Gender-Related Factors in Medication Adherence for Metabolic and Cardiovascular Health
Abstract
:1. Introduction
2. Medication Adherence in Metabolic and Cardiovascular Diseases
2.1. Type 2 Diabetes
2.2. Hypercholesterolaemia
2.3. Arterial Hypertension
2.4. Cardiovascular Diseases
2.5. Heart Failure
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vrijens, B.; De Geest, S.; Hughes, D.A.; Przemyslaw, K.; Demonceau, J.; Ruppar, T.; Dobbels, F.; Fargher, E.; Morrison, V.; Lewek, P.; et al. A new taxonomy for describing and defining adherence to medications. Br. J. Clin. Pharmacol. 2012, 73, 691–705. [Google Scholar] [CrossRef] [PubMed]
- Vrijens, B.; Vincze, G.; Kristanto, P.; Urquhart, J.; Burnier, M. Adherence to prescribed antihypertensive drug treatments: Longitudinal study of electronically compiled dosing histories. BMJ 2008, 336, 1114–1117. [Google Scholar] [CrossRef] [PubMed]
- Hamrahian, S.M. Medication Non-adherence: A Major Cause of Resistant Hypertension. Curr. Cardiol. Rep. 2020, 22, 133. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Definig Adherence 2003. Available online: https://www.who.int/chp/knowledge/publications/adherence_Section1.pdf (accessed on 8 June 2021).
- Schiebinger, L.; Stefanick, M.L. Gender Matters in Biological Research and Medical Practice. J. Am. Coll. Cardiol. 2016, 67, 136–138. [Google Scholar] [CrossRef]
- Clayton, J.A.; Tannenbaum, C. Reporting Sex, Gender, or Both in Clinical Research? JAMA 2016, 316, 1863–1864. [Google Scholar] [CrossRef]
- International Diabetes Federation (IDF). Diabetes Atlas 2019. Available online: https://www.diabetesatlas.org/en/resources/ (accessed on 8 June 2021).
- Lipscombe, L.L.; Hux, J.E. Trends in diabetes prevalence, incidence, and mortality in Ontario, Canada 1995–2005: A population-based study. Lancet 2007, 369, 750–756. [Google Scholar] [CrossRef]
- Li, J.; Ni, J.; Wu, Y.; Zhang, H.; Liu, J.; Tu, J.; Cui, J.; Ning, X.; Wang, J. Sex Differences in the Prevalence, Awareness, Treatment, and Control of Diabetes Mellitus among Adults Aged 45 Years and Older in Rural Areas of Northern China: A Cross-Sectional, Population-Based Study. Front. Endocrinol. 2019, 10, 147. [Google Scholar] [CrossRef]
- Prospective Studies Collaboration; Asia Pacific Cohort Studies Collaboration. Sex-specific relevance of diabetes to occlusive vascular and other mortality: A collaborative meta-analysis of individual data from 980,793 adults from 68 prospective studies. Lancet Diabetes Endocrinol. 2018, 6, 538–546. [Google Scholar] [CrossRef]
- Emerging Risk Factors Collaboration; Sarwar, N.; Gao, P.; Seshasai, S.R.; Gobin, R.; Kaptoge, S.; Di Angelantonio, E.; Ingelsson, E.; Lawlor, D.A.; Selvin, E.; et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. [Google Scholar] [CrossRef]
- Kanaya, A.M.; Grady, D.; Barrett-Connor, E. Explaining the sex difference in coronary heart disease mortality among patients with type 2 diabetes mellitus: A meta-analysis. Arch. Intern. Med. 2002, 162, 1737–1745. [Google Scholar] [CrossRef]
- Wenger, N.K. Coronary heart disease in women: Highlights of the past 2 years--stepping stones, milestones and obstructing boulders. Nat. Clin. Pract. Cardiovasc. Med. 2006, 3, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Shepard, B.D. Sex differences in diabetes and kidney disease: Mechanisms and consequences. Am. J. Physiol. Renal Physiol. 2019, 317, F456–F462. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Cai, R.; Sun, J.; Dong, X.; Huang, R.; Tian, S.; Wang, S. Diabetes mellitus as a risk factor for incident chronic kidney disease and end-stage renal disease in women compared with men: A systematic review and meta-analysis. Endocrine 2017, 55, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Earle, K.A.; Ng, L.; White, S.; Zitouni, K. Sex differences in vascular stiffness and relationship to the risk of renal functional decline in patients with type 2 diabetes. Diabetes Vasc. Dis. Res. 2017, 14, 304–309. [Google Scholar] [CrossRef]
- Cobo, G.; Hecking, M.; Port, F.K.; Exner, I.; Lindholm, B.; Stenvinkel, P.; Carrero, J.J. Sex and gender differences in chronic kidney disease: Progression to end-stage renal disease and haemodialysis. Clin. Sci. 2016, 130, 1147–1163. [Google Scholar] [CrossRef]
- Chatterjee, S.; Peters, S.A.E.; Woodward, M.; Arango, S.M.; Batty, G.D.; Beckett, N.; Beiser, A.; Borenstein, A.R.; Crane, P.K.; Haan, M.N.; et al. Type 2 Diabetes as a Risk Factor for Dementia in Women Compared with Men: A Pooled Analysis of 2.3 Million People Comprising More Than 100,000 Cases of Dementia. Diabetes Care 2016, 39, 300–307. [Google Scholar] [CrossRef]
- Ohkuma, T.; Peters, S.A.E.; Woodward, M. Sex differences in the association between diabetes and cancer: A systematic review and meta-analysis of 121 cohorts including 20 million individuals and one million events. Diabetologia 2018, 61, 2140–2154. [Google Scholar] [CrossRef]
- Wenger, N.K. Clinical presentation of CAD and myocardial ischemia in women. J. Nucl. Cardiol. 2016, 23, 976–985. [Google Scholar] [CrossRef]
- Raparelli, V.; Morano, S.; Franconi, F.; Lenzi, A.; Basili, S. Sex Differences in Type-2 Diabetes: Implications for Cardiovascular Risk Management. Curr. Pharm. Des. 2017, 23, 1471–1476. [Google Scholar] [CrossRef]
- Huebschmann, A.G.; Huxley, R.R.; Kohrt, W.M.; Zeitler, P.; Regensteiner, J.G.; Reusch, J.E.B. Sex differences in the burden of type 2 diabetes and cardiovascular risk across the life course. Diabetologia 2019, 62, 1761–1772. [Google Scholar] [CrossRef]
- Ostan, R.; Monti, D.; Gueresi, P.; Bussolotto, M.; Franceschi, C.; Baggio, G. Gender, aging and longevity in humans: An update of an intriguing/neglected scenario paving the way to a gender-specific medicine. Clin. Sci. 2016, 130, 1711–1725. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.K.; Kontopantelis, E.; Emsley, R.; Buchan, I.; Mamas, M.A.; Sattar, N.; Ashcroft, D.; Rutter, M.K. Cardiovascular Risk and Risk Factor Management in Type 2 Diabetes Mellitus. Circulation 2019, 139, 2742–2753. [Google Scholar] [CrossRef] [PubMed]
- Tavaglione, F.; Filardi, T.; Fallarino, M.; Mandosi, E.; Turinese, I.; Rossetti, M.; Lenzi, A.; Morano, S. The SNP rs9677 of VPAC1 gene is associated with glycolipid control and heart function in female patients with type 2 diabetes: A follow-up study. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.A.E.; Muntner, P.; Woodward, M. Sex Differences in the Prevalence of, and Trends in, Cardiovascular Risk Factors, Treatment, and Control in the United States, 2001 to 2016. Circulation 2019, 139, 1025–1035. [Google Scholar] [CrossRef]
- Penno, G.; Solini, A.; Bonora, E.; Fondelli, C.; Orsi, E.; Zerbini, G.; Trevisan, R.; Vedovato, M.; Gruden, G.; Laviola, L.; et al. Gender differences in cardiovascular disease risk factors, treatments and complications in patients with type 2 diabetes: The RIACE Italian multicentre study. J. Intern. Med. 2013, 274, 176–191. [Google Scholar] [CrossRef]
- Choe, S.-A.; Kim, J.Y.; Ro, Y.S.; Cho, S.-I. Women are less likely than men to achieve optimal glycemic control after 1 year of treatment: A multi-level analysis of a Korean primary care cohort. PLoS ONE 2018, 13, e0196719. [Google Scholar] [CrossRef]
- Sia, H.-K.; Kor, C.-T.; Tu, S.-T.; Liao, P.-Y.; Chang, Y.-C. Predictors of treatment failure during the first year in newly diagnosed type 2 diabetes patients: A retrospective, observational study. PeerJ 2021, 9, e11005. [Google Scholar] [CrossRef]
- Kautzky-Willer, A.; Harreiter, J. Sex and gender differences in therapy of type 2 diabetes. Diabetes Res. Clin. Pract. 2017, 131, 230–241. [Google Scholar] [CrossRef]
- Clemens, K.K.; Woodward, M.; Neal, B.; Zinman, B. Sex Disparities in Cardiovascular Outcome Trials of Populations with Diabetes: A Systematic Review and Meta-analysis. Diabetes Care 2020, 43, 1157–1163. [Google Scholar] [CrossRef]
- Bird, C.E.; Fremont, A.M.; Bierman, A.S.; Wickstrom, S.; Shah, M.; Rector, T.; Horstman, T.; Escarce, J.J. Does quality of care for cardiovascular disease and diabetes differ by gender for enrollees in managed care plans? Womens Health Issues 2007, 17, 131–138. [Google Scholar] [CrossRef]
- Vaccarino, V.; Rathore, S.S.; Wenger, N.K.; Frederick, P.D.; Abramson, J.L.; Barron, H.V.; Manhapra, A.; Mallik, S.; Krumholz, H.M.; National Registry of Myocardial Infarctions. Sex and Racial Differences in the Management of Acute Myocardial Infarction, 1994 through 2002. N. Engl. J. Med. 2005, 353, 671–682. [Google Scholar] [CrossRef]
- Associazione Medici Diabetologi. Nuovi Annali AMD 2020. Available online: https://aemmedi.it/nuovi-annali-amd-2020/ (accessed on 8 June 2021).
- Società Italiana di Diabetologia. Osservatorio ARNO 2019. Available online: https://www.siditalia.it/clinica/linee-guida-societari/send/80-linee-guida-documenti-societari/5025-rapporto-arno-diabete-2019 (accessed on 8 June 2021).
- Kim, Y.-Y.; Lee, J.-S.; Kang, H.-J.; Park, S.M. Effect of medication adherence on long-term all-cause-mortality and hospitalization for cardiovascular disease in 65,067 newly diagnosed type 2 diabetes patients. Sci. Rep. 2018, 8, 12190. [Google Scholar] [CrossRef] [PubMed]
- Pednekar, P.; Heller, D.A.; Peterson, A.M. Association of Medication Adherence with Hospital Utilization and Costs among Elderly with Diabetes Enrolled in a State Pharmaceutical Assistance Program. J. Manag. Care Spec. Pharm. 2020, 26, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Kennedy-Martin, T.; Boye, K.S.; Peng, X. Cost of medication adherence and persistence in type 2 diabetes mellitus: A literature review. Patient Prefer. Adherence 2017, 11, 1103–1117. [Google Scholar] [CrossRef] [PubMed]
- E Curtis, S.; Boye, K.S.; Lage, M.J.; García-Perez, L.-E. Medication adherence and improved outcomes among patients with type 2 diabetes. Am. J. Manag. Care 2017, 23, e208–e214. [Google Scholar]
- Beernink, J.M.; Oosterwijk, M.M.; Khunti, K.; Gupta, P.; Patel, P.; van Boven, J.F.; Heerspink, H.J.L.; Bakker, S.J.; Navis, G.; Nijboer, R.M.; et al. Biochemical Urine Testing of Medication Adherence and Its Association with Clinical Markers in an Outpatient Population of Type 2 Diabetes Patients: Analysis in the DIAbetes and LifEstyle Cohort Twente (DIALECT). Diabetes Care 2021, 44, 1419–1425. [Google Scholar] [CrossRef]
- Brunton, S.A.; Polonsky, W.H. Hot Topics in Primary Care: Medication Adherence in Type 2 Diabetes Mellitus: Real-World Strategies for Addressing a Common Problem. J. Fam. Pract. 2017, 66 (Suppl. S4), S46–S51. [Google Scholar]
- Kirkman, M.S.; Rowan-Martin, M.T.; Levin, R.; Fonseca, V.A.; Schmittdiel, J.A.; Herman, W.H.; Aubert, R.E. Determinants of Adherence to Diabetes Medications: Findings from a Large Pharmacy Claims Database. Diabetes Care 2015, 38, 604–609. [Google Scholar] [CrossRef]
- McGovern, A.; Hinton, W.; Calderara, S.; Munro, N.; Whyte, M.; de Lusignan, S. A Class Comparison of Medication Persistence in People with Type 2 Diabetes: A Retrospective Observational Study. Diabetes Ther. 2018, 9, 229–242. [Google Scholar] [CrossRef]
- Iglay, K.; Qiu, Y.; Steve Fan, C.P.; Li, Z.; Tang, J.; Laires, P. Risk factors associated with treatment discontinuation and down-titration in type 2 diabetes patients treated with sulfonylureas. Curr. Med. Res. Opin. 2016, 32, 1567–1575. [Google Scholar] [CrossRef]
- Malmenas, M.; Bouchard, J.R.; Langer, J. Retrospective real-world adherence in patients with type 2 diabetes initiating once-daily liraglutide 1.8 mg or twice-daily exenatide 10 mug. Clin Ther. 2013, 35, 795–807. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.L.; Xie, L.; Pan, C.; Wang, Y.; Vaidya, N.; Ye, F.; Preblick, R.; Meneghini, L. Relationship between treatment persistence and A1C trends among patients with type 2 diabetes newly initiating basal insulin. Diabetes Obes. Metab. 2018, 20, 1298–1301. [Google Scholar] [CrossRef] [PubMed]
- Rathmann, W.; Czech, M.; Franek, E.; Kostev, K. Treatment persistence in the use of basal insulins in Poland and Germany. Int. J. Clin. Pharmacol. Ther. 2017, 55, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Horii, T.; Momo, K.; Yasu, T.; Kabeya, Y.; Atsuda, K. Determination of factors affecting medication adherence in type 2 diabetes mellitus patients using a nationwide claim-based database in Japan. PLoS ONE 2019, 14, e0223431. [Google Scholar] [CrossRef]
- Xu, N.; Xie, S.; Chen, Y.; Li, J.; Sun, L. Factors Influencing Medication Non-Adherence among Chinese Older Adults with Diabetes Mellitus. Int. J. Environ. Res. Public Health 2020, 17, 6012. [Google Scholar] [CrossRef]
- Manteuffel, M.; Williams, S.; Chen, W.; Verbrugge, R.R.; Pittman, D.G.; Steinkellner, A. Influence of Patient Sex and Gender on Medication Use, Adherence, and Prescribing Alignment with Guidelines. J. Women’s Health 2014, 23, 112–119. [Google Scholar] [CrossRef]
- Jankowska-Polańska, B.; Świątoniowska-Lonc, N.; Karniej, P.; Polański, J.; Tański, W.; Grochans, E. Influential factors in adherence to the therapeutic regime in patients with type 2 diabetes and hypertension. Diabetes Res. Clin. Pract. 2021, 173, 108693. [Google Scholar] [CrossRef]
- Demoz, G.T.; Wahdey, S.; Bahrey, D.; Kahsay, H.; Woldu, G.; Niriayo, Y.L.; Collier, A. Predictors of poor adherence to antidiabetic therapy in patients with type 2 diabetes: A cross-sectional study insight from Ethiopia. Diabetol. Metab. Syndr. 2020, 12, 62. [Google Scholar] [CrossRef]
- Choi, Y.J.; Smaldone, A.M. Factors Associated with Medication Engagement among Older Adults with Diabetes: Systematic Review and Meta-Analysis. Diabetes Educ. 2018, 44, 15–30. [Google Scholar] [CrossRef]
- Ali, S.; Stone, M.A.; Peters, J.L.; Davies, M.; Khunti, K. The prevalence of co-morbid depression in adults with Type 2 diabetes: A systematic review and meta-analysis. Diabet. Med. 2006, 23, 1165–1173. [Google Scholar] [CrossRef]
- Egede, L.E.; Ellis, C. Diabetes and depression: Global perspectives. Diabetes Res. Clin. Pract. 2010, 87, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Fisher, L.; Skaff, M.M.; Mullan, J.T.; Arean, P.; Glasgow, R.; Masharani, U. A longitudinal study of affective and anxiety disorders, depressive affect and diabetes distress in adults with Type 2 diabetes. Diabet. Med. 2008, 25, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
- Perrin, N.E.; Davies, M.J.; Robertson, N.; Snoek, F.J.; Khunti, K. The prevalence of diabetes-specific emotional distress in people with Type 2 diabetes: A systematic review and meta-analysis. Diabet. Med. 2017, 34, 1508–1520. [Google Scholar] [CrossRef] [PubMed]
- Fisher, L.; Mullan, J.T.; Arean, P.; Glasgow, R.E.; Hessler, D.; Masharani, U. Diabetes Distress but Not Clinical Depression or Depressive Symptoms Is Associated with Glycemic Control in Both Cross-Sectional and Longitudinal Analyses. Diabetes Care 2010, 33, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Aronson, B.D.; Sittner, K.J.; Walls, M.L. The Mediating Role of Diabetes Distress and Depressive Symptoms in Type 2 Diabetes Medication Adherence Gender Differences. Health Educ. Behav. 2020, 47, 474–482. [Google Scholar] [CrossRef]
- Bhaloo, T.; Juma, M.; Criscuolo-Higgins, C. A solution-focused approach to understanding patient motivation in diabetes self-management: Gender differences and implications for primary care. Chronic Illn. 2018, 14, 243–255. [Google Scholar] [CrossRef]
- Heisler, M.; Choi, H.; Palmisano, G.; Mase, R.; Richardson, C.; Fagerlin, A.; Montori, V.M.; Spencer, M.; An, L.C. Comparison of community health worker-led diabetes medication decision-making support for low-income Latino and African American adults with diabetes using e-health tools versus print materials: A randomized, controlled trial. Ann. Intern. Med. 2014, 161 (Suppl. S10), S13–S22. [Google Scholar] [CrossRef]
- Hofer, R.; Choi, H.; Mase, R.; Fagerlin, A.; Spencer, M.; Heisler, M. Mediators and Moderators of Improvements in Medication Adherence. Health Educ. Behav. 2017, 44, 285–296. [Google Scholar] [CrossRef]
- Mansyur, C.L.; Rustveld, L.O.; Nash, S.G.; Jibaja-Weiss, M.L. Social factors and barriers to self-care adherence in Hispanic men and women with diabetes. Patient Educ. Couns. 2015, 98, 805–810. [Google Scholar] [CrossRef]
- Shahabi, N.; Fakhri, Y.; Aghamolaei, T.; Hosseini, Z.; Homayuni, A. Socio-personal factors affecting adherence to treatment in patients with type 2 diabetes: A systematic review and meta-analysis. Prim. Care Diabetes 2023, 17, 205–220. [Google Scholar] [CrossRef]
- Bhuyan, S.S.; Shiyanbola, O.; Deka, P.; Isehunwa, O.O.; Chandak, A.; Huang, S.; Wang, Y.; Bhatt, J.; Ning, L.; Lin, W.J.; et al. The Role of Gender in Cost-Related Medication Nonadherence among Patients with Diabetes. J. Am. Board Fam. Med. 2018, 31, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Cities Changing Diabetes. Available online: https://www.citieschangediabetes.com/ (accessed on 8 June 2021).
- Pirillo, A.; Casula, M.; Olmastroni, E.; Norata, G.D.; Catapano, A.L. Global epidemiology of dyslipidaemias. Nat. Rev. Cardiol. 2021, 18, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Institute for Health Metrics and Evaluation. Global Health Data Exchange. GBD Results Tool. Available online: http://ghdx.healthdata.org/gbd-results-tool (accessed on 8 June 2021).
- Yusuf, S.; Hawken, S.; Ôunpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ferreira, D.L.S.; Nelson, S.M.; Sattar, N.; Ala-Korpela, M.; Lawlor, D.A. Metabolic characterization of menopause: Cross-sectional and longitudinal evidence. BMC Med. 2018, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- de Kat, A.C.; Dam, V.; Onland-Moret, N.C.; Eijkemans, M.J.C.; Broekmans, F.J.M.; van der Schouw, Y.T. Unraveling the associations of age and menopause with cardiovascular risk factors in a large population-based study. BMC Med. 2017, 15, 2. [Google Scholar] [CrossRef]
- Leutner, M.; Göbl, C.; Wielandner, A.; Howorka, E.; Prünner, M.; Bozkurt, L.; Harreiter, J.; Prosch, H.; Schlager, O.; Charwat-Resl, S.; et al. Cardiometabolic Risk in Hyperlipidemic Men and Women. Int. J. Endocrinol. 2016, 2016, 2647865. [Google Scholar] [CrossRef]
- Cholesterol Treatment Trialists’ (CTT) Collaboration; Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Peto, R.; Barnes, E.H.; Keech, A.; et al. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681. [Google Scholar] [CrossRef]
- Emerging Risk Factors Collaboration; Di Angelantonio, E.; Gao, P.; Pennells, L.; Kaptoge, S.; Caslake, M.; Thompson, A.; Butterworth, A.S.; Sarwar, N.; Wormser, D.; et al. Lipid-related markers and cardiovascular disease prediction. JAMA 2012, 307, 2499–2506. [Google Scholar]
- Silverman, M.G.; Ference, B.A.; Im, K.; Wiviott, S.D.; Giugliano, R.P.; Grundy, S.M.; Braunwald, E.; Sabatine, M.S. Association Between Lowering LDL-C and Cardiovascular Risk Reduction among Different Therapeutic Interventions: A Systematic Review and Meta-analysis. JAMA 2016, 316, 1289–1297. [Google Scholar] [CrossRef]
- Baigent, C.; Keech, A.; Kearney, P.M.; Blackwell, L.; Buck, G.; Pollicino, C.; Kirby, A.; Sourjina, T.; Peto, R.; Collins, R.; et al. Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005, 366, 1267–1278. [Google Scholar]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Cholesterol Treatment Trialists’ (CTT) Collaborators; Mihaylova, B.; Emberson, J.; Blackwell, L.; Keech, A.; Simes, J.; Barnes, E.H.; Voysey, M.; Gray, A.; Collins, R.; et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: Meta-analysis of individual data from 27 randomised trials. Lancet 2012, 380, 581–590. [Google Scholar] [PubMed]
- Cholesterol Treatment Trialists’ (CTT) Collaborators; Fulcher, J.; O’Connell, R.; Voysey, M.; Emberson, J.; Blackwell, L.; Mihaylova, B.; Simes, J.; Collins, R.; Kirby, A.; et al. Efficacy and safety of LDL-lowering therapy among men and women: Meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet 2015, 385, 1397–1405. [Google Scholar] [PubMed]
- Abramson, J.; Wright, J.M. Are lipid-lowering guidelines evidence-based? Lancet 2007, 369, 168–169. [Google Scholar] [CrossRef]
- Petretta, M.; Costanzo, P.; Perrone-Filardi, P.; Chiariello, M. Impact of gender in primary prevention of coronary heart disease with statin therapy: A meta-analysis. Int. J. Cardiol. 2010, 138, 25–31. [Google Scholar] [CrossRef]
- Khan, S.U.; Khan, M.Z.; Raghu Subramanian, C.; Riaz, H.; Khan, M.U.; Lone, A.N.; Khan, M.S.; Benson, E.M.; Alkhouli, M.; Blaha, M.J.; et al. Participation of Women and Older Participants in Randomized Clinical Trials of Lipid-Lowering Therapies: A Systematic Review. JAMA Netw. Open. 2020, 3, e205202. [Google Scholar] [CrossRef]
- Blauwet, L.A.; Hayes, S.N.; McManus, D.; Redberg, R.F.; Walsh, M.N. Low rate of sex-specific result reporting in cardiovascular trials. Mayo Clin. Proc. 2007, 82, 166–170. [Google Scholar] [CrossRef]
- Benner, J.S.; Glynn, R.J.; Mogun, H.; Neumann, P.J.; Weinstein, M.C.; Avorn, J. Long-term Persistence in Use of Statin Therapy in Elderly Patients. JAMA 2002, 288, 455–461. [Google Scholar] [CrossRef]
- Downs, J.R.; Clearfield, M.; Weis, S.; Whitney, E.; Shapiro, D.R.; Beere, P.A.; Langendorfer, A.; Stein, E.A.; Kruyer, W.; Gotto, A.M., Jr. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: Results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 1998, 279, 1615–1622. [Google Scholar] [CrossRef]
- Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: A randomised placebo-controlled trial. Lancet 2002, 360, 7–22. [Google Scholar] [CrossRef]
- De Vera, M.A.; Bhole, V.; Burns, L.C.; Lacaille, D. Impact of statin adherence on cardiovascular disease and mortality outcomes: A systematic review. Br. J. Clin. Pharmacol. 2014, 78, 684–698. [Google Scholar] [CrossRef] [PubMed]
- Gehi, A.K.; Ali, S.; Na, B.; Whooley, M.A. Self-reported Medication Adherence and Cardiovascular Events in Patients with Stable Coronary Heart DiseaseThe Heart and Soul Study. Arch. Intern. Med. 2007, 167, 1798–1803. [Google Scholar] [CrossRef] [PubMed]
- Ingersgaard, M.V.; Andersen, T.H.; Norgaard, O.; Grabowski, D.; Olesen, K. Reasons for Nonadherence to Statins—A Systematic Review of Reviews. Patient Prefer. Adherence 2020, 14, 675–691. [Google Scholar] [CrossRef] [PubMed]
- Olmastroni, E.; Boccalari, M.T.; Tragni, E.; Rea, F.; Merlino, L.; Corrao, G.; Catapano, A.L.; Casula, M. Sex-differences in factors and outcomes associated with adherence to statin therapy in primary care: Need for customisation strategies. Pharmacol. Res. 2020, 155, 104514. [Google Scholar] [CrossRef] [PubMed]
- Lewey, J.; Shrank, W.H.; Bowry, A.D.; Kilabuk, E.; Brennan, T.A.; Choudhry, N.K. Gender and racial disparities in adherence to statin therapy: A meta-analysis. Am. Heart J. 2013, 165, 665–678.e1. [Google Scholar] [CrossRef]
- Mann, D.M.; Woodward, M.; Muntner, P.; Falzon, L.; Kronish, I. Predictors of nonadherence to statins: A systematic review and meta-analysis. Ann Pharmacother. 2010, 44, 1410–1421. [Google Scholar] [CrossRef]
- Hope, H.F.; Binkley, G.M.; Fenton, S.; Kitas, G.D.; Verstappen, S.M.M.; Symmons, D.P.M. Systematic review of the predictors of statin adherence for the primary prevention of cardiovascular disease. PLoS ONE 2019, 14, e0201196. [Google Scholar] [CrossRef]
- Ofori-Asenso, R.; Jakhu, A.; Curtis, A.J.; Zomer, E.; Gambhir, M.; Jaana Korhonen, M.; Nelson, M.; Tonkin, A.; Liew, D.; Zoungas, S. A Systematic Review and Meta-analysis of the Factors Associated with Nonadherence and Discontinuation of Statins among People Aged >/=65 Years. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 798–805. [Google Scholar] [CrossRef]
- Chee, Y.; Chan, V.; Tan, N. Understanding patients’ perspective of statin therapy: Can we design a better approach to the management of dyslipidaemia? A literature review. Singap. Med. J. 2014, 55, 416–421. [Google Scholar] [CrossRef]
- Ju, A.; Hanson, C.S.; Banks, E.; Korda, R.; Craig, J.C.; Usherwood, T.; MacDonald, P.; Tong, A. Patient beliefs and attitudes to taking statins: Systematic review of qualitative studies. Br. J. Gen. Pract. 2018, 68, e408–e419. [Google Scholar] [CrossRef]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M., Jr.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive Protein. N. Engl. J. Med. 2008, 359, 2195–2207. [Google Scholar] [CrossRef] [PubMed]
- Kashani, A.; Foody, J.M.; Wang, Y.; Krumholz, H.M.; Phillips, C.O.; Mangalmurti, S.; Ko, D.T.; Rosenberg, L.; Uretsky, S.; Brewster, L.M.; et al. Response to Letters Regarding Article, “Risks Associated with Statin Therapy: A Systematic Overview of Randomized Clinical Trials”. Circulation 2006, 116, 9. [Google Scholar] [CrossRef]
- Bruckert, E.; Hayem, G.; Dejager, S.; Yau, C.; Bégaud, B. Mild to Moderate Muscular Symptoms with High-Dosage Statin Therapy in Hyperlipidemic Patients —The PRIMO Study. Cardiovasc. Drugs Ther. 2005, 19, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.D.; Brinton, E.A.; Ito, M.K.; Jacobson, T.A. Understanding Statin Use in America and Gaps in Patient Education (USAGE): An internet-based survey of 10,138 current and former statin users. J. Clin. Lipidol. 2012, 6, 208–215. [Google Scholar] [CrossRef]
- Zhang, H.; Plutzky, J.; Skentzos, S.; Morrison, F.; Mar, P.; Shubina, M.; Turchin, A. Discontinuation of statins in routine care settings: A cohort study. Ann. Intern. Med. 2013, 158, 526–534. [Google Scholar] [CrossRef]
- Stroes, E.S.; Thompson, P.D.; Corsini, A.; Vladutiu, G.D.; Raal, F.J.; Ray, K.K.; Roden, M.; Stein, E.; Tokgozoglu, L.; Nordestgaard, B.G.; et al. Statin-associated muscle symptoms: Impact on statin therapy-European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur. Heart J. 2015, 36, 1012–1022. [Google Scholar] [CrossRef]
- Mills, K.T.; Bundy, J.D.; Kelly, T.N.; Reed, J.; Kearney, P.M.; Reynolds, K.; Chen, J.; He, J. Abstract 16828: Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-based Studies from 90 Countries. Circulation 2016, 132, 441–450. [Google Scholar] [CrossRef]
- Collaboration NCDRF. Worldwide trends in blood pressure from 1975 to 2015: A pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 2017, 389, 37–55. [Google Scholar] [CrossRef]
- Dorans, K.S.; Mills, K.T.; Liu, Y.; He, J. Trends in Prevalence and Control of Hypertension According to the 2017 American College of Cardiology/American Heart Association (ACC/AHA) Guideline. J. Am. Heart Assoc. 2018, 7, e008888. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Damasceno, A. Hypertension in developing countries. Lancet 2012, 380, 611–619. [Google Scholar] [CrossRef]
- Brown, D.W.; Giles, W.H.; Greenlund, K.J. Blood Pressure Parameters and Risk of Fatal Stroke, NHANES II Mortality Study. Am. J. Hypertens. 2007, 20, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Lawes, C.M.; Rodgers, A.; Bennett, D.A.; Parag, V.; Suh, I.; Ueshima, H.; MacMahon, S.; Asia Pacific Cohort Studies Collaboration. Blood pressure and cardiovascular disease in the Asia Pacific region. J. Hypertens. 2003, 21, 707–716. [Google Scholar] [PubMed]
- Vishram, J.K.; Borglykke, A.; Andreasen, A.H.; Jeppesen, J.; Ibsen, H.; Jorgensen, T.; Broda, G.; Palmieri, L.; Giampaoli, S.; Donfrancesco, C.; et al. Impact of age on the importance of systolic and diastolic blood pressures for stroke risk: The MOnica, Risk, Genetics, Archiving, and Monograph (MORGAM) Project. Hypertension 2012, 60, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, M.H.; Liu, P.; Roth, G.A.; Ng, M.; Biryukov, S.; Marczak, L.; Alexander, L.; Estep, K.; Abate, K.H.; Akinyemiju, T.F.; et al. Global Burden of Hypertension and Systolic Blood Pressure of at Least 110 to 115 mm Hg, 1990–2015. JAMA 2017, 317, 165–182. [Google Scholar] [CrossRef] [PubMed]
- Lewington, S.; Clarke, R.; Qizilbash, N.; Peto, R.; Collins, R.; Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002, 360, 1903–1913. [Google Scholar]
- Thomopoulos, C.; Parati, G.; Zanchetti, A. Effects of blood pressure lowering on outcome incidence in hypertension. 1. Overview, meta-analyses, and meta-regression analyses of randomized trials. J. Hypertens. 2014, 32, 2285–2295. [Google Scholar] [CrossRef]
- World Health Organization. Hypertension Fact Sheets 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 8 June 2021).
- Gueyffier, F.; Boutitie, F.; Boissel, J.-P.; Pocock, S.; Coope, J.; Cutler, J.; Ekbom, T.; Fagard, R.; Friedman, L.; Perry, M.; et al. Effect of antihypertensive drug treatment on cardiovascular outcomes in women and men. A meta-analysis of individual patient data from randomized, controlled trials. The INDANA Investigators. Ann. Intern. Med. 1997, 126, 761–767. [Google Scholar] [CrossRef]
- Oparil, S.; Miller, A.P. Gender and blood pressure. J. Clin. Hypertens. 2005, 7, 300–309. [Google Scholar] [CrossRef]
- Gu, Q.; Burt, V.L.; Paulose-Ram, R.; Dillon, C.F. Gender Differences in Hypertension Treatment, Drug Utilization Patterns, and Blood Pressure Control among US Adults with Hypertension: Data from the National Health and Nutrition Examination Survey 1999–2004. Am. J. Hypertens. 2008, 21, 789–798. [Google Scholar] [CrossRef]
- Wong, N.D.; Thakral, G.; Franklin, S.S.; L’italien, G.J.; Jacobs, M.J.; Whyte, J.L.; Lapuerta, P. Prevention and Rehabilitation: Preventing heart disease by controlling hypertension: Impact of hypertensive subtype, stage, age, and sex. Am. Heart J. 2003, 145, 888–895. [Google Scholar] [CrossRef]
- Krousel-Wood, M.; Joyce, C.; Holt, E.; Muntner, P.; Webber, L.S.; Morisky, D.E.; Frohlich, E.D.; Re, R.N. Predictors of decline in medication adherence: Results from the cohort study of medication adherence among older adults. Hypertension 2011, 58, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Gale, N.K.; Greenfield, S.; Gill, P.; Gutridge, K.; Marshall, T. Patient and general practitioner attitudes to taking medication to prevent cardiovascular disease after receiving detailed information on risks and benefits of treatment: A qualitative study. BMC Fam. Pract. 2011, 12, 59. [Google Scholar] [CrossRef] [PubMed]
- Jung, O.; Gechter, J.L.; Wunder, C.; Paulke, A.; Bartel, C.; Geiger, H.; Toennes, S.W. Resistant hypertension? Assessment of adherence by toxicological urine analysis. J. Hypertens. 2013, 31, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Gwadry-Sridhar, F.H.; Manias, E.; Lal, L.; Salas, M.; Hughes, D.A.; Ratzki-Leewing, A.; Grubisic, M. Impact of Interventions on Medication Adherence and Blood Pressure Control in Patients with Essential Hypertension: A Systematic Review by the ISPOR Medication Adherence and Persistence Special Interest Group. Value Health 2013, 16, 863–871. [Google Scholar] [CrossRef]
- Sokol, M.C.; McGuigan, K.A.; Verbrugge, R.R.; Epstein, R.S. Impact of Medication Adherence on Hospitalization Risk and Healthcare Cost. Med. Care 2005, 43, 521–530. [Google Scholar] [CrossRef]
- Simpson, S.H.; Eurich, D.T.; Majumdar, S.R.; Padwal, R.S.; Tsuyuki, R.T.; Varney, J.; Johnson, J.A. A meta-analysis of the association between adherence to drug therapy and mortality. BMJ 2006, 333, 15. [Google Scholar] [CrossRef]
- Corrao, G.; Parodi, A.; Nicotra, F.; Zambon, A.; Merlino, L.; Cesana, G.; Mancia, G. Better compliance to antihypertensive medications reduces cardiovascular risk. J. Hypertens. 2011, 29, 610–618. [Google Scholar] [CrossRef]
- Yang, Q.; Chang, A.; Ritchey, M.D.; Loustalot, F. Antihypertensive Medication Adherence and Risk of Cardiovascular Disease among Older Adults: A Population-Based Cohort Study. J. Am. Heart Assoc. 2017, 6, e006056. [Google Scholar] [CrossRef]
- Burnier, M. Drug adherence in hypertension. Pharmacol. Res. 2017, 125 Pt B, 142–149. [Google Scholar] [CrossRef]
- Rea, F.; Mella, M.; Compagnoni, M.M.; Cantarutti, A.; Merlino, L.; Mancia, G.; Corrao, G. Women discontinue antihypertensive drug therapy more than men. Evidence from an Italian population-based study. J. Hypertens. 2020, 38, 142–149. [Google Scholar] [CrossRef]
- Mancia, G.; Zambon, A.; Soranna, D.; Merlino, L.; Corrao, G. Factors involved in the discontinuation of antihypertensive drug therapy: An analysis from real life data. J. Hypertens. 2014, 32, 1708–1715; discussion 1716. [Google Scholar] [CrossRef] [PubMed]
- Erkens, J.A.; Panneman, M.M.J.; Klungel, O.H.; van den Boom, G.; Prescott, M.F.; Herings, R.M.C. Differences in antihypertensive drug persistence associated with drug class and gender: A PHARMO study. Pharmacoepidemiol. Drug Saf. 2005, 14, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Rao, R.; Goodman, J.D.H.; Connolly, K.; O’Shaughnessy, K.M. Nonadherence to antihypertensive medications amongst patients with uncontrolled hypertension: A retrospective study. Medicine 2021, 100, e24654. [Google Scholar] [CrossRef]
- Tajeu, G.S.; Kent, S.T.; Kronish, I.M.; Huang, L.; Krousel-Wood, M.; Bress, A.P.; Shimbo, D.; Muntner, P. Trends in Antihypertensive Medication Discontinuation and Low Adherence among Medicare Beneficiaries Initiating Treatment from 2007 to 2012. Hypertension 2016, 68, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Friedman, O.; McAlister, F.A.; Yun, L.; Campbell, N.R.; Tu, K.; Canadian Hypertension Education Program Outcomes Research Taskforce. Antihypertensive Drug Persistence and Compliance among Newly Treated Elderly Hypertensives in Ontario. Am. J. Med. 2010, 123, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Qvarnstrom, M.; Kahan, T.; Kieler, H.; Brandt, L.; Hasselstrom, J.; Bostrom, K.B.; Manhem, K.; Hjerpe, P.; Wettermark, B. Persistence to antihypertensive drug classes: A cohort study using the Swedish Primary Care Cardiovascular Database (SPCCD). Medicine 2016, 95, e4908. [Google Scholar] [CrossRef]
- Biffi, A.; Rea, F.; Iannaccone, T.; Filippelli, A.; Mancia, G.; Corrao, G. Sex differences in the adherence of antihypertensive drugs: A systematic review with meta-analyses. BMJ Open 2020, 10, e036418. [Google Scholar] [CrossRef]
- World Health Organization. Cariovascular Diseases (CVDs) Fact Sheets 2017. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 8 June 2021).
- Bots, S.H.; A E Peters, S.; Woodward, M. Sex differences in coronary heart disease and stroke mortality: A global assessment of the effect of ageing between 1980 and 2010. BMJ Glob. Health 2017, 2, e000298. [Google Scholar] [CrossRef]
- Huxley, R.R.; Woodward, M. Cigarette smoking as a risk factor for coronary heart disease in women compared with men: A systematic review and meta-analysis of prospective cohort studies. Lancet 2011, 378, 1297–1305. [Google Scholar] [CrossRef]
- Peters, S.A.E.; Huxley, R.R.; Woodward, M. Diabetes as risk factor for incident coronary heart disease in women compared with men: A systematic review and meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events. Diabetologia 2014, 57, 1542–1551. [Google Scholar] [CrossRef]
- A E Peters, S.; Huxley, R.R.; Woodward, M. Diabetes as a risk factor for stroke in women compared with men: A systematic review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes. Lancet 2014, 383, 1973–1980. [Google Scholar] [CrossRef]
- Kramer, C.K.; Campbell, S.; Retnakaran, R. Gestational diabetes and the risk of cardiovascular disease in women: A systematic review and meta-analysis. Diabetologia 2019, 62, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.C.W.; Lo, A.C.Q.; Leow, S.H.; Fisher, G.; Corker, B.; Batho, O.; Morris, B.; Chowaniec, M.; Vladutiu, C.J.; Fraser, A.; et al. Future Cardiovascular Disease Risk for Women with Gestational Hypertension: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2020, 9, e013991. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.M.; Hale, T.; Foster, S.L.; Tobet, S.A.; Handa, R.J. Sex differences in major depression and comorbidity of cardiometabolic disorders: Impact of prenatal stress and immune exposures. Neuropsychopharmacology 2019, 44, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Backholer, K.; A E Peters, S.; Bots, S.H.; Peeters, A.; Huxley, R.R.; Woodward, M. Sex differences in the relationship between socioeconomic status and cardiovascular disease: A systematic review and meta-analysis. J. Epidemiol. Community Health 2016, 71, 550–557. [Google Scholar] [CrossRef]
- Bairey Merz, C.N.; Pepine, C.J.; Walsh, M.N.; Fleg, J.L. Ischemia and No Obstructive Coronary Artery Disease (INOCA): Developing Evidence-Based Therapies and Research Agenda for the Next Decade. Circulation 2017, 135, 1075–1092. [Google Scholar] [CrossRef] [PubMed]
- Lichtman, J.H.; Leifheit, E.C.; Safdar, B.; Bao, H.; Krumholz, H.M.; Lorenze, N.P.; Daneshvar, M.; Spertus, J.A.; D’Onofrio, G. Sex Differences in the Presentation and Perception of Symptoms among Young Patients with Myocardial Infarction: Evidence from the VIRGO Study (Variation in Recovery: Role of Gender on Outcomes of Young AMI Patients). Circulation 2018, 137, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.; Piper, W.D.; Malenka, D.; VerLee, P.; Robb, J.; Ryan, T.; Herne, M.; Phillips, W.; Dauerman, H.L. Significantly improved vascular complications among women undergoing percutaneous coronary intervention: A report from the Northern New England Percutaneous Coronary Intervention Registry. Circ. Cardiovasc. Interv. 2009, 2, 423–429. [Google Scholar] [CrossRef]
- Jackson, E.A.; Moscucci, M.; Smith, D.E.; Share, D.; Dixon, S.; Greenbaum, A.; Grossman, P.M.; Gurm, H.S. The association of sex with outcomes among patients undergoing primary percutaneous coronary intervention for ST elevation myocardial infarction in the contemporary era: Insights from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2). Am. Heart J. 2011, 161, 106–112.e101. [Google Scholar] [CrossRef]
- Gall, S.L.; Donnan, G.; Dewey, H.M.; Macdonell, R.; Sturm, J.; Gilligan, A.; Srikanth, V.; Thrift, A.G. Sex differences in presentation, severity, and management of stroke in a population-based study. Neurology 2010, 74, 975–981. [Google Scholar] [CrossRef]
- Carcel, C.; Woodward, M.; Wang, X.; Bushnell, C.; Sandset, E.C. Sex matters in stroke: A review of recent evidence on the differences between women and men. Front. Neuroendocr. 2020, 59, 100870. [Google Scholar] [CrossRef] [PubMed]
- Levinsson, A.; Dubé, M.-P.; Tardif, J.-C.; de Denus, S. Sex, drugs, and heart failure: A sex-sensitive review of the evidence base behind current heart failure clinical guidelines. ESC Heart Fail. 2018, 5, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Romiti, G.F.; Recchia, F.; Zito, A.; Visioli, G.; Basili, S.; Raparelli, V. Sex and Gender-Related Issues in Heart Failure. Heart Fail. Clin. 2020, 16, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Tahhan, A.S.; Alrohaibani, A.; Greene, S.J.; Fonarow, G.C.; Vardeny, O.; Lindenfeld, J.; Jessup, M.; Fiuzat, M.; O’Connor, C.M.; et al. Do Women and Men Respond Similarly to Therapies in Contemporary Heart Failure Clinical Trials? JACC Heart Fail. 2019, 7, 267–271. [Google Scholar] [CrossRef]
- Hyun, K.K.; Redfern, J.; Patel, A.; Peiris, D.; Brieger, D.; Sullivan, D.; Harris, M.; Usherwood, T.; MacMahon, S.; Lyford, M.; et al. Gender inequalities in cardiovascular risk factor assessment and management in primary healthcare. Heart 2017, 103, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.A.; Colantonio, L.D.; Zhao, H.; Bittner, V.; Dai, Y.; Farkouh, M.E.; Monda, K.L.; Safford, M.M.; Muntner, P.; Woodward, M. Sex Differences in High-Intensity Statin Use Following Myocardial Infarction in the United States. J. Am. Coll. Cardiol. 2018, 71, 1729–1737. [Google Scholar] [CrossRef] [PubMed]
- Redfors, B.; Angerås, O.; Råmunddal, T.; Petursson, P.; Haraldsson, I.; Dworeck, C.; Odenstedt, J.; Ioaness, D.; Ravn-Fischer, A.; Wellin, P.; et al. Trends in Gender Differences in Cardiac Care and Outcome after Acute Myocardial Infarction in Western Sweden: A Report from the Swedish Web System for Enhancement of Evidence-Based Care in Heart Disease Evaluated According to Recommended Therapies (SWEDEHEART). J. Am. Heart Assoc. 2015, 4, e001995. [Google Scholar] [CrossRef]
- Zhao, M.; Vaartjes, I.; Graham, I.; Grobbee, D.; Spiering, W.; Klipstein-Grobusch, K.; Woodward, M.; Peters, S.A. Sex differences in risk factor management of coronary heart disease across three regions. Heart 2017, 103, 1587–1594. [Google Scholar] [CrossRef]
- Hambraeus, K.; Tydén, P.; Lindahl, B. Time trends and gender differences in prevention guideline adherence and outcome after myocardial infarction: Data from the SWEDEHEART registry. Eur. J. Prev. Cardiol. 2015, 23, 340–348. [Google Scholar] [CrossRef]
- Bitton, A.; Choudhry, N.K.; Matlin, O.S.; Swanton, K.; Shrank, W.H. The Impact of Medication Adherence on Coronary Artery Disease Costs and Outcomes: A Systematic Review. Am. J. Med. 2013, 126, 357.e7–357.e27. [Google Scholar] [CrossRef]
- Rasmussen, J.N.; Chong, A.; Alter, D.A. Relationship Between Adherence to Evidence-Based Pharmacotherapy and Long-term Mortality after Acute Myocardial Infarction. JAMA 2007, 297, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Naderi, S.H.; Bestwick, J.P.; Wald, D.S. Adherence to Drugs That Prevent Cardiovascular Disease: Meta-analysis on 376,162 Patients. Am. J. Med. 2012, 125, 882–887.e1. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Khan, H.; Heydon, E.; Shroufi, A.; Fahimi, S.; Moore, C.; Stricker, B.; Mendis, S.; Hofman, A.; Mant, J.; et al. Adherence to cardiovascular therapy: A meta-analysis of prevalence and clinical consequences. Eur. Heart J. 2013, 34, 2940–2948. [Google Scholar] [CrossRef]
- Soldati, S.; Di Martino, M.; Castagno, D.; Davoli, M.; Fusco, D. In-hospital myocardial infarction and adherence to evidence-based drug therapies: A real-world evaluation. BMJ Open 2021, 11, e042878. [Google Scholar] [CrossRef] [PubMed]
- Kirchmayer, U.; Agabiti, N.; Belleudi, V.; Davoli, M.; Fusco, D.; Stafoggia, M.; Arcà, M.; Barone, A.P.; Perucci, C.A. Socio-demographic differences in adherence to evidence-based drug therapy after hospital discharge from acute myocardial infarction: A population-based cohort study in Rome, Italy. J. Clin. Pharm. Ther. 2012, 37, 37–44. [Google Scholar] [CrossRef]
- Hyun, K.; Negrone, A.; Redfern, J.; Atkins, E.; Chow, C.; Kilian, J.; Rajaratnam, R.; Brieger, D. Gender Difference in Secondary Prevention of Cardiovascular Disease and Outcomes Following the Survival of Acute Coronary Syndrome. Heart Lung Circ. 2021, 30, 121–127. [Google Scholar] [CrossRef]
- Lauffenburger, J.C.; Robinson, J.G.; Oramasionwu, C.; Fang, G. Racial/Ethnic and Gender Gaps in the Use of and Adherence to Evidence-Based Preventive Therapies among Elderly Medicare Part D Beneficiaries after Acute Myocardial Infarction. Circulation 2014, 129, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Eindhoven, D.C.; Hilt, A.D.; Zwaan, T.C.; Schalij, M.J.; Borleffs, C.J.W. Age and gender differences in medical adherence after myocardial infarction: Women do not receive optimal treatment—The Netherlands claims database. Eur. J. Prev. Cardiol. 2018, 25, 181–189. [Google Scholar] [CrossRef]
- Tuppin, P.; Neumann, A.; Danchin, N.; Weill, A.; Ricordeau, P.; de Peretti, C.; Allemand, H. Combined secondary prevention after hospitalization for myocardial infarction in France: Analysis from a large administrative database. Arch. Cardiovasc. Dis. 2009, 102, 279–292. [Google Scholar] [CrossRef]
- Yan, A.T.; Yan, R.T.; Tan, M.; Huynh, T.; Soghrati, K.; Brunner, L.J.; DeYoung, P.; Fitchett, D.H.; Langer, A.; Goodman, S.G.; et al. Optimal medical therapy at discharge in patients with acute coronary syndromes: Temporal changes, characteristics, and 1-year outcome. Am. Heart J. 2007, 154, 1108–1115. [Google Scholar] [CrossRef]
- Wawruch, M.; Zatko, D.; Wimmer, G.; Luha, J.; Kuzelova, L.; Kukumberg, P.; Murin, J.; Hloska, A.; Tesar, T.; Kallay, Z.; et al. Factors Influencing Non-Persistence with Antiplatelet Medications in Elderly Patients after Ischaemic Stroke. Drugs Aging 2016, 33, 365–373. [Google Scholar] [CrossRef]
- Ambrosy, A.P.; Fonarow, G.C.; Butler, J.; Chioncel, O.; Greene, S.J.; Vaduganathan, M.; Nodari, S.; Lam, C.S.P.; Sato, N.; Shah, A.N.; et al. The global health and economic burden of hospitalizations for heart failure: Lessons learned from hospitalized heart failure registries. J. Am. Coll. Cardiol. 2014, 63, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Conrad, N.; Judge, A.; Tran, J.; Mohseni, H.; Hedgecott, D.; Crespillo, A.P.; Allison, M.; Hemingway, H.; Cleland, J.G.; McMurray, J.J.V.; et al. Temporal trends and patterns in heart failure incidence: A population-based study of 4 million individuals. Lancet 2018, 391, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Magnussen, C.; Niiranen, T.J.; Ojeda, F.M.; Gianfagna, F.; Blankenberg, S.; Vartiainen, E.; Sans, S.; Pasterkamp, G.; Hughes, M.; Costanzo, S.; et al. Sex-Specific Epidemiology of Heart Failure Risk and Mortality in Europe: Results from the BiomarCaRE Consortium. JACC Heart Fail. 2019, 7, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Lenzen, M.J.; Rosengren, A.; Reimer, W.J.M.S.O.; Follath, F.; Boersma, E.; Simoons, M.L.; Cleland, J.G.F.; Komajda, M. Management of patients with heart failure in clinical practice: Differences between men and women. Heart 2008, 94, e10. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, E.; Di Palo, K.E.; Piña, I.L. Sex differences in heart failure. Clin. Cardiol. 2018, 41, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Franke, J.; Lindmark, A.; Hochadel, M.; Zugck, C.; Koerner, E.; Keppler, J.; Ehlermann, P.; Winkler, R.; Zahn, R.; Katus, H.A.; et al. Gender aspects in clinical presentation and prognostication of chronic heart failure according to NT-proBNP and the Heart Failure Survival Score. Clin. Res. Cardiol. 2015, 104, 334–341. [Google Scholar] [CrossRef]
- Martínez-Sellés, M.; Doughty, R.N.; Poppe, K.; Whalley, G.A.; Earle, N.; Tribouilloy, C.; McMurray, J.J.; Swedberg, K.; Køber, L.; Berry, C.; et al. Gender and survival in patients with heart failure: Interactions with diabetes and aetiology. Results from the MAGGIC individual patient meta-analysis. Eur. J. Heart Fail. 2012, 14, 473–479. [Google Scholar] [CrossRef]
- Writing Committee Members; Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.; Fonarow, G.C.; et al. 2016 ACC/AHA/HFSA Focused Update on New Pharmacological Therapy for Heart Failure: An Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 2016, 134, e282–e293. [Google Scholar] [CrossRef]
- McGuire, D.K.; Shih, W.J.; Cosentino, F.; Charbonnel, B.; Cherney, D.Z.I.; Dagogo-Jack, S.; Pratley, R.; Greenberg, M.; Wang, S.; Huyck, S.; et al. Association of SGLT2 Inhibitors with Cardiovascular and Kidney Outcomes in Patients with Type 2 Diabetes: A Meta-analysis. JAMA Cardiol. 2021, 6, 148–158. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef] [PubMed]
- Rosano, G.M.; Lewis, B.; Agewall, S.; Wassmann, S.; Vitale, C.; Schmidt, H.; Drexel, H.; Patak, A.; Torp-Pedersen, C.; Kjeldsen, K.P.; et al. Gender differences in the effect of cardiovascular drugs: A position document of the Working Group on Pharmacology and Drug Therapy of the ESC: Figure 1. Eur. Heart J. 2015, 36, 2677–2680. [Google Scholar] [CrossRef]
- Tamargo, J.; Rosano, G.; Walther, T.; Duarte, J.; Niessner, A.; Kaski, J.; Ceconi, C.; Drexel, H.; Kjeldsen, K.; Savarese, G.; et al. Gender differences in the effects of cardiovascular drugs. Eur. Heart J.—Cardiovasc. Pharmacother. 2017, 3, 163–182. [Google Scholar] [CrossRef]
- Crespo-Leiro, M.G.; Anker, S.D.; Maggioni, A.P.; Coats, A.J.; Filippatos, G.; Ruschitzka, F.; Ferrari, R.; Piepoli, M.F.; Delgado Jimenez, J.F.; Metra, M.; et al. European Society of Cardiology Heart Failure Long-Term Registry (ESC-HF-LT): 1-year follow-up outcomes and differences across regions. Eur. J. Heart Fail. 2016, 18, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; Gonzalez-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [PubMed]
- Jones, C.D.; Holmes, G.M.; DeWalt, D.A.; Erman, B.; Wu, J.R.; Cene, C.W.; Baker, D.W.; Schillinger, D.; Ruo, B.; Bibbins-Domingo, K.; et al. Self-reported recall and daily diary-recorded measures of weight monitoring adherence: Associations with heart failure-related hospitalization. BMC Cardiovasc. Disord. 2014, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Hood, S.R.; Giazzon, A.J.; Seamon, G.; Lane, K.A.; Wang, J.; Eckert, G.J.; Tu, W.; Murray, M.D. Association Between Medication Adherence and the Outcomes of Heart Failure. Pharmacotherapy 2018, 38, 539–545. [Google Scholar] [CrossRef]
- Unverzagt, S.; Meyer, G.; Mittmann, S.; Samos, F.-A.; Unverzagt, M.; Prondzinsky, R. Improving Treatment Adherence in Heart Failure. Dtsch. Aerzteblatt Online 2016, 113, 423–430. [Google Scholar] [CrossRef]
- Ruppar, T.M.; Cooper, P.S.; Mehr, D.R.; Delgado, J.M.; Dunbar-Jacob, J.M. Medication Adherence Interventions Improve Heart Failure Mortality and Readmission Rates: Systematic Review and Meta-Analysis of Controlled Trials. J. Am. Heart Assoc. 2016, 5, e002606. [Google Scholar] [CrossRef]
- Kayibanda, J.F.; Girouard, C.; Gregoire, J.P.; Demers, E.; Moisan, J. Adherence to the evidence-based heart failure drug treatment: Are there sex-specific differences among new users? Res. Soc. Adm. Pharm. 2018, 14, 915–920. [Google Scholar] [CrossRef]
- Lamb, D.A.; Eurich, D.T.; McAlister, F.A.; Tsuyuki, R.T.; Semchuk, W.M.; Wilson, T.W.; Blackburn, D.F. Changes in adherence to evidence-based medications in the first year after initial hospitalization for heart failure: Observational cohort study from 1994 to 2003. Circ. Cardiovasc. Qual. Outcomes 2009, 2, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Dunlay, S.M.; Eveleth, J.M.; Shah, N.D.; McNallan, S.M.; Roger, V.L. Medication Adherence among Community-Dwelling Patients with Heart Failure. Mayo Clin. Proc. 2011, 86, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, A.D.; Esposito, D.; Kim, M.; Verdier, J.; Bencio, D. Utilization of, and Adherence to, Drug Therapy among Medicaid Beneficiaries with Congestive Heart Failure. Clin. Ther. 2007, 29, 1771–1783. [Google Scholar] [CrossRef] [PubMed]
- Granger, B.B.; Ekman, I.; Granger, C.B.; Ostergren, J.; Olofsson, B.; Michelson, E.; McMurray, J.J.; Yusuf, S.; Pfeffer, M.A.; Swedberg, K. Adherence to medication according to sex and age in the CHARM programme. Eur. J. Heart Fail. 2009, 11, 1092–1098. [Google Scholar] [CrossRef]
- Roe, C.M.; Motheral, B.R.; Teitelbaum, F.; Rich, M.W. Compliance with and dosing of angiotensin-converting-enzyme inhibitors before and after hospitalization. Am. J. Health Pharm. 2000, 57, 139–145. [Google Scholar] [CrossRef]
- Gürgöze, M.T.; van der Galiën, O.P.; Limpens, M.A.; Roest, S.; Hoekstra, R.C.; Ijpma, A.S.; Brugts, J.J.; Manintveld, O.C.; Boersma, E. Impact of sex differences in co-morbidities and medication adherence on outcome in 25 776 heart failure patients. ESC Heart Fail. 2021, 8, 63–73. [Google Scholar] [CrossRef]
- Seid, M.A.; Abdela, O.A.; Zeleke, E.G. Adherence to self-care recommendations and associated factors among adult heart failure patients. From the patients’ point of view. PLoS ONE 2019, 14, e0211768. [Google Scholar] [CrossRef]
- Lee, K.S.; Moser, D.K.; Pelter, M.M.; Nesbitt, T.; Dracup, K. Self-care in rural residents with heart failure: What we are missing. Eur. J. Cardiovasc. Nurs. 2017, 16, 326–333. [Google Scholar] [CrossRef]
- Verena, R.; Stewart, S.; Pretorius, S.; Kubheka, M.; Lautenschläger, C.; Presek, P.; Sliwa, K. Medication adherence, self-care behaviour and knowledge on heart failure in urban South Africa: The Heart of Soweto study. Cardiovasc. J. Afr. 2010, 21, 86–92. [Google Scholar]
- Marti, C.N.; Georgiopoulou, V.V.; Giamouzis, G.; Cole, R.T.; Deka, A.; Tang, W.H.; Dunbar, S.B.; Smith, A.L.; Kalogeropoulos, A.P.; Butler, J. Patient-reported selective adherence to heart failure self-care recommendations: A prospective cohort study: The Atlanta Cardiomyopathy Consortium. Congest. Heart Fail. 2013, 19, 16–24. [Google Scholar] [CrossRef]
- van der Wal, M.H.; van Veldhuisen, D.J.; Veeger, N.J.G.M.; Rutten, F.H.; Jaarsma, T. Compliance with non-pharmacological recommendations and outcome in heart failure patients. Eur. Heart J. 2010, 31, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
Type of Condition | Observations |
---|---|
Type 2 Diabetes | Women show low medication adherence to anti-hyperglycemic treatments. Depressive disorders and diabetes distress are significantly more common in female patients and seem to play a key role |
Women with diabetes might greatly benefit from more structured and supportive educational programs, possibly involving multidisciplinary teams, aimed at overcoming barriers to medication adherence | |
Dyslipidemia | Non-adherence is due to several factors (mainly socio-demographic and treatment-related) and appears to be more frequent in women |
New treatment strategies are needed to improve adherence (association therapy, therapeutic interchange, increased medical support) | |
Arterial Hypertension | Women are less likely to achieve Blood Pressure targets |
The contribution of sex as a determinant of medication adherence is still controversial | |
Cardiovascular Disease | Worse outcomes in cardiovascular diseases among women could be associated with disparities in health assistance, including risk assessment and evidence-based medication prescription |
Most studies are consistent with poorer adherence in women, but the reasons are largely unknown and involve a complex overlap between numerous factors | |
Heart Failure | Studies that examined the effect of sex/gender on adherence to heart failure therapy are still insufficient to draw firm conclusions |
In consideration of the relevant impact of medication adherence on heart failure outcomes, further research is needed on this issue |
Causes of Non-Adherence | Suggested Strategies to Improve Adherence |
---|---|
Complexity of treatment, polypharmacy | Single pill administration |
Patient’s misperception | Improve patient awareness and doctor–patient relationship |
Lack of benefits in treatment or immediacy of beneficial effects | Increase availability of medical support |
Poor relationship patient-doctor | |
Psychological problems, cognitive Impairment | Role of caregivers |
Documented side effects | Implementation of treatment plan |
Therapeutic interchange |
Type 2 Diabetes | ||
---|---|---|
Authors | Year | Main Findings |
Bird CE, et al. [32] | 2007 | Women have lower access to healthcare facilities due to social, cultural, and psychological issues |
Fisher L, et al. [58] | 2010 | Diabetes distress affects patients’ self-management and clinical outcomes more than depression |
Penno G, et al. [27] | 2013 | Women with type 2 diabetes have worse control of glycemia, lipid levels, and blood pressure despite equal or increased treatment intensity |
Malmenas M, et al. [45] | 2013 | Female sex is an independent predictor of low medication adherence for glucagon-like receptor agonists |
Manteuffel M, et al. [50] | 2014 | Women have lower medication adherence, are treated with more drugs, and are less likely to obtain guidelines-based prescriptions |
Kirkman MS, et al. [42] | 2015 | The main predictors of low adherence are female sex, younger age, new drug prescription, low education level, and low social status |
Mansyur CL, et al. [63] | 2015 | Women show more social barriers and less support, leading to lower self-care adherence |
Iglay K, et al. [44] | 2016 | Female sex is an independent predictor of low medication adherence for sulfonylureas |
Brunton SA, et al. [41] | 2017 | Low adherence is associated with a higher hospitalization rate and a negative impact on costs |
Hofer R, et al. [62] | 2017 | There is a strong relationship between improved satisfaction with medication knowledge and increased adherence |
Kim YY, et al. [36] | 2018 | Low adherence to antihyperglycemic medications is associated with an increased risk of all-cause mortality and cardiovascular events |
McGovern A, et al. [43] | 2018 | Adherence differs among various types of drugs prescribed, being higher for metformin, while non-adherence rate varies across other oral agents |
Choi YJ, et al. [53] | 2018 | Younger age, female sex, and depression are predictors of low adherence |
Bhaloo T, et al. [60] | 2018 | Women are more motivated than men when physicians use empathic communication |
Bhuyan SS, et al. [65] | 2018 | Female sex is associated with low medication adherence due to cost-related factors |
Horii T, et al. [48] | 2019 | Adherence is higher in male patients and in therapy schemes involving more than three medications |
Xu N, et al. [49] | 2020 | Longer disease duration (more than five years) is a predictor of good adherence |
Demoz GT, et al. [52] | 2020 | The coexistence of diabetic complications is a contributor to low adherence |
Aronson BD, et al. [59] | 2020 | Diabetes distress and depressive disorders, more frequent in females, have a role in low medication adherence, suggesting an implication in sex disparities |
Beernink JM, et al. [40] | 2021 | Medication adherence is important to control healthcare system costs arising from hospitalizations due to disease progression and complications |
Jankowska-Polanska B, et al. [51] | 2021 | The coexistence of hypertension alongside diabetes lowers the level of adherence compared to patients who only suffer from diabetes |
Hypercholesterolaemia | ||
Mann DM, et al. [92] | 2010 | Women were 7% more likely to be non-adherent than men |
Lewey J, et al. [91] | 2013 | Female gender increased the risk of non-adherence by 10% |
Stroes ES, et al. [102] | 2015 | Female sex is a known risk factor for SAMS, which significantly contributes to statin discontinuation |
Ofori-Asenso R, et al. [94] | 2018 | Female gender was associated with lower adherence to statin therapy among older patients (>65 y.o.) |
Hope HF, et al. [93] | 2019 | Male gender was associated with higher adherence to statin therapy for primary prevention |
Ingersgaard MV, et al. [89] | 2020 | Gender is one of the main predictors of low adherence |
Olmastroni E, et al. [67] | 2020 | Women showed lower adherence to statin therapy after initiation |
Arterial hypertension | ||
Erkens JA, et al. [129] | 2005 | Female gender was associated with a lower rate of adherence to antihypertensive therapy one year after its prescription |
Brown DW, et al. [107] | 2007 | Women with high blood pressure were more frequently treated but were less likely to achieve blood pressure goals, especially in systolic blood pressure, particularly at older ages and in presence of comorbidities such as CVD, stroke, and chronic kidney disease |
Friedman O, et al. [132] | 2010 | Female sex, absence of comorbidities, and high income were associated with higher compliance with antihypertensive treatment among elderly patients |
Mancia G, et al. [128] | 2014 | Males showed better adherence to blood pressure therapy and a 10% lower risk of discontinuation |
Tajeu, et al. [131] | 2016 | Male sex was one of the risk factors of lower adherence to antihypertensive treatment |
Qvarnstrom M, et al. [133] | 2016 | Male sex, younger age, lower systolic blood pressure at prescription, and lower income were related to lower adherence to antihypertensive treatment in newly prescribed patients |
Burnier M [126] | 2017 | Gender is among determinants influencing adherence to antihypertensive therapy |
Yang Q, et al. [125] | 2017 | Female sex, non-Hispanic white ethnicity, use of more than one antihypertensive drug, and the presence of diabetes or dyslipidemia were associated with higher adherence |
Rea F, et al. [127] | 2020 | Women were associated with higher rates of antihypertensive therapy interruption after first prescription |
Biffi A, et al. [134] | 2020 | No relation between sex and medication adherence was observed. A subgroup analysis showed higher adherence in men only in older age groups (>65 y) |
Cardiovascular Diseases | ||
Kirchmayer U, et al. [163] | 2012 | The adherence rates were 90.5% for antiplatelet agents, 60% for beta-blockers, 78.1% for ACE-Is/ARBs, and 77.8% for statins; women were 16% less likely to be adherent than men |
Lauffenburger JC, et al. [165] | 2014 | Black women, and to a lesser extent, white women, had lower adherence to ACE-Is/ARBs, beta-blockers, and statins compared to white men |
Backholer K, et al. [143] | 2017 | Low socioeconomic status poses a greater additional cardiovascular risk in women compared to men |
Goldstein JM, et al. [142] | 2019 | Women have poorer disease awareness, less social support, and a higher prevalence of depressive disorders, contributing to limited access to care and widening sex inequalities |
Carcel C, et al. [149] | 2020 | Clear sex disparities have not emerged in studies focusing on acute treatment outcomes after stroke |
Soldati S, et al. [162] | 2021 | Comorbidities and older age were predictive factors for low adherence |
Hyun K, et al. [153] | 2021 | Women were less likely to be consistent with secondary prevention medications compared to men |
Heart failure | ||
Roe CM, et al. [193] | 2000 | Men showed higher adherence to ACEIs six months after hospital discharge |
Bagchi AD, et al. [191] | 2007 | Male patients were less adherent to HF treatment |
Lamb DA, et al. [189] | 2009 | Women were more adherent to ACEIs/ARBs therapy after their first hospital admission for heart failure |
Granger BB, et al. [192] | 2009 | Women were less adherent compared to men to HF treatment. This difference was more consistent considering women younger than 75 years |
Dunlay SM, et al. [190] | 2011 | Males were more likely to be non-adherent to ACEIs/ARBs compared to women, but this relationship between sex and adherence was not observed for other drug classes |
Kayibanda JF, et al. [188] | 2018 | Men were less likely than women to be adherent one year after initiation of evidence base HF drug regimen |
Gurgoze MT, et al. [194] | 2021 | No Sex difference in adherence to HF medication was found |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venditti, V.; Bleve, E.; Morano, S.; Filardi, T. Gender-Related Factors in Medication Adherence for Metabolic and Cardiovascular Health. Metabolites 2023, 13, 1087. https://doi.org/10.3390/metabo13101087
Venditti V, Bleve E, Morano S, Filardi T. Gender-Related Factors in Medication Adherence for Metabolic and Cardiovascular Health. Metabolites. 2023; 13(10):1087. https://doi.org/10.3390/metabo13101087
Chicago/Turabian StyleVenditti, Vittorio, Enrico Bleve, Susanna Morano, and Tiziana Filardi. 2023. "Gender-Related Factors in Medication Adherence for Metabolic and Cardiovascular Health" Metabolites 13, no. 10: 1087. https://doi.org/10.3390/metabo13101087
APA StyleVenditti, V., Bleve, E., Morano, S., & Filardi, T. (2023). Gender-Related Factors in Medication Adherence for Metabolic and Cardiovascular Health. Metabolites, 13(10), 1087. https://doi.org/10.3390/metabo13101087