L.; Davis, E.T.; Newton Ede, M.; Scott, A.; Jones, S.W. e-Cigarette Vapour Condensate Reduces Viability and Impairs Function of Human Osteoblasts, in Part, via a Nicotine Dependent Mechanism. Toxics 2022, 10, 506. [Google Scholar] [CrossRef]
- Kao, K.T.; Denker, M.; Zacharin, M.; Wong, S.C. Pubertal abnormalities in adolescents with chronic disease. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101275. [Google Scholar] [CrossRef]
- Nogueira, L.; Zemljic-Harpf, A.E.; Yusufi, R.; Ranjbar, M.; Susanto, C.; Tang, K.; Mahata, S.K.; Jennings, P.A.; Breen, E.C. E-cigarette aerosol impairs male mouse skeletal muscle force development and prevents recovery from injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2022, 323, R849–R860. [Google Scholar] [CrossRef]
- Micallef, J.; Batisse, A.; Revol, B. Pharmacology of cannabidiol: Red flags, consequences and risks in humans. Therapie 2022, 77, 585–590. [Google Scholar] [CrossRef]
- Menshov, V.A.; Trofimov, A.V.; Zagurskaya, A.V.; Berdnikova, N.G.; Yablonskaya, O.I.; Platonova, A.G. Influence of Nicotine from Diverse Delivery Tools on the Autonomic Nervous and Hormonal Systems. Biomedicines 2022, 10, 121. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.A.; Wallace, M.J.; Bandaru, P.; Woodbury, E.D.; Mohler, P.J.; Wold, L.E. E-cigarettes and arrhythmogenesis: A comprehensive review of preclinical studies and their clinical implications. Cardiovasc. Res. 2023, 119, 2157–2164. [Google Scholar] [CrossRef]
- Benowitz, N.L.; St Helen, G.; Nardone, N.; Addo, N.; Zhang, J.J.; Harvanko, A.M.; Calfee, C.S.; Jacob, P., 3rd. Twenty-Four-Hour Cardiovascular Effects of Electronic Cigarettes Compared with Cigarette Smoking in Dual Users. J. Am. Heart Assoc. 2020, 9, e017317. [Google Scholar] [CrossRef] [PubMed]
- Mull, E.S.; Erdem, G.; Nicol, K.; Adler, B.; Shell, R. Eosinophilic Pneumonia and Lymphadenopathy Associated with Vaping and Tetrahydrocannabinol Use. Pediatrics 2020, 145, e20193007. [Google Scholar] [CrossRef] [PubMed]
- Schier, J.G.; Meiman, J.G.; Layden, J.; Mikosz, C.A.; VanFrank, B.; King, B.A.; Salvatore, P.P.; Weissman, D.N.; Thomas, J.; Melstrom, P.C.; et al. Severe Pulmonary Disease Associated with Electronic-Cigarette-Product Use—Interim Guidance. CDC 2019 Lung Injury Response Group. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 787–790. [Google Scholar] [CrossRef]
- Furlow, B. US CDC issues guidance on e-cigarette, or vaping, associated lung injury. Lancet Respir. Med. 2020, 8, 20. [Google Scholar] [CrossRef] [PubMed]
First Author Year of Publication Reference Number | Study Design and Population | Key Findings |
---|---|---|
Prediabetes | ||
Cai 2023 [5] | Cross-sectional study (NHANES) * N = 5101 adults from U.S. N1 = 6.3% current e-cig users N2 = 17.1% former e-cig users | E-cig use was not correlated with prediabetes (p > 0.05) – fully adjusted model No correlation between dual use and prediabetes (p > 0.05) |
Kim 2022 [13] | Cross-sectional (nationwide population-based) study ** N = 22,385 subjects (9490 men and 12,895 women) without diabetes (a subgroup of 6735 patients had prediabetes) Studied groups:
| Prevalence of prediabetes: N1: 24.1%; N2: 33.1%; N3: 26.5%; N4: 30.5% OR of prediabetes:
Higher odds of prediabetes in men (but not for females) who were dual users versus never-smokers without exposure to second-hand smoking: OR = 1.70 (95%CI: 1.32–2.19) |
Zhang 2022 [14] | Cross-sectional study 600,046 subjects | Prevalence of prediabetes in:
|
Diabetes mellitus | ||
Cai 2023 [5] | * | E-cig use was not correlated with diabetes (p > 0.05)—fully adjusted model No correlation between dual use and diabetes (p > 0.05) No correlation between dual use and insulin resistance (p > 0.05) N1 were 63% (95%CI: 1–2.91) more likely to have higher HOMA-IR than never e-cig users N2 were 64% (95%CI: 1.04–2.59) more likely to have higher HOMA-IR than never e-cig users |
Kim 2020 [15] | Cross-sectional study N = 7505 subjects: ***
| Lower prevalence of diabetes in dual smokers (3.3%) versus cigarette-only (5.9%) (p < 0.05) Similar prevalence of diabetes in dual smokers versus never smokers (p > 0.05) Higher prevalence of diabetes family history in dual smokers (22.2%) versus never smokers (15.4%) (p < 0.05) |
Leavens 2020 [16] | Cross-sectional study N total = 7775 respondents 2 data sets: 2015: N = 3627 adults experiencing homelessness
| Diabetes was not associated with e-cigarette use, neither in e-cigarette only, nor in dual smokers. Diabetes had lower rates in combustible cigarette users compared to non-smokers: 10.9 (95%CI: 9.7–12) versus 13.6 (95%CI: 11.6–15.7) |
Obesity | ||
Sompa 2022 [18] | Population-based birth cohort N = 3055 subjects
Waist circumference assessed in 73.68% (N3 = 2251) subjects Body fat % assessed in 72.96% (N4 = 2229) subjects | Current e-cigarettes female smokers had:
Overall, e-cigarettes smoking was associated with:
|
Kim 2022 [13] | ** | Prevalence of dual smoking is higher in: Obese subjects versus general population (9.4% versus 7.3%) Overweighed subjects versus general population (7.4% versus 7.3%) Lower in normal weighted subjects versus general population (5.7% versus 7.3%) |
Hoover 2022 [19] | Community sample study N = 357 adults e-cigarettes use: 7.8% | Risk of food addiction was higher in e-cigarettes smokers: adjusted RR = 2.71, (99%CI: 1.75–4.21) p < 0.001 Risk of obesity was not statistically significant in e-cigarettes smokers: adjusted RR = 0.64 (99%CI: 0.1–4.11) p = 0.539 |
Zhao 2020 [17] | Two cross-sectional data sets: 2015–2016: N = 189,306 people
| Weighted prevalence of e-cigarettes smoking is higher in obese people:
E-cigarettes use associated with obesity in:
|
Alqahtani 2020 [20] | Secondary data analysis of 207,117 electronic medical records → a sample of 965 patients (Current e-cigarettes users: 5%) | E-cigarettes use associated with a lower BMI (B = −3.07, p = 0.021) |
Kim 2020 [15] | *** | Higher daily energy intake in dual smokers versus cigarette-only (p < 0.05) and never smokers (p < 0.001) Lower prevalence of normal BMI in dual smokers (26.1%) versus cigarette-only (35.1%, p < 0.05) and never smokers (35.5%, p < 0.05). Lower prevalence of pre-obesity in dual smokers (22.9%) versus cigarette-only (23.8%, p < 0.05) and never smokers (25.3%, p < 0.05). Higher prevalence of obesity in dual smokers (51.0%) versus cigarette-only (41.2%, p < 0.05) and never smokers (39.2%, p < 0.05). |
Metabolic syndrome | ||
Kim 2020 [15] | *** | Dual users versus non-smokers:
Dual users versus cigarette-only smokers had higher adjusted prevalence OR for:
|
Oh 2020 [24] | Case-control study N = 5462 cases of metabolic syndrome (2507 males and 2955 females) N’ = 12194 controls (4585 males and 7609 females) | Increased odds of metabolic syndrome in: Females who were current smokers of conventional cigarettes OR = 4.02 (95%CI: 1.48–10.93, p = 0.006) Females who were current smokers of conventional and e-cigarettes OR = 1.80 (95%CI: 1.02–3.18, p = 0.042) |
First Author Year of Publication Reference Number | Study Design | Key Findings |
---|---|---|
Galanti 2023 [28] | Prospective, observational study N = 410 infertile women
| Lower AMH in smokers (1.3 ± 2.3 ng/mL versus 2.1 ± 4.5 ng/mL, p < 0.05) Higher total dose of gonadotropin in smokers (1850 ± 860 UI versus 1730 ± 780 UI, p < 0.05) Less oocytes retrieved/patient in smokers (5.21 ± 0.9 versus 6.55 ± 3.5, p < 0.001) Higher empty zona pellucid oocytes in smokers (0.51 ± 0.1 versus 0.2 ± 0.1, p < 0.05) Lower fertilization rate in smokers (68.12 ± 2.21 versus 72.16 ± 3.05, p = 0.03) More germinal vesicles in e-cigarette smokers and heat-not-burn products compared with cigarette smokers (0.48 ± 0.1 and 0.4 ± 0.1 versus 0.33 ± 0.2, p = 0.04) |
Harlow 2021 [29] | Prospective cohort study N = 4586 women trying to conceive At baseline:
| Small reduction in fecundability before and after confounder adjustment, both in current and former users:
|
Holmboe 2020 [30] | Cross-sectional study N = 1043 (467 daily and 576 occasionally) cigarette smokers, compared with 946 non-smokers N’ = 164 (25 daily and 139 occasionally) e-cigarette smokers, compared with 1057 non-smokers | Higher total (6.2% higher for daily smokers and 4.1% higher for occasional smokers, p < 0.01) and free testosterone (6.2% higher in both daily and occasional smokers, p < 0.01) rates in cigarette smokers. Lower sperm concentrations (33 million/mL for daily smokers, 43 million/mL for occasional smokers and 44 million/mL for non-smokers, respectively, p < 0.01) and total sperm count (103 million for daily smokers, 136 million for occasional smokers and 139 million for non-smokers, p < 0.01) in cigarette smokers. Lower sperm concentrations (33 million/mL for daily smokers, 39 million/mL for occasional smokers and 45 million/mL for non-smokers, p < 0.01) and counts (91 million for daily smokers, 128 million for occasional smokers and 147 million for non-smokers, p < 0.01) in e-cigarette smokers. |
First Authors Year of Publication Reference Number | Study Design | End Points |
---|---|---|
Abdallah 2023 [35] | Retrospective study N = 41 teenagers with EVALI
| N1 > N2 hospitalization stay (median of 7 versus 5 days, p < 0.01)
|
Lee 2021 [38] | Retrospective study N = 8 teenagers who experienced EVALI and were followed after stopping the vaping and e-cigarette use | Average follow-up of 46.5 days All patients (8/8) received GC amid EVALI Radiography and spirometry parameters improved post-discontinuation of GC |
Kaous 2020 [39] | Retrospective study N = 8 teenagers who experienced EVALI and received GC |
|
Corcoran 2020 [40] | Retrospective study N = 7 teenagers with EVALI | 42% of the patients received systemic steroids (as inpatients) |
Carroll 2020 [43] | Retrospective study N = 15 teenagers with EVALI | GC use offered a clinical improvement 5/11 patients: inhaled GC (as outpatients) |
Kass 2020 [41] | Retrospective study N = 10 teenagers with lung illness (8/10 patients with EVALI) | 8/10 patients with EVALI (requiring prednisone, methyl prednisolone from 4 days to 8 weeks) |
Fryman 2020 [44] | Retrospective study N = 8 adults (5 males and 3 females) with a median age of 31.5 (range: 24–62) years | 50% (4/8) of patients required GC All patients had a clinical improvement Median hospitalization time: 7.5 (4–19) days |
Rao 2020 [45] | Retrospective study N = 13 teenagers (54% were females) | 12/13: required GC:
Median hospitalization time: 7 (2–120) days |
Zou 2020 [46] | Retrospective study N = 36 individuals with median of 21 (19–30.5) years | 72%: required GC (median daily prednisone equivalent: 46 mg) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osman, A.; Petrescu, G.S.; Tuculină, M.J.; Dascălu, I.T.; Popescu, C.; Enescu, A.-Ș.; Dăguci, C.; Cucu, A.-P.; Nistor, C.; Carsote, M. Metabolic and Other Endocrine Elements with Regard to Lifestyle Choices: Focus on E-Cigarettes. Metabolites 2023, 13, 1192. https://doi.org/10.3390/metabo13121192
Osman A, Petrescu GS, Tuculină MJ, Dascălu IT, Popescu C, Enescu A-Ș, Dăguci C, Cucu A-P, Nistor C, Carsote M. Metabolic and Other Endocrine Elements with Regard to Lifestyle Choices: Focus on E-Cigarettes. Metabolites. 2023; 13(12):1192. https://doi.org/10.3390/metabo13121192
Chicago/Turabian StyleOsman, Andrei, Gabriel Sebastian Petrescu, Mihaela Jana Tuculină, Ionela Teodora Dascălu, Cristina Popescu, Anca-Ștefania Enescu, Constantin Dăguci, Anca-Pati Cucu, Claudiu Nistor, and Mara Carsote. 2023. "Metabolic and Other Endocrine Elements with Regard to Lifestyle Choices: Focus on E-Cigarettes" Metabolites 13, no. 12: 1192. https://doi.org/10.3390/metabo13121192
APA StyleOsman, A., Petrescu, G. S., Tuculină, M. J., Dascălu, I. T., Popescu, C., Enescu, A. -Ș., Dăguci, C., Cucu, A. -P., Nistor, C., & Carsote, M. (2023). Metabolic and Other Endocrine Elements with Regard to Lifestyle Choices: Focus on E-Cigarettes. Metabolites, 13(12), 1192. https://doi.org/10.3390/metabo13121192