Early Evolutionary Selection of NAD Biosynthesis Pathway in Bacteria
Abstract
:1. Introduction
2. Results
2.1. Early Evolutionary Selection of the PncA or the Nampt Pathway in Bacteria
2.2. Higher Glycohydrolysis of Nam Pathway Intermediates at High Temperatures
2.3. PncA Pathway Is More Energy Demanding Even at High Temperatures
2.4. Optimal Pathway Performance Achieved with Mutually Exclusive Presence of PncA and Nampt
3. Discussion
4. Materials and Methods
4.1. Phylogenetic Analysis of Enzyme Distributions
4.2. Thermostability of NAD and Related Metabolites Determined by 1H-NMR
4.3. Rate of Temperature-Dependent Non-Enzymatic Hydrolysis
4.4. Mathematical Modelling of NAD Metabolism in Bacteria
4.5. Software and Data
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bockwoldt, M.; Houry, D.; Niere, M.; Gossmann, T.I.; Reinartz, I.; Schug, A.; Ziegler, M.; Heiland, I. Identification of evolutionary and kinetic drivers of NAD-dependent signaling. Proc. Natl. Acad. Sci. USA 2019, 116, 15957–15966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazzaniga, F.; Stebbins, R.; Chang, S.Z.; McPeek, M.A.; Brenner, C. Microbial NAD Metabolism: Lessons from Comparative Genomics. Microbiol. Mol. Biol. Rev. 2009, 73, 529–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preiss, J.; Handler, P. Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates. J. Biol. Chem. 1958, 233, 488–492. Available online: http://www.jbc.org/content/233/2/488.short (accessed on 12 May 2022). [CrossRef]
- De Figueiredo, L.F.; Gossmann, T.I.; Ziegler, M.; Schuster, S. Pathway analysis of NAD + metabolism. Biochem. J. 2011, 439, 341–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spencer, R.L.; Preiss, J. Biosynthesis of diphosphopyridine nucleotide. The purification and the properties of diphospyridine nucleotide synthetase from Escherichia coli b. J. Biol. Chem. 1967, 242, 385–392. Available online: http://www.ncbi.nlm.nih.gov/pubmed/4290215 (accessed on 12 May 2022). [CrossRef]
- Mukherjee, S.; Stamatis, D.; Bertsch, J.; Ovchinnikova, G.; Sundaramurthi, J.C.; Lee, J.; Kandimalla, M.; Chen, I.-M.A.; Kyrpides, N.C.; Reddy, T.B.K. Genomes OnLine Database (GOLD) v.8: Overview and updates. Nucleic Acids Res. 2021, 49, D723–D733. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.-M.A.; Chu, K.; Palaniappan, K.; Ratner, A.; Huang, J.; Huntemann, M.; Hajek, P.; Ritter, S.; Varghese, N.; Seshadri, R.; et al. The IMG/M data management and analysis system v.6.0: New tools and advanced capabilities. Nucleic Acids Res. 2021, 49, D751–D763. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, N.O.; Colowick, S.P.; Barnes, C.C. Effect of alkali on diphosphopyridine nucleotide. J. Biol. Chem. 1951, 191, 461–472. Available online: http://www.ncbi.nlm.nih.gov/pubmed/14861192 (accessed on 12 May 2022). [CrossRef]
- Colowick, S.P.; Kaplan, N.O.; Ciotti, M.M. The reaction of pyridine nucleotide with cyanide and its analytical use. J. Biol. Chem. 1951, 191, 447–459. Available online: http://www.ncbi.nlm.nih.gov/pubmed/14861191 (accessed on 12 May 2022). [CrossRef]
- Bodenstein, C.; Heiland, I.; Schuster, S. Calculating activation energies for temperature compensation in circadian rhythms. Phys. Biol. 2011, 8, 056007. [Google Scholar] [CrossRef] [PubMed]
- Heiland, I.; Bodenstein, C.; Hinze, T.; Weisheit, O.; Ebenhoeh, O.; Mittag, M.; Schuster, S. Modeling temperature entrainment of circadian clocks using the Arrhenius equation and a reconstructed model from Chlamydomonas reinhardtii. J. Biol. Phys. 2012, 38, 449–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgos, E.S.; Schramm, V.L. Weak Coupling of ATP Hydrolysis to the Chemical Equilibrium of Human Nicotinamide Phosphoribosyltransferase. Biochemistry 2008, 46, 11086–11096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoops, S.; Sahle, S.; Gauges, R.; Lee, C.; Pahle, J.; Simus, N.; Singhal, M.; Xu, L.; Mendes, P.; Kummer, U. COPASI—A COmplex PAthway SImulator. Bioinformatics 2006, 22, 3067–3074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrich, R.; Rapoport, T.A. A Linear Steady-State Treatment of Enzymatic Chains. Eur. J. Biochem. 1974, 42, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, R.; Schuster, S. The Regulation of Cellular Systems; Springer US: Boston, MA, USA, 1996. [Google Scholar]
- Hachisuka, S.-I.; Sato, T.; Atomi, H. Metabolism Dealing with Thermal Degradation of NAD+ in the Hyperthermophilic Archaeon Thermococcus kodakarensis. J. Bacteriol. 2017, 199, e00162-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Arrhenius, S. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Z. Phys. Chem. 1889, 4, 96–116. [Google Scholar] [CrossRef] [Green Version]
- Schomburg, I.; Chang, A.; Schomburg, D. BRENDA, enzyme data and metabolic information. Nucleic Acids Res. 2002, 30, 47–49. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Cepas, J.; Serra, F.; Bork, P. ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Mol. Biol. Evol. 2016, 33, 1635–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kacser, H.; Burns, J.A. The control of flux. Symp. Soc. Exp. Biol. 1973, 27, 65–104. Available online: http://www.ncbi.nlm.nih.gov/pubmed/4148886 (accessed on 17 May 2017).
Compound | Temperature (°C) | Hydrolysis Rate (%/min) | Prefactor A | Activation Energy Ea (KJ/mol) |
---|---|---|---|---|
NR | 50 | 0.68 ± 0.04 | 27083.62 | 72.41 |
75 | 2.06 ± 0.10 | |||
90 | 6.26 ± 0.07 | |||
NMN | 50 | 0.07 ± 0.02 | 340657.92 | 82.40 |
75 | 0.62 ± 0.03 | |||
90 | 2.76 ± 0.13 | |||
NAD | 50 | 0.00 ± 0.01 | 1.37 × 1011 | 123.16 |
75 | 0.45 ± 0.01 | |||
90 | 1.60 ± 0.05 | |||
NAR | 50 | 0.01 ± 0.01 | 1.25 × 1013 | 138.60 |
75 | 0.12 ± 0.02 | |||
90 | 0.86 ± 0.02 | |||
NAMN | 50 | 0.00 ± 0.01 | 2.12 × 1013 | 142.49 |
75 | 0.05 ± 0.03 | |||
90 | 0.40 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Hsieh, Y.-C.; Dietze, J.; Bockwoldt, M.; Strømland, Ø.; Ziegler, M.; Heiland, I. Early Evolutionary Selection of NAD Biosynthesis Pathway in Bacteria. Metabolites 2022, 12, 569. https://doi.org/10.3390/metabo12070569
Sharma S, Hsieh Y-C, Dietze J, Bockwoldt M, Strømland Ø, Ziegler M, Heiland I. Early Evolutionary Selection of NAD Biosynthesis Pathway in Bacteria. Metabolites. 2022; 12(7):569. https://doi.org/10.3390/metabo12070569
Chicago/Turabian StyleSharma, Suraj, Yin-Chen Hsieh, Jörn Dietze, Mathias Bockwoldt, Øyvind Strømland, Mathias Ziegler, and Ines Heiland. 2022. "Early Evolutionary Selection of NAD Biosynthesis Pathway in Bacteria" Metabolites 12, no. 7: 569. https://doi.org/10.3390/metabo12070569
APA StyleSharma, S., Hsieh, Y. -C., Dietze, J., Bockwoldt, M., Strømland, Ø., Ziegler, M., & Heiland, I. (2022). Early Evolutionary Selection of NAD Biosynthesis Pathway in Bacteria. Metabolites, 12(7), 569. https://doi.org/10.3390/metabo12070569