Sanitary Conditions on the Farm Alters Fecal Metabolite Profile in Growing Pigs
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le Floch, N.; Jondreville, C.; Matte, J.J.; Seve, B. Importance of sanitary environment for growth performance and plasma nutrient homeostasis during the post-weaning period in piglets. Arch. Anim. Nutr. 2006, 60, 23–34. [Google Scholar] [CrossRef]
- Jayaraman, B.; Nyachoti, C.M. Husbandry practices and gut health outcomes in weaned piglets: A review. Anim. Nutr. 2017, 3, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Te Pas, M.F.W.; Jansman, A.J.M.; Kruijt, L.; van der Meer, Y.; Vervoort, J.J.M.; Schokker, D. Sanitary Conditions Affect the Colonic Microbiome and the Colonic and Systemic Metabolome of Female Pigs. Front. Vet. Sci. 2020, 7, 585730. [Google Scholar] [CrossRef] [PubMed]
- Van der Meer, Y.; Jansman, A.J.M.; Gerrits, W.J.J. Low sanitary conditions increase energy expenditure for maintenance and decrease incremental protein efficiency in growing pigs. Animal 2020, 14, 1811–1820. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, M.; Cauquil, L.; Bertide, A.; Ahn, I.; Barilly, C.; Gil, L.; Canlet, C.; Zemb, O.; Pascal, G.; Samson, A.; et al. Gut Microbiota-Derived Metabolite Signature in Suckling and Weaned Piglets. J. Proteome Res. 2021, 20, 982–994. [Google Scholar] [CrossRef]
- Gierse, L.C.; Meene, A.; Schultz, D.; Schwaiger, T.; Karte, C.; Schroder, C.; Wang, H.; Wunsche, C.; Methling, K.; Kreikemeyer, B.; et al. A Multi-Omics Protocol for Swine Feces to Elucidate Longitudinal Dynamics in Microbiome Structure and Function. Microorganisms 2020, 8, 1887. [Google Scholar] [CrossRef]
- Lopez-Bascon, M.A.; Calderon-Santiago, M.; Arguello, H.; Morera, L.; Garrido, J.J.; Priego-Capote, F. Comprehensive analysis of pig feces metabolome by chromatographic techniques coupled to mass spectrometry in high resolution mode: Influence of sample preparation on the identification coverage. Talanta 2019, 199, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Puig, D.; Perez, J.F.; Castillo, M.; Andaluz, A.; Anguita, M.; Morales, J.; Gasa, J. Consumption of raw potato starch increases colon length and fecal excretion of purine bases in growing pigs. J. Nutr. 2003, 133, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Marro, P.J.; Baumgart, S.; Delivoria-Papadopoulos, M.; Zirin, S.; Corcoran, L.; McGaurn, S.P.; Davis, L.E.; Clancy, R.R. Purine metabolism and inhibition of xanthine oxidase in severely hypoxic neonates going onto extracorporeal membrane oxygenation. Pediatr. Res. 1997, 41, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Roediger, W.E. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 1982, 83, 424–429. [Google Scholar] [CrossRef]
- Kleczkowski, L.A.; Geisler, M.; Ciereszko, I.; Johansson, H. UDP-glucose pyrophosphorylase. An old protein with new tricks. Plant Physiol. 2004, 134, 912–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.H. Immune regulation by microbiome metabolites. Immunology 2018, 154, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Kovanda, L.L.; Park, J.; He, Y.; Park, S.; Wu, R.; Wong, B.; Kim, K.; Liu, Y. 478 Dietary Butyrate and Valerate Glycerides: Effects on Growth and Systemic Immunity of Weanling Piglets Coinfected with F4 and F18 Escherichia coli. J. Anim. Sci. 2021, 99, 211–212. [Google Scholar] [CrossRef]
- Kammeyer, A.; Peters, C.P.; Meijer, S.L.; Te Velde, A.A. Anti-inflammatory effects of urocanic Acid derivatives in models ex vivo and in vivo of inflammatory bowel disease. ISRN Inflamm. 2012, 2012, 898153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westergaard, H.; Dietschy, J.M. The mechanism whereby bile acid micelles increase the rate of fatty acid and cholesterol uptake into the intestinal mucosal cell. J. Clin. Invest. 1976, 58, 97–108. [Google Scholar] [CrossRef]
- Joyce, S.A.; MacSharry, J.; Casey, P.G.; Kinsella, M.; Murphy, E.F.; Shanahan, F.; Hill, C.; Gahan, C.G. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc. Natl. Acad. Sci. USA 2014, 111, 7421–7426. [Google Scholar] [CrossRef] [Green Version]
- Alrefai, W.A.; Gill, R.K. Bile acid transporters: Structure, function, regulation and pathophysiological implications. Pharm. Res. 2007, 24, 1803–1823. [Google Scholar] [CrossRef]
- Turski, M.P.; Turska, M.; Paluszkiewicz, P.; Parada-Turska, J.; Oxenkrug, G.F. Kynurenic Acid in the digestive system-new facts, new challenges. Int. J. Tryptophan Res. 2013, 6, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Sofia, M.A.; Ciorba, M.A.; Meckel, K.; Lim, C.K.; Guillemin, G.J.; Weber, C.R.; Bissonnette, M.; Pekow, J.R. Tryptophan Metabolism through the Kynurenine Pathway is Associated with Endoscopic Inflammation in Ulcerative Colitis. Inflamm. Bowel Dis. 2018, 24, 1471–1480. [Google Scholar] [CrossRef]
- Zhang, Q.; Yin, X.; Wang, H.; Wu, X.; Li, X.; Li, Y.; Zhang, X.; Fu, C.; Li, H.; Qiu, Y. Fecal Metabolomics and Potential Biomarkers for Systemic Lupus Erythematosus. Front. Immunol. 2019, 10, 976. [Google Scholar] [CrossRef]
- Whiley, L.; Nye, L.C.; Grant, I.; Andreas, N.; Chappell, K.E.; Sarafian, M.H.; Misra, R.; Plumb, R.S.; Lewis, M.R.; Nicholson, J.K.; et al. Ultrahigh-Performance Liquid Chromatography Tandem Mass Spectrometry with Electrospray Ionization Quantification of Tryptophan Metabolites and Markers of Gut Health in Serum and Plasma-Application to Clinical and Epidemiology Cohorts. Anal. Chem. 2019, 91, 5207–5216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forrest, C.M.; Gould, S.R.; Darlington, L.G.; Stone, T.W. Levels of purine, kynurenine and lipid peroxidation products in patients with inflammatory bowel disease. Adv. Exp. Med. Biol. 2003, 527, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Dudzinska, E.; Szymona, K.; Kloc, R.; Gil-Kulik, P.; Kocki, T.; Swistowska, M.; Bogucki, J.; Kocki, J.; Urbanska, E.M. Increased expression of kynurenine aminotransferases mRNA in lymphocytes of patients with inflammatory bowel disease. Ther. Adv. Gastroenterol. 2019, 12, 1756284819881304. [Google Scholar] [CrossRef] [PubMed]
- Bartelt, J.; Jadamus, A.; Wiese, F.; Swiech, E.; Buraczewska, L.; Simon, O. Apparent precaecal digestibility of nutrients and level of endogenous nitrogen in digesta of the small intestine of growing pigs as affected by various digesta viscosities. Arch. Tierernahr. 2002, 56, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.K.; Jansman, A.J.M.; Schokker, D.; Kruijt, L.; Harms, A.C.; Wells, J.M.; Smits, M.A. Amine Metabolism Is Influenced by Dietary Protein Source. Front. Nutr. 2017, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Gong, J.; Wang, Q.; Cui, S.; Yu, H.; Huang, B. In-vitro assessment of the effects of dietary fibers on microbial fermentation and communities from large intestinal digesta of pigs. Food Hydrocoll. 2011, 25, 180–188. [Google Scholar] [CrossRef]
Expected Origin | Bins | Metabolite | Week 14 | Week 22 | ||
---|---|---|---|---|---|---|
Ratio HSC/LSC | FDR 1 | Ratio HSC/LSC | FDR | |||
Diet | 7.93 | Xanthine | 1.53 | ns 2 | 1.41 | <0.1 |
Microbiome | 1.52 | Butyrate | 0.76 | ns | 0.78 | <0.1 |
Microbiome | 0.88 | Butyrate | 0.65 | ns | 0.75 | <0.1 |
Microbiome | 2.18 | Butyrate and propionate | 0.81 | ns | 0.86 | <0.1 |
Microbiome | Mean butyrate 3 | 0.74 | ns | 0.79 | <0.1 | |
Microbiome | 1.06 | Propionate | 0.73 | <0.05 | 0.73 | <0.05 |
Microbiome | Mean propionate 3 | 0.77 | ns | 0.79 | <0.1 | |
Microbiome | 5.64, 5.63, 5.62 | UDP-glucose 4 | 1.15 | ns | 4.76 | <0.05 5 |
Microbiome | 0.84 | Valerate (tentative annotation) 6 | 0.84 | ns | 1.37 | <0.1 |
Microbiome | 5.94, 6.13, 6.12, 6.11, 7.89, 7.86 | Uridine derivates | 2.27 | <0.1 5 | 1.36 | ns |
Endogenous (host) | 0.77, 0.76, 0.75, 0.74, 0.73 | Bile acids (tentative) | 0.64 | ns | 1.54 | <0.1 5 |
Endogenous (host) | 6.65 (7.82, 7.68, 7.49) | Kynurenic acid | 0.80 | ns | 0.62 | <0.1 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kar, S.K.; te Pas, M.F.W.; Kruijt, L.; Vervoort, J.J.M.; Jansman, A.J.M.; Schokker, D. Sanitary Conditions on the Farm Alters Fecal Metabolite Profile in Growing Pigs. Metabolites 2022, 12, 538. https://doi.org/10.3390/metabo12060538
Kar SK, te Pas MFW, Kruijt L, Vervoort JJM, Jansman AJM, Schokker D. Sanitary Conditions on the Farm Alters Fecal Metabolite Profile in Growing Pigs. Metabolites. 2022; 12(6):538. https://doi.org/10.3390/metabo12060538
Chicago/Turabian StyleKar, Soumya K., Marinus F. W. te Pas, Leo Kruijt, Jacques J. M. Vervoort, Alfons J. M. Jansman, and Dirkjan Schokker. 2022. "Sanitary Conditions on the Farm Alters Fecal Metabolite Profile in Growing Pigs" Metabolites 12, no. 6: 538. https://doi.org/10.3390/metabo12060538
APA StyleKar, S. K., te Pas, M. F. W., Kruijt, L., Vervoort, J. J. M., Jansman, A. J. M., & Schokker, D. (2022). Sanitary Conditions on the Farm Alters Fecal Metabolite Profile in Growing Pigs. Metabolites, 12(6), 538. https://doi.org/10.3390/metabo12060538