Preparation of Deuterium-Labeled Armodafinil by Hydrogen–Deuterium Exchange and Its Application in Quantitative Analysis by LC-MS
Abstract
:1. Introduction
2. Results
2.1. Analysis of the Hydrogen–Deuterium Exchange at the Carbon Atoms
2.2. Fragmentation of Deuterated and Non-Deuterated Armodafinil
2.3. IR Analysis
2.4. Computational Analysis of Deprotonation Properties of Armodafinil
2.5. Deuterium–Hydrogen Exchange Analysis
2.6. Stability of Deuterated Armodafinil
2.7. Quantitative LC-MS Analysis
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Mass Spectrometry
4.3. CID
4.4. Isotopic Exchange
4.5. H-NMR and 13C-NMR Analysis
4.6. IR Spectroscopy
4.7. Computational Methods
4.8. Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McClellan, K.J.; Spencer, C.M. Modafinil. Mol. Diag. Ther. 1998, 9, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Gerrard, P.; Malcolm, R. Mechanisms of modafinil: A review of current research. Neuropsychiatr. Dis. Treat. 2007, 3, 349–364. [Google Scholar] [PubMed]
- Jerry, J.M.; Shirvani, N.; Dale, R. Addiction to Armodafinil and Modafinil Presenting With Paranoia. J. Clin. Psychopharmacol. 2016, 36, 98–100. [Google Scholar] [CrossRef]
- Sharif, S.; Guirguis, A.; Fergus, S.; Schifano, F. The Use and Impact of Cognitive Enhancers among University Students: A Systematic Review. Brain Sci. 2021, 11, 355. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S. Practical Use and Risk of Modafinil, a Novel Waking Drug. Environ. Health Toxicol. 2012, 27, e2012007. [Google Scholar] [CrossRef] [PubMed]
- Jasinski, D.R. An evaluation of the abuse potential of modafinil using methylphenidate as a reference. J. Psychopharmacol. 2000, 14, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Murillo-Rodriguez, E.; Veras, A.B.; Rocha, N.B.; Budde, H.; Machado, S. An Overview of the Clinical Uses, Pharmacology, and Safety of Modafinil. ACS Chem. Neurosci. 2018, 9, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xiang, S.; Zhou, X.; Ji, Y.; Xiang, B. Enantiomeric Separation and determination of the enantiomeric Impurity of Armodafinil by Capillary Electrophoresis with Sulfobutyl Ether-β-cyclodextrin as Chiral Selector. Molecules 2012, 17, 303–314. [Google Scholar] [CrossRef]
- Gorman, S.H. Determination of the D- and L-enantiomers of modafinil in human plasma utilizing liquid-liquid extraction and high-performance liquid chromatography. J. Chromatogr. B Biomed. Appl. 1999, 730, 1–7. [Google Scholar] [CrossRef]
- Donovan, J.L.; Malcolm, R.J.; Markowitz, J.S.; DeVane, C.L. Chiral analysis of d- and L-modafinil in human serum: Application to human pharmacokinetic studies. Ther. Drug. Monit. 2003, 25, 197–202. [Google Scholar] [CrossRef]
- Cass, Q.B.; Galatti, T.F. A method for determination of the plasma levels of modafinil enantiomers, (±)-modafinic acid and modafinil sulphone by direct human plasma injection and bidimensional achiral-chiral chromatography. J. Pharm. Biomed. 2008, 46, 937–944. [Google Scholar] [CrossRef]
- Rao, R.N.; Shinde, D.D. Enantioselective separation and determination of adrafinil and modafinil on Chiralcel OJ-H column in rat serum and urine using solid-phase extraction followed by HPLC. Biomed. Chromatogr. 2009, 23, 811–816. [Google Scholar] [CrossRef]
- AL Azzam, K.M.; Saad, B.; Adnan, R.; Saleh, M.I. Enantioselective determination of modafinil in pharmaceutical formulations by capillary electrophoresis, and computational calculation of their inclusion complexes. Microchim. Acta 2009, 166, 311–317. [Google Scholar] [CrossRef]
- Gorman, S.H. Determination of modafinil, modafinil acid and modafinil sulfone in human plasma utilizing liquid–liquid extraction and high-performance liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2002, 767, 269–276. [Google Scholar] [CrossRef]
- Burnat, P.; Robles, F.; Do, B. High-performance liquid chromatographic determination of modafinil and its two metabolites in human plasma using solid-phase extraction. J. Chromatogr. B Biomed. Appl. 1998, 706, 295–304. [Google Scholar] [CrossRef]
- Moachon, G.; Matinier, D. Simultaneous determination of modafinil and its acid metabolite by high-performance liquid chromatography in human plasma. J. Chromatogr. B Biomed. Appl. 1994, 654, 91–96. [Google Scholar] [CrossRef]
- Brun, V.; Masselon, C.; Garin, J.; Dupuis. A. Isotope dilution strategies for absolute quantitative proteomics. J. Proteomics. 2009, 72, 740–749. [Google Scholar] [CrossRef]
- Turowski, M.; Yamakawa, N.; Meller, J.; Kimata, K.; Ikegami, T.; Hosoya, K.; Tanaka, N.; Thornton, E.R. Deuterium isotope effects on hydrophobic interactions: The importance of dispersion interactions in the hydrophobic phase. J. Am. Chem. Soc. 2003, 125, 13836–13849. [Google Scholar] [CrossRef]
- Chandasana, H.; Kast, J.; Bittman, J.A.; Derendorf, H. Quantitative determination of armodafinil in human plasma by liquid chromatography-electrospray mass spectrometry: Application to a clinical study. Biomed. Chromatogr. 2018, 32, e4342. [Google Scholar] [CrossRef]
- Ramesh, D.; Ramakrishna, S.; Habibuddin, M. Development and Validation of New LC-MS/MS Method for the Determination of armodafinil in Human Plasma. Curr. Pharm. Anal. 2012, 8, 295–305. [Google Scholar] [CrossRef]
- Schwertner, H.A.; Kong, S.B. Determination of modafinil in plasma and urine by reversed phase high-performance liquid-chromatography. J. Pharm. Biomed. 2005, 37, 475–479. [Google Scholar] [CrossRef] [Green Version]
- Bąchor, R.; Setner, B.; Kluczyk, A.; Stefanowicz, P.; Szewczuk, Z. The unusual hydrogen-deuterium exchange of α-carbon protons in N-substituted glycine containing peptides. J. Mass Spectrom. 2014, 49, 43–49. [Google Scholar] [CrossRef]
- Bąchor, R.; Rudowska, M.; Kluczyk, A.; Stefanowicz, P.; Szewczuk. Z. Hydrogen-deuterium exchange of α-carbon protons and fragmentation pathways in N-methylated glycine and alanine-containing peptides derivatized by quaternary ammonium salts. J. Mass Spectrom. 2014, 49, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Rudowska, M.; Wojewska, D.; Kluczyk, A.; Bąchor, R.; Stefanowicz, P.; Szewczuk, Z. The Hydrogen-Deuterium Exchange at α-Carbon Atom in N,N,N-Trialkylglycine Residue: ESI-MS Studies. J. Am. Soci. Mass Spectrom. 2012, 23, 1024–1028. [Google Scholar] [CrossRef] [Green Version]
- Grocholska, P.; Bąchor, R. Trends in the Hydrogen-Deuterium Exchange at the Carbon Centers. Preparation of Internal Standards for Quantitative Analysis by LC-MS. Molecules 2021, 26, 2989. [Google Scholar] [CrossRef]
- Bąchor, R.; Kluczyk, A.; Stefanowicz, P.; Szewczuk, Z. Facile synthesis of deuterium-labeled denatonium cation and its application in the quantitative analysis of Bitrex by liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 6557–6561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bąchor, R.; Kluczyk, A.; Stefanowicz, P.; Szewczuk, Z. Preparation of novel deuterated cyclosporin A standard for quantitative LC-MS analysis. J. Mass Spectrom. 2017, 52, 817–822. [Google Scholar] [CrossRef]
- Bąchor, R.; Konieczny, A.; Szewczuk, Z. Preparation of Isotopically Labelled Standards of Creatinine Via H/D Exchange and Their Application in Quantitative Analysis by LC-MS. Molecules 2020, 25, 1514. [Google Scholar] [CrossRef] [Green Version]
- Mielke, Z.; Latajka, Z.; Olbert-Majkut, A.; Wieczorek, R. Matrix infrared spectra and ab initio calculations of the nitrous acid complexes with nitrogen monoxide. J. Phys. Chem. A. 2000, 104, 3764–3769. [Google Scholar] [CrossRef]
- Wieczorek, R.; Latajka, Z.; Lundell, J. Quantum chemical study of the bimolecular complex of HONO. J. Phys. Chem. A. 1999, 103, 6234–6239. [Google Scholar] [CrossRef]
- Olszewski, T.K.; Wojaczyńska, E.; Wieczorek, R.; Bąkowicz, J. α-Hydroxyphosphonic acid derivatives of 2-azanorbornane: Synthesis, DFT calculations, and crystal structure analysis. Tetrahedron Asymmetry 2015, 26, 601–607. [Google Scholar] [CrossRef]
- Salvador, P.; Wieczorek, R.; Dannenberg, J.J. Direct calculation oftranshydrogen-bond 13C-15N 3-bond J-couplings in entire polyalanine α-helices. A density functional theory study. J. Phys. Chem. B. 2007, 111, 2398–2403. [Google Scholar]
- Rudowska, M.; Wieczorek, R.; Kluczyk, A.; Stefanowicz, P. Gas-Phase Fragmentation of Oligoproline Peptide Ions Lacking Easily Mobilizable Protons. J. Am. Soc. Mass Spectrom. 2013, 24, 846–856. [Google Scholar] [CrossRef] [Green Version]
- Tittebrandt, S.; Edelson-Averbukh, M.; Spengler, B.; Lehmann, W.D. ESI Hydrogen/Deuterium Exchange Can Count Chemical Forms of Heteroatom-Bound Hydrogen. Angew. Chem. Int. Ed. 2013, 52, 8973–8975. [Google Scholar] [CrossRef]
- Götz, A.; Högel, P.; Silber, M.; Chaitoglou, I.; Luy, B.; Muhle-Goll, C.; Scharnagl, C.; Langosch, D. Increased H-Bond Stability Relates to Altered ε-Cleavage Efficiency and Aβ Levels in the I45T Familial Alzheimer’s Disease Mutant of APP. Sci. Rep. 2019, 9, 5321. [Google Scholar] [CrossRef] [Green Version]
- Iyer, S.S.; Zhang, Z.-P.; Kellogg, G.E.; Karnes, H.T. Evaluation of deuterium isotope effects in normal-phase LC-MS-MS separations using a molecular modeling approach. J. Chromatogr. Sci. 2004, 42, 383–387. [Google Scholar] [CrossRef] [Green Version]
- Darwish, M.; Kirby, M.; Hellriegel, E.T.; Yang, R.; Robertson, P., Jr. Pharmacokinetic Profile of Armodafinil in Healthy Subjects. Clin. Drug Investig. 2009, 29, 87–100. [Google Scholar] [CrossRef]
- Robertson, P., Jr.; Hellriegel, E.T. Clinical Pharmacokinetic Profile of Modafinil Philmore. Clin. Pharmacokinet. 2003, 42, 123–137. [Google Scholar] [CrossRef]
- Englander, S.W.; Sosnick, T.R.; Englander, J.J.; Mayne, L. Mechanisms and uses of hydrogen exchange. Curr. Opin. Struct. Biol. 1996, 6, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Milne, J.S.; Mayne, L.; Englander, S.W. Primary structure effects on peptide group hydrogen exchange. Proteins 1993, 17, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. The renaissance of H/D exchange. Angew. Chem. Int. Ed. 2007, 46, 7744–7765. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.; Coote, M.L.; Easton, C.J. The distal effect of electron-withdrawing groups and hydrogen bonding on the stability of peptide enolates. J. Am. Chem. Soc. 2010, 132, 5515. [Google Scholar] [CrossRef] [PubMed]
- Rios, A.; Amyes, T.L.; Richard, J.P. Formation and stability of organic zwitterions in aqueous solution: Enolates of the amino acid glycine and its derivatives. J. Am. Chem. Soc. 2000, 122, 9373–9385. [Google Scholar] [CrossRef]
- Rios, A.; Amyes, T.L.; Richard, J.P. Formation and stability of peptide enolates in aqueous solution. J. Am. Chem. Soc. 2002, 124, 8251. [Google Scholar] [CrossRef] [PubMed]
- Von Doering, W.E.; Levy, L.K. d-Orbital Resonance. I. The Acidity of Bridgehead α-hydrogen in a bicyclic trisulfone. J. Am. Chem. Soc. 1955, 77, 509–513. [Google Scholar] [CrossRef]
- Wade, D. Deuterium isotope effects in noncovalent interactions have been reviewed. Chem.-Biol. Interact. 1999, 117, 191–217. [Google Scholar] [CrossRef]
- Thornton, E.R. Physical organic chemistry. Annu. Rev. Phys. Chem. 1966, 17, 349–372. [Google Scholar] [CrossRef]
- Cydzik, M.; Rudowska, M.; Stefanowicz, P.; Szewczuk, Z. The competition of charge remote and charge directed fragmentation mechanisms in quaternary ammonium salt derivatized peptides—An isotopic exchange study. J. Am. Soc. Mass Spectrom. 2011, 22, 2103–2107. [Google Scholar] [CrossRef] [Green Version]
- Giagou, T.; Meyer, M.P. Kinetic isotope effects in asymmetric reactions. Chem. Eur. J. 2010, 16, 10616–10628. [Google Scholar] [CrossRef] [Green Version]
- Carter, R.E.; Melander, L. Experiments on the Nature of Steric Isotope Effects. Adv. Phys. Org. Chem. 1973, 10, 1–23. [Google Scholar]
- Mikkelsen, K.; Nielsen, S.O. Acidity measurements with the glass electrode in H2O-D2O mixtures. J. Phys. Chem. 1960, 64, 632–637. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corretions. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minenkov, Y.; Singstad, A.; Occhipinti, G.; Jensen, V.R. The accuracy of DFT-optimized geometries of functional transition metal compounds: A validation study of catalysts for olefin metathesis and other reactions in the homogeneous phase. Dalton Trans. 2012, 41, 5526–5541. [Google Scholar] [CrossRef]
- Yang, K.; Zheng, J.; Zhao, Y.; Truhlar, D. Tests of the RPBE, revPBE, τ-HCTHhyb, ωB97X-D, and MOHLYP density functional approximations and 29 others against representative databases for diverse bond energies and barrier heights in catalysis. J. Chem. Phys. 2010, 132, 164117–164127. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, Version 5; Semichem Inc.: Shawnee Mission, KS, USA, 2008. [Google Scholar]
Deprotonation | H298 | ∆H298 |
---|---|---|
6 | −1183.109880 | 106.69 |
3 | −1183.105261 | 109.58 |
9 | −1183.104098 | 110.31 |
10 | −1183.104091 | 110.32 |
7 | −1183.103049 | 110.97 |
15 | −1183.102962 | 111.03 |
14 | −1183.098462 | 113.85 |
8 | −1183.061218 | 137.22 |
5 | −1183.058096 | 139.18 |
4 | −1183.050528 | 143.93 |
1 | −1183.050000 | 145.66 |
12 | −1183.047156 | 146.05 |
11 | −1183.046098 | 146.71 |
13 | −1183.045805 | 146.89 |
2 | −1183.044940 | 147.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grocholska, P.; Wieczorek, R.; Bąchor, R. Preparation of Deuterium-Labeled Armodafinil by Hydrogen–Deuterium Exchange and Its Application in Quantitative Analysis by LC-MS. Metabolites 2022, 12, 578. https://doi.org/10.3390/metabo12070578
Grocholska P, Wieczorek R, Bąchor R. Preparation of Deuterium-Labeled Armodafinil by Hydrogen–Deuterium Exchange and Its Application in Quantitative Analysis by LC-MS. Metabolites. 2022; 12(7):578. https://doi.org/10.3390/metabo12070578
Chicago/Turabian StyleGrocholska, Paulina, Robert Wieczorek, and Remigiusz Bąchor. 2022. "Preparation of Deuterium-Labeled Armodafinil by Hydrogen–Deuterium Exchange and Its Application in Quantitative Analysis by LC-MS" Metabolites 12, no. 7: 578. https://doi.org/10.3390/metabo12070578
APA StyleGrocholska, P., Wieczorek, R., & Bąchor, R. (2022). Preparation of Deuterium-Labeled Armodafinil by Hydrogen–Deuterium Exchange and Its Application in Quantitative Analysis by LC-MS. Metabolites, 12(7), 578. https://doi.org/10.3390/metabo12070578