Glycerol and Natural Deep Eutectic Solvents Extraction for Preparation of Luteolin-Rich Jasione montana Extracts with Cosmeceutical Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Chemicals, and Apparatus
2.2. General Extraction Procedure
2.3. Glycerol Extraction Using 2-Level Factorial Design
2.4. Glycerol Extraction Using Box-Behnken Design
2.5. Extraction Optimization
2.6. Extraction Using Natural Deep Eutectic Solvents
2.7. Spectrophotometric Determination of Total Phenolic Content
2.8. HPLC Analysis of Phenolic Constituents
2.9. Radical Scavenging Activity
2.10. Fe2+ Chelating Activity
2.11. Antioxidant Activity in β-Carotene-Linoleic Acid Assay
2.12. Elastase Inhibitory Activity
2.13. Collagenase Inhibitory Activity
2.14. Lipoxygenase Inhibitory Activity
2.15. Hyaluronidase Inhibitory Activity
2.16. Statistical Analysis
3. Results and Discussion
3.1. Screening of Extraction Conditions Using 2 Level Factorial Design
3.2. Optimization of Selected Extraction Conditions Using Box-Behnken Design
3.3. Comparison of Optimized and Deep Eutectic Solvents Extracts
3.4. Antioxidant Activity
3.5. Enzyme Inhibiting Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; da Silva de Lucca, R.A. Polyphenols as natural antioxidants in cosmetics applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Azzanizawaty Yahya, N.; Attan, N.; Abdul Wahab, R. An Overview of Cosmeceutically Relevant Plant Extracts and Strategies for Extraction of Plant-Based Bioactive Compounds. Food Bioprod. Process. 2018, 112, 69–85. [Google Scholar] [CrossRef]
- Draelos, Z.D. Cosmeceuticals: What’s Real, What’s Not. Dermatol. Clin. 2019, 37, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhang, Z.; Sun, D.-W. Kinetic Modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: Influence of acoustic energy density and temperature. Ultrason. Sonochem. 2014, 21, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.-S. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef] [Green Version]
- Nam, M.W.; Zhao, J.; Lee, M.S.; Jeong, J.H.; Lee, J. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: Application to flavonoid extraction from Flos sophorae. Green Chem. 2015, 17, 1718–1727. [Google Scholar] [CrossRef]
- Marijan, M.; Jablan, J.; Jakupović, L.; Jug, M.; Marguí, E.; Dalipi, R.; Sangiorgi, E.; Zovko Končić, M. Plants from urban parks as valuable cosmetic ingredients: Green extraction, chemical composition and activity. Agronomy 2022, 12, 14. [Google Scholar] [CrossRef]
- Jeong, K.M.; Ko, J.; Zhao, J.; Jin, Y.; Yoo, D.E.; Han, S.Y.; Lee, J. Multi-functioning deep eutectic solvents as extraction and storage media for bioactive natural products that are readily applicable to cosmetic products. J. Clean. Prod. 2017, 151, 87–95. [Google Scholar] [CrossRef]
- Sánchez, P.B.; González, B.; Salgado, J.; José Parajó, J.; Domínguez, Á. Physical properties of seven deep eutectic solvents based on L-proline or betaine. J. Chem. Thermodynam. 2019, 131, 517–523. [Google Scholar] [CrossRef]
- López-Salas, N.; Vicent-Luna, J.M.; Imberti, S.; Posada, E.; Roldán, M.J.; Anta, J.A.; Balestra, S.R.G.; Madero Castro, R.M.; Calero, S.; Jiménez-Riobóo, R.J.; et al. Looking at the “water-in-deep-eutectic-solvent” system: A dilution range for high performance eutectics. ACS Sustain. Chem. Eng. 2019, 7, 17565–17573. [Google Scholar] [CrossRef]
- Kalhor, P.; Ghandi, K. Deep eutectic solvents for pretreatment, extraction, and catalysis of biomass and food waste. Molecules 2019, 24, 4012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gendrisch, F.; Esser, P.R.; Schempp, C.M.; Wölfle, U. Luteolin as a modulator of skin aging and inflammation. BioFactors 2021, 47, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Juszczak, A.M.; Wöelfle, U.; Končić, M.Z.; Tomczyk, M. Skin cancer, including related pathways and therapy and the role of luteolin derivatives as potential therapeutics. Med. Res. Rev. 2022, 42, 1423–1462. [Google Scholar] [CrossRef] [PubMed]
- Juszczak, A.M.; Czarnomysy, R.; Strawa, J.W.; Zovko Končić, M.; Bielawski, K.; Tomczyk, M. In vitro anticancer potential of Jasione montana and its main components against human amelanotic melanoma cells. Int. J. Mol. Sci. 2021, 22, 3345. [Google Scholar] [CrossRef]
- Zapesochnaya, G.G.; Nikolaeva, V.G.; Ban’kovskii, A.I. The Flavonoids of Jasione montana and Melittis sarmatika. Chem. Nat. Compd. 1972, 8, 112. [Google Scholar] [CrossRef]
- Juszczak, A.M.; Jakimiuk, K.; Czarnomysy, R.; Strawa, J.W.; Zovko Končić, M.; Bielawski, K.; Tomczyk, M. Wound healing properties of Jasione montana extracts and their main secondary metabolites. Front. Pharmacol. 2022, 13, 894233. [Google Scholar] [CrossRef]
- Broda, B.; Mowszowicz, J. Przewodnik do Oznaczania Roślin Leczniczych, Trujących i Użytkowych; Wydawnictwo Lekarskie PZWL: Warsaw, Poland, 1996. [Google Scholar]
- He, X.; Yang, J.; Huang, Y.; Zhang, Y.; Wan, H.; Li, C. Green and efficient ultrasonic-assisted extraction of bioactive components from Salvia miltiorrhiza by natural deep eutectic solvents. Molecules 2019, 25, 140. [Google Scholar] [CrossRef] [Green Version]
- Marijan, M.; Mitar, A.; Jakupović, L.; Prlić Kardum, J.; Zovko Končić, M. Optimization of bioactive phenolics extraction and cosmeceutical activity of eco-friendly polypropylene-glycol–lactic-acid-based extracts of olive leaf. Molecules 2022, 27, 529. [Google Scholar] [CrossRef]
- Jakupović, L.; Kalvarešin, M.; Bukovina, K.; Poljak, V.; Vujić, L.; Zovko Končić, M. Optimization of two eco-friendly extractions of black medick (Medicago lupulina L.) phenols and their antioxidant, cosmeceutical, α-glucosidase and α-amylase inhibitory properties. Molecules 2021, 26, 1610. [Google Scholar] [CrossRef] [PubMed]
- Messaoud, C.; Laabidi, A.; Boussaid, M. Myrtus communis L. infusions: The effect of infusion time on phytochemical composition, antioxidant, and antimicrobial activities. J. Food Sci. 2012, 77, C941–C947. [Google Scholar] [CrossRef] [PubMed]
- Amarowicz, R.; Pegg, R.B.; Rahimi-Moghaddam, P.; Barl, B.; Weil, J.A. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem. 2004, 84, 551–562. [Google Scholar] [CrossRef]
- Bose, B.; Choudhury, H.; Tandon, P.; Kumaria, S. Studies on secondary metabolite profiling, anti-inflammatory potential, in vitro photoprotective and skin-aging related enzyme inhibitory activities of Malaxis acuminata, a threatened orchid of nutraceutical importance. J. Photochem. Photobiol. B 2017, 173, 686–695. [Google Scholar] [CrossRef] [PubMed]
- Chekir, S.; Debbabi, M.; Regazzetti, A.; Dargère, D.; Laprévote, O.; Ben Jannet, H.; Gharbi, R. Design, synthesis and biological evaluation of novel 1,2,3-triazole linked coumarinopyrazole conjugates as potent anticholinesterase, anti-5-lipoxygenase, anti-tyrosinase and anti-cancer agents. Bioorganic Chem. 2018, 80, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Jiratchayamaethasakul, C.; Ding, Y.; Hwang, O.; Im, S.-T.; Jang, Y.; Myung, S.-W.; Lee, J.M.; Kim, H.-S.; Ko, S.-C.; Lee, S.-H. In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals. Fish. Aquatic Sci. 2020, 23, 6. [Google Scholar] [CrossRef] [Green Version]
- Csekes, E.; Račková, L. Skin aging, cellular senescence and natural polyphenols. Int. J. Mol. Sci. 2021, 22, 12641. [Google Scholar] [CrossRef]
- Nichols, J.A.; Katiyar, S.K. Skin photoprotection by natural polyphenols: Anti-inflammatory, antioxidant and DNA repair mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.-C.; Yang, J.-H. Dual effects of alpha-hydroxy acids on the skin. Molecules 2018, 23, 863. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.G.M.; Egas, A.P.V.; Fonseca, I.M.A.; Costa, A.C.; Abreu, D.C.; Lobo, L.Q. The viscosity of glycerol. J. Chem. Thermodynam. 2017, 113, 162–182. [Google Scholar] [CrossRef]
- Santos, M.C.B.; Barouh, N.; Durand, E.; Baréa, B.; Robert, M.; Micard, V.; Lullien-Pellerin, V.; Villeneuve, P.; Cameron, L.C.; Ryan, E.P.; et al. Metabolomics of pigmented rice coproducts applying conventional or deep eutectic extraction solvents reveal a potential antioxidant source for human nutrition. Metabolites 2021, 11, 110. [Google Scholar] [CrossRef] [PubMed]
- Georgantzi, C.; Lioliou, A.-E.; Paterakis, N.; Makris, D. Combination of lactic acid-based deep eutectic solvents (DES) with β-cyclodextrin: Performance screening using ultrasound-assisted extraction of polyphenols from selected native Greek medicinal plants. Agronomy 2017, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Ünlü, A.E. Green and non-conventional extraction of bioactive compounds from olive leaves: Screening of novel natural deep eutectic solvents and investigation of process parameters. Waste Biomass Valorization 2021, 12, 5329–5346. [Google Scholar] [CrossRef]
- Punzo, A.; Porru, E.; Silla, A.; Simoni, P.; Galletti, P.; Roda, A.; Tagliavini, E.; Samorì, C.; Caliceti, C. Grape Pomace for Topical Application: Green NaDES sustainable extraction, skin permeation studies, antioxidant and anti-inflammatory activities characterization in 3D human keratinocytes. Biomolecules 2021, 11, 1181. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.M.; Lee, M.S.; Nam, M.W.; Zhao, J.; Jin, Y.; Lee, D.-K.; Kwon, S.W.; Jeong, J.H.; Lee, J. Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media. J. Chromatogr. A 2015, 1424, 10–17. [Google Scholar] [CrossRef]
- Szewczyk, K.; Pietrzak, W.; Klimek, K.; Miazga-Karska, M.; Firlej, A.; Flisiński, M.; Grzywa-Celińska, A. Flavonoid and phenolic acids content and in vitro study of the potential anti-aging properties of Eutrema japonicum (Miq.) Koidz cultivated in wasabi farm Poland. Int. J. Mol. Sci. 2021, 22, 6219. [Google Scholar] [CrossRef]
- Lupu, M.-A.; Gradisteanu Pircalabioru, G.; Chifiriuc, M.-C.; Albulescu, R.; Tanase, C. Beneficial effects of food supplements based on hydrolyzed collagen for skin care (Review). Exp. Ther. Med. 2020, 20, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Ratz-Łyko, A.; Arct, J. Resveratrol as an active ingredient for cosmetic and dermatological applications: A review. J. Cosmet. Laser Ther. 2019, 21, 84–90. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Tohidi, B.; Rahimmalek, M.; Arzani, A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 2017, 220, 153–161. [Google Scholar] [CrossRef]
- Beaufay, F.; Quarles, E.; Franz, A.; Katamanin, O.; Wholey, W.-Y.; Jakob, U. Polyphosphate functions in vivo as an iron chelator and fenton reaction inhibitor. mBio 2020, 11, e01017-20. [Google Scholar] [CrossRef] [PubMed]
- Coger, V.; Million, N.; Rehbock, C.; Sures, B.; Nachev, M.; Barcikowski, S.; Wistuba, N.; Strauß, S.; Vogt, P.M. Tissue concentrations of zinc, iron, copper, and magnesium during the phases of full thickness wound healing in a rodent model. Biol. Trace Elem. Res. 2019, 191, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitazawa, M.; Iwasaki, K.; Sakamoto, K. Iron chelators may help prevent photoaging. J. Cosmet. Dermatol. 2006, 5, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, İ. The Antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int. J. Food Sci. Nutr. 2005, 56, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Malacaria, L.; Bijlsma, J.; Hilgers, R.; de Bruijn, W.J.C.; Vincken, J.-P.; Furia, E. Insights into the complexation and oxidation of quercetin and luteolin in aqueous solutions in presence of selected metal cations. J. Mol. Liq. 2023, 369, 120840. [Google Scholar] [CrossRef]
- Ben Khedher, M.R.; Hafsa, J.; Haddad, M.; Hammami, M. Inhibition of protein glycation by combined antioxidant and antiglycation constituents from a phenolic fraction of sage (Salvia officinalis L.). Plant Foods Hum. Nutr. 2020, 75, 505–511. [Google Scholar] [CrossRef]
- Mlakar, A.; Batna, A.; Dudda, A.; Spiteller, G. Iron (II) ions induced oxidation of ascorbic acid and glucose. Free Radic. Res. 1996, 25, 525–539. [Google Scholar] [CrossRef]
- Jovanović, A.A.; Vajić, U.-J.V.; Mijin, D.Z.; Zdunić, G.M.; Šavikin, K.P.; Branković, S.; Kitić, D.; Bugarski, B.M. Polyphenol extraction in microwave reactor using by-product of Thymus serpyllum L. and biological potential of the extract. J. Appl. Res. Med. Aromat. Plants 2022, 31, 100417. [Google Scholar] [CrossRef]
- Hanfer, M.; Benramdane, Z.; Cheriet, T.; Sarri, D.; Menad, A.; Mancini, I.; Seghiri, R.; Ameddah, S. Chemical Constituents, in vitro anti-inflammatory, antioxidant and hemostatic activities of the n-butanol extract of Hyacinthoides lingulata (Poir.) Rothm. Nat. Prod. Res. 2022, 36, 3124–3128. [Google Scholar] [CrossRef]
- Ganceviciene, R.; Liakou, A.I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C.C. Skin anti-aging strategies. Dermato-Endocrinology 2012, 4, 308–319. [Google Scholar] [CrossRef]
- Imokawa, G. Recent Advances in characterizing biological mechanisms underlying UV-induced wrinkles: A pivotal role of fibrobrast-derived elastase. Arch. Dermatol. Res. 2008, 300 (Suppl. S1), 7–20. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Chatterjee, P.; Dey, P.; Bhattacharya, S. Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pac. J. Trop. Biomed. 2012, 2, S178–S180. [Google Scholar] [CrossRef]
- Weihermann, A.C.; Lorencini, M.; Brohem, C.A.; de Carvalho, C.M. Elastin structure and its involvement in skin photoageing. Int. J. Cosmet. Sci. 2017, 39, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Ersoy, E.; Eroglu Ozkan, E.; Boga, M.; Yilmaz, M.A.; Mat, A. Anti-aging potential and anti-tyrosinase activity of three Hypericum species with focus on phytochemical composition by LC–MS/MS. Ind. Crops Prod. 2019, 141, 111735. [Google Scholar] [CrossRef]
- Uitto, J. Connective tissue biochemistry of the aging dermis: Age-associated alterations in collagen and elastin. Clin. Geriatr. Med. 1989, 5, 127–148. [Google Scholar] [CrossRef] [PubMed]
- Ciganović, P.; Jakimiuk, K.; Tomczyk, M.; Zovko Končić, M. Glycerolic licorice extracts as active cosmeceutical ingredients: Extraction optimization, chemical characterization, and biological activity. Antioxidants 2019, 8, 445. [Google Scholar] [CrossRef] [Green Version]
- Krieg, P.; Fürstenberger, G. The role of lipoxygenases in epidermis. Biochim. Biophys. Acta 2014, 1841, 390–400. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Dermato-Endocrinology 2012, 4, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Chaiyana, W.; Anuchapreeda, S.; Punyoyai, C.; Neimkhum, W.; Lee, K.-H.; Lin, W.-C.; Lue, S.-C.; Viernstein, H.; Mueller, M. Ocimum sanctum Linn. as a natural source of skin anti-ageing compounds. Ind. Crops Prod. 2019, 127, 217–224. [Google Scholar] [CrossRef]
- Bahadır Acıkara, Ö.; Ilhan, M.; Kurtul, E.; Šmejkal, K.; Küpeli Akkol, E. Inhibitory activity of Podospermum canum and its active components on collagenase, elastase and hyaluronidase enzymes. Bioorg. Chem. 2019, 93, 103330. [Google Scholar] [CrossRef]
- Süntar, I.; Küpeli Akkol, E.; Keles, H.; Yesilada, E.; Sarker, S.D.; Arroo, R.; Baykal, T. Efficacy of Daphne Oleoides subsp. Kurdica used for wound healing: Identification of active compounds through bioassay guided isolation technique. J. Ethnopharmacol. 2012, 141, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
Standard | Run | X1 | X2 | X3 | X4 | X5 | X6 | TP | LUT |
---|---|---|---|---|---|---|---|---|---|
(%, w:w) | (°C) | (min) | (%, w:w) | (g) | (W) | (μg/mL) | (μg/mL) | ||
22 | 1 | 90 | 30 | 30 | 0 | 0.4 | 720 | 172.84 | 32.54 |
29 | 2 | 10 | 30 | 30 | 5 | 0.4 | 720 | 154.33 | 20.92 |
2 | 3 | 90 | 30 | 10 | 0 | 0.2 | 720 | 95.94 | 19.80 |
30 | 4 | 90 | 30 | 30 | 5 | 0.4 | 144 | 179.22 | 1.42 |
15 | 5 | 10 | 80 | 30 | 5 | 0.2 | 720 | 309.41 | 7.66 |
24 | 6 | 90 | 80 | 30 | 0 | 0.4 | 144 | 614.46 | 3.08 |
32 | 7 | 90 | 80 | 30 | 5 | 0.4 | 720 | 626.90 | 44.38 |
28 | 8 | 90 | 80 | 10 | 5 | 0.4 | 144 | 412.47 | 1.91 |
5 | 9 | 10 | 30 | 30 | 0 | 0.2 | 720 | 193.26 | 14.05 |
27 | 10 | 10 | 80 | 10 | 5 | 0.4 | 720 | 502.14 | 15.94 |
10 | 11 | 90 | 30 | 10 | 5 | 0.2 | 144 | 93.38 | 1.26 |
8 | 12 | 90 | 80 | 30 | 0 | 0.2 | 720 | 331.74 | 18.32 |
6 | 13 | 90 | 30 | 30 | 0 | 0.2 | 144 | 153.37 | 1.89 |
17 | 14 | 10 | 30 | 10 | 0 | 0.4 | 720 | 337.49 | 8.33 |
20 | 15 | 90 | 80 | 10 | 0 | 0.4 | 720 | 450.45 | 32.97 |
13 | 16 | 10 | 30 | 30 | 5 | 0.2 | 144 | 285.48 | 1.92 |
26 | 17 | 90 | 30 | 10 | 5 | 0.4 | 720 | 151.78 | 21.82 |
23 | 18 | 10 | 80 | 30 | 0 | 0.4 | 720 | 468.95 | 17.14 |
19 | 19 | 10 | 80 | 10 | 0 | 0.4 | 144 | 503.73 | 1.77 |
9 | 20 | 10 | 30 | 10 | 5 | 0.2 | 720 | 213.68 | 15.24 |
12 | 21 | 90 | 80 | 10 | 5 | 0.2 | 720 | 338.76 | 21.86 |
16 | 22 | 90 | 80 | 30 | 5 | 0.2 | 144 | 354.08 | 13.40 |
11 | 23 | 10 | 80 | 10 | 5 | 0.2 | 144 | 359.82 | 15.20 |
4 | 24 | 90 | 80 | 10 | 0 | 0.2 | 144 | 344.51 | 2.38 |
14 | 25 | 90 | 30 | 30 | 5 | 0.2 | 720 | 135.82 | 11.27 |
18 | 26 | 90 | 30 | 10 | 0 | 0.4 | 144 | 168.37 | 1.96 |
1 | 27 | 10 | 30 | 10 | 0 | 0.2 | 144 | 196.77 | 8.20 |
3 | 28 | 10 | 80 | 10 | 0 | 0.2 | 720 | 258.35 | 6.49 |
25 | 29 | 10 | 30 | 10 | 5 | 0.4 | 144 | 408.96 | 4.92 |
21 | 30 | 10 | 30 | 30 | 0 | 0.4 | 144 | 328.55 | 10.49 |
7 | 31 | 10 | 80 | 30 | 0 | 0.2 | 144 | 332.70 | 1.98 |
31 | 32 | 10 | 80 | 30 | 5 | 0.4 | 144 | 506.61 | 3.38 |
Standard | Run | X7 | X8 | X9 | X10 | TP | Luteolin | RSA IC50 |
---|---|---|---|---|---|---|---|---|
(%, w:w) | (°C) | (g) | (W) | (μg/mL) | (μg/mL) | (μL Extract/mL) | ||
28 | 1 | 50 | 60 | 0.45 | 576 | 627.26 | 128.67 | 11.70 |
7 | 2 | 50 | 60 | 0.30 | 720 | 362.67 | 109.64 | 6.90 |
4 | 3 | 90 | 80 | 0.45 | 576 | 560.19 | 15.22 | 5.94 |
20 | 4 | 90 | 60 | 0.60 | 576 | 575.87 | 35.92 | 12.01 |
22 | 5 | 50 | 80 | 0.45 | 432 | 601.90 | 55.02 | 5.58 |
21 | 6 | 50 | 40 | 0.45 | 432 | 601.86 | 100.17 | 6.95 |
29 | 7 | 50 | 60 | 0.45 | 576 | 658.16 | 173.29 | 8.20 |
19 | 8 | 10 | 60 | 0.60 | 576 | 395.13 | 24.41 | 19.30 |
12 | 9 | 90 | 60 | 0.45 | 720 | 315.35 | 36.33 | 6.53 |
9 | 10 | 10 | 60 | 0.45 | 432 | 409.14 | 17.95 | 16.01 |
24 | 11 | 50 | 80 | 0.45 | 720 | 475.30 | 24.41 | 5.00 |
14 | 12 | 50 | 80 | 0.30 | 576 | 434.33 | 32.87 | 7.43 |
1 | 13 | 10 | 40 | 0.45 | 576 | 389.79 | 16.27 | 22.58 |
5 | 14 | 50 | 60 | 0.30 | 432 | 476.26 | 102.86 | 12.33 |
2 | 15 | 90 | 40 | 0.45 | 576 | 336.24 | 15.18 | 16.71 |
18 | 16 | 90 | 60 | 0.30 | 576 | 208.05 | 9.66 | 8.78 |
26 | 17 | 50 | 60 | 0.45 | 576 | 625.32 | 168.65 | 11.45 |
25 | 18 | 50 | 60 | 0.45 | 576 | 588.29 | 168.44 | 6.46 |
23 | 19 | 50 | 40 | 0.45 | 720 | 540.79 | 130.17 | 12.18 |
3 | 20 | 10 | 80 | 0.45 | 576 | 417.51 | 15.44 | 15.80 |
13 | 21 | 50 | 40 | 0.30 | 576 | 348.80 | 95.03 | 17.29 |
10 | 22 | 90 | 60 | 0.45 | 432 | 604.02 | 48.07 | 5.93 |
27 | 23 | 50 | 60 | 0.45 | 576 | 680.32 | 161.28 | 5.92 |
6 | 24 | 50 | 60 | 0.60 | 432 | 719.08 | 133.45 | 10.07 |
8 | 25 | 50 | 60 | 0.60 | 720 | 601.16 | 103.72 | 7.87 |
11 | 26 | 10 | 60 | 0.45 | 720 | 316.18 | 22.79 | 18.50 |
15 | 27 | 50 | 40 | 0.60 | 576 | 708.97 | 120.12 | 11.52 |
16 | 28 | 50 | 80 | 0.60 | 576 | 742.10 | 66.24 | 8.32 |
17 | 29 | 10 | 60 | 0.30 | 576 | 229.08 | 15.79 | 23.32 |
Extract Name | Optimized Response | Response Aim | X7 (%, w:w) | X8 (°C) | X9 (g) | X10 (W) | Predicted Response Value | Observed Response Value | RD (%) |
---|---|---|---|---|---|---|---|---|---|
OPT-TP | TP (μg/mL) | maximized | 60 | 70 | 0.60 | 432 | 775.48 | 740.00 ± 5.70 | 4.79 |
OPT-LUT | Luteolin (μg/mL) | maximized | 50 | 56 | 0.47 | 576 | 163.24 | 156.23 | 4.48 |
OPT-RSA | RSA (μL extract/mL) | minimized | 80 | 70 | 0.38 | 720 | 3.04 | 3.10 ± 0.08 | −2.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juszczak, A.M.; Marijan, M.; Jakupović, L.; Tomczykowa, M.; Tomczyk, M.; Zovko Končić, M. Glycerol and Natural Deep Eutectic Solvents Extraction for Preparation of Luteolin-Rich Jasione montana Extracts with Cosmeceutical Activity. Metabolites 2023, 13, 32. https://doi.org/10.3390/metabo13010032
Juszczak AM, Marijan M, Jakupović L, Tomczykowa M, Tomczyk M, Zovko Končić M. Glycerol and Natural Deep Eutectic Solvents Extraction for Preparation of Luteolin-Rich Jasione montana Extracts with Cosmeceutical Activity. Metabolites. 2023; 13(1):32. https://doi.org/10.3390/metabo13010032
Chicago/Turabian StyleJuszczak, Aleksandra Maria, Marijan Marijan, Lejsa Jakupović, Monika Tomczykowa, Michał Tomczyk, and Marijana Zovko Končić. 2023. "Glycerol and Natural Deep Eutectic Solvents Extraction for Preparation of Luteolin-Rich Jasione montana Extracts with Cosmeceutical Activity" Metabolites 13, no. 1: 32. https://doi.org/10.3390/metabo13010032