Changes in the Fatty Acid Composition of Milk of Lipizzaner Mares during the Lactation Period
Abstract
:1. Introduction
2. Results
2.1. Basic Chemical Composition of Milk
2.2. Influence of the Parity and Stage of Lactation on the Chemical Composition of Mare’s Milk
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Equipment
4.3. Extraction of Total Lipids
4.4. Preparation of Fatty Acid Methyl Esters
4.5. Gas Chromatography (GC)
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barreto, Í.M.L.G.; Rangel, A.H.D.N.; Urbano, S.A.; Bezerra, J.D.S.; Oliveira, C.A.D.A. Equine milk and its potential use in the human diet. Food Sci. Technol. 2019, 39, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Yu, J.; Miao, W.; Shuang, Q.A. Uplc-Q-Tof-Ms-based metabolomics approach for the evaluation of fermented mare’s milk to koumiss. Food Chem. 2020, 320, 126619. [Google Scholar] [CrossRef] [PubMed]
- Navrátilová, P.; Vyhnálková, J.; Vorlová, L. Detection of fluoroquinolone residues in milk using Yersinia spp. strains: Towards better sensitivity for flumequine determination. J. Vet. Res. 2017, 61, 467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karav, S.; Salcedo, J.; Frese, S.A.; Barile, D. Thoroughbred mares’ milk exhibits a unique and diverse free oligosaccharide profile. FEBS Openbio 2018, 8, 1219–1229. [Google Scholar] [CrossRef]
- Hanuš, O.; Samková, E.; Křížová, L.; Hasoňová, L.; Kala, R. Role of fatty acids in milk fat and the influence of selected factors on their variability—A review. Molecules 2018, 23, 1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreto, Í.M.; Urbano, S.A.; Oliveira, C.A.; Macêdo, C.S.; Borba, L.H.; Chags, B.M.; Rangel, A.H. Chemical composition and lipid profile of mare colostrum and milk of the quarter horse breed. PLoS ONE 2020, 15, e0238921. [Google Scholar] [CrossRef] [PubMed]
- Potočnik, K.; Gantner, V.; Kuterovac, K.; Cividini, A. Mare’s milk: Composition and protein fraction in comparison with different milk species. Mljekarstvo Časopis Unaprjeđenje Proizv. Prerade Mlijeka 2011, 61, 107–113. [Google Scholar]
- Doreau, M.; Martuzzi, F. Fat content and composition in mare’s milk. In Nutrition and Feeding of the Broodmare; Miraglia, N., Martin-Rosset, W., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006; pp. 77–87. [Google Scholar]
- Marangoni, A.G.; Narine, S.S. Identifying key structural indicators of mechanical strength in networks of fat crystals. Food Res. Int. 2002, 35, 957–969. [Google Scholar] [CrossRef]
- Barello, C.; Garoffo, L.P.; Montorfano, G.; Zava, S.; Berra, B.; Conti, A.; Giuffrida, M.G. Analysis of major proteins and fat fractions associated with mare’s milk fat globules. Mol. Nutr. Food Res. 2008, 52, 1448–1456. [Google Scholar] [CrossRef]
- Malacarne, M.; Martuzzi, F.; Summer, A.; Mariani, P. Protein and fat composition of mare’s milk: Some nutritional remarks with reference to human and cow’s milk. Int. Dairy J. 2002, 12, 869–877. [Google Scholar] [CrossRef]
- Pilarczyk, R.; Wójcik, J.; Sablik, P.; Czerniak, P. Fatty acid profile and health lipid indices in the raw milk of Simmental and Holstein-Friesian cows from an organic farm. S. Afr. J. Anim. Sci. 2015, 45, 30–38. [Google Scholar] [CrossRef] [Green Version]
- German, J.B.; Dillard, C.J. Composition, structure and absorption of milk lipids: A source of energy, fat-soluble nutrients and bioactive molecules. Crit. Rev. Food Sci. Nutr. 2006, 46, 57–92. [Google Scholar] [CrossRef] [PubMed]
- Hoppu, U.; Kalliomaki, M.; Isolauri, E. Cow’s milk allergy e a matter of fat. Allergy 2002, 57, 61–62. [Google Scholar] [CrossRef] [PubMed]
- Mollica, M.P.; Trinchese, G.; Cimmino, F.; Penna, E.; Cavaliere, G.; Tudisco, R.; Musco, N.; Manca, C.; Catapano, A.; Monda, M.; et al. Milk Fatty Acid Profiles in Different Animal Species: Focus on the Potential Effect of Selected PUFAs on Metabolism and Brain Functions. Nutrients 2021, 13, 1111. [Google Scholar] [CrossRef] [PubMed]
- Camfield, D.A.; Owen, L.; Scholey, A.B.; Pipingas, A.; Stough, C. Dairy constituents and neurocognitive health in ageing. Br. J. Nutr. 2011, 106, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.S. The omega-6/omega-3 ratio and cardiovascular disease risk: Uses and abuses. Curr. Atheroscler. Rep. 2006, 8, 453–459. [Google Scholar] [CrossRef]
- Miraglia, N.; Salimei, E.; Fantuz, F. Equine milk production and valorization of marginal areas—A review. Animals 2020, 10, 353. [Google Scholar] [CrossRef] [Green Version]
- Paszczyk, B.; Polak-Sliwinska, M.; Łuczynska, J. Fatty acids profile, trans isomers, and lipid quality indices in smoked and unsmoked cheeses and cheese-like products. Int. J. Environ. Res. Public Health 2020, 17, 71. [Google Scholar] [CrossRef] [Green Version]
- Salimei, E.; Fantuz, F. Equid milk for human consumption. Int. Dairy J. 2012, 24, 130–142. [Google Scholar] [CrossRef]
- Salimei, E.; Chiofalo, B. Asses: Milk yield and composition. In Nutrition and Feeding of the Broodmare; Miraglia, N., Martin-Rosset, W., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006; pp. 117–131. [Google Scholar]
- Teichert, J.; Cais-Sokolińska, D.; Bielska, P.; Danków, R.; Chudy, S.; Kaczyński, Ł.K.; Biegalski, J. Milk fermentation affects amino acid and fatty acid profile of mare milk from Polish Coldblood mares. Int. Dairy J. 2021, 121, 105–137. [Google Scholar] [CrossRef]
- Garcia, C.; Lutz, N.W.; Confort-Gouny, S.; Cozzone, P.J.; Armand, M.; Bernard, M. Phospholipid fingerprints of milk from different mammalians determined by 31P NMR: Towards specific interest in human health. Food Chem. 2012, 135, 1777–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czyżak-Runowska, G.; Wójtowski, J.A.; Danków, R.; Stanisławski, D. Mare’s Milk from a Small Polish Specialized Farm—Basic Chemical Composition, Fatty Acid Profile, and Healthy Lipid Indices. Animals 2021, 11, 1590. [Google Scholar] [CrossRef] [PubMed]
- Kaila, M.; Salo, M.K.; Isolauri, E. Fatty acids in substitute formulas or cow’s milk. Allergy 1999, 54, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Marangoni, F.; Agostoni, C.; Lammardo, A.M.; Bonvissuto, M.; Giovannini, M.; Galli, C. Polyunsaturated fatty acids in maternal plasma and in breast milk. Prostaglandins Leukot. Essent. Fat. Acids 2002, 66, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Al, M.D.M.; Van Houwelingen, A.C.; Kester, A.D.M.; Hasaart, T.H.M.; De Jong, A.E.P.; Hornstra, G. Maternal essential fatty acids pattern during normal pregnancy and their relationship to the neonate essential fatty acid status. Br. J. Nutr. 1995, 74, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Laiho, K.A.; Ouwehand, A.; Salminen, S.; Isolauri, I. Inventing probiotic functional foods for patients with allergic disease. Ann. Allergy Asthma Immunol. 2002, 89, 75–82. [Google Scholar] [CrossRef]
- Liu, Z.; Li, N.; Neu, J. Tight junction, leaky intestine, and paediatric diseases. Acta Paediatr. 2005, 94, 386–393. [Google Scholar] [CrossRef]
- Jastrzębska, E.; Wadas, E.; Daszkiewicz, T.; Pietrzak-Fiećko, R. Nutritional value and health-promoting properties of mare’s milk—A review. Czech J. Anim. Sci. 2017, 62, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Fotschki, J.; Szyc, A.M.; Laparra, J.M.; Markiewicz, L.H.; Wróblewska, B. Immune-modulating properties of horse milk administered to mice sensitized to cow milk. J. Dairy Sci. 2016, 99, 9395–9404. [Google Scholar] [CrossRef] [Green Version]
- Di Cagno, R.; Tamborrino, A.; Gallo, G.; Leone, C.; De Angelis, M.; Faccia, M. Uses of mares’ milk in manufacture of fermented milk. Int. Dairy J. 2004, 14, 767–775. [Google Scholar] [CrossRef]
- Solaroli, G.; Pagliarini, E.; Peri, C. Composition and nutritional quality of mare’s milk. Ital. J. Food Sci. 1993, 5, 3–10. [Google Scholar]
- Curadi, M.C.; Orlandi, M.; Greppi, G.F.; Toppino, P.M.; Barzaghi, S.; Cattaneo, T.M. Identification of protein fractions in mare’s colostrum and milk. Milchwissenschaft 2000, 55, 446–449. [Google Scholar]
- Pietrzak-Fiećko, R.; Tomczyński, R.; Świstowska, A.; Borejszo, Z.; Kokoszko, E.; Smoczyńska, K. Effect of mare’s breed on the fatty acid composition of milk fat. Czech J. Anim. Sci. 2009, 54, 403–407. [Google Scholar] [CrossRef] [Green Version]
- Mariani, P.; Summer, A.; Martuzzi, F.; Formaggioni, P.; Sabbioni, A.; Catalano, A.L. Physicochemical properties, gross composition, energy value and nitrogen fractions of Haflinger nursing mare milk throughout 6 lactation months. Anim. Res. 2001, 50, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Mirowski, A.; Didkowska, A. Mare colostrum and milk. Part II. Milk-chemical composition and significance for the foal. Życie Weter. 2015, 90, 38–40. [Google Scholar]
- Pieszka, M.; Łuszczyński, J.; Zamachowska, M.; Augustyn, R.; Długosz, B.; Hędrzak, M. Is mare milk an appropriate food for people? a review. Ann. Anim. Sci. 2016, 16, 33–51. [Google Scholar] [CrossRef] [Green Version]
- Crupi, R.; Marino, A.; Cuzzocrea, S. n-3 Fatty acids: Role in neurogenesis and neuroplasticity. Curr. Med. Chem. 2013, 20, 2953–2963. [Google Scholar] [CrossRef]
- Voblikova, T.; Permyakov, A.; Rostova, A.; Masyutina, G.; Eliseeva, A. Study of fatty-acid composition of goat and sheep milk and its transformation in the production of yogurt. KnE Life Sci. 2020, 5, 742–751. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.A.; Mccluer, R.H. The use of Sep-Pak™ C18 cartridges during the isolation of gangliosides. J. Neurochem. 1980, 35, 266–269. [Google Scholar] [CrossRef]
- Fox, P.F. The major constituents of milk. In Dairy Processing: Improving Quality; Smit, G., Ed.; Woodhead Publishing Limited and CRC Press: Washington, DC, USA, 2003; pp. 12–18. [Google Scholar]
- Doreau, M.; Martin-Rosset, W. Animals that produce dairy foods e horse. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 358–364. [Google Scholar]
- Dewhurst, R.J.; Shingfield, K.J.; Lee, M.A.; Scollan, N.D. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim. Feed. Sci. Technol. 2006, 131, 168–206. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
Variable | Mean | Min | Max | SD | CV | SE |
---|---|---|---|---|---|---|
Solids-not-fat (%) | 9.01 | 8.67 | 9.21 | 1.13 | 1.46 | 0.02 |
Fat (%) | 1.18 | 0.25 | 3.04 | 0.78 | 66.03 | 0.14 |
Lactose (%) | 6.56 | 5.71 | 6.88 | 0.22 | 3.33 | 0.04 |
Protein (%) | 1.53 | 1.30 | 2.04 | 0.14 | 9.15 | 0.02 |
FA | Mean | Min | Max | SD | CV | SE |
---|---|---|---|---|---|---|
C8:0 | 1.24 | 0.12 | 4.07 | 1.27 | 102.21 | 0.28 |
C9:0 | 0.59 | 0.11 | 1.90 | 0.56 | 94.32 | 0.14 |
C10:0 | 1.70 | 0.14 | 8.78 | 1.87 | 110.06 | 0.36 |
C12:0 | 2.65 | 0.21 | 10.35 | 2.55 | 96.05 | 0.46 |
C14:0 | 9.29 | 0.24 | 60.08 | 13.16 | 141.69 | 2.36 |
C15:0 | 3.86 | 1.11 | 10.21 | 2.40 | 62.15 | 0.42 |
C16:0 | 21.66 | 9.42 | 40.60 | 6.27 | 28.95 | 1.09 |
C16:1 | 4.02 | 0.36 | 7.87 | 1.80 | 44.85 | 0.32 |
C17:0 | 0.38 | 0.07 | 0.68 | 0.14 | 36.98 | 0.03 |
C18:0 | 3.40 | 0.36 | 10.97 | 2.08 | 61.23 | 0.36 |
C18:1 | 31.03 | 0.01 | 38.82 | 9.81 | 31.62 | 1.85 |
C18:2 n-6 | 19.92 | 1.71 | 47.74 | 8.78 | 44.07 | 1.60 |
C18:3n-3 | 8.24 | 2.50 | 16.03 | 3.04 | 36.92 | 0.53 |
C20:1 | 0.28 | 0.12 | 0.51 | 0.17 | 44.66 | 0.03 |
C20:4 n-6 | 0.67 | 0.20 | 2.49 | 0.52 | 77.96 | 0.10 |
n-6 | 19.84 | 1.47 | 47.74 | 9.36 | 47.18 | 1.68 |
n-3 | 8.53 | 2.50 | 17.03 | 3.40 | 39.86 | 0.59 |
FA | Mean | Min | Max | SD | CV | SE |
---|---|---|---|---|---|---|
SFA | 43.78 | 23.40 | 89.05 | 19.81 | 46.31 | 3.45 |
MUFA | 30.34 | 2.58 | 43.12 | 14.02 | 46.20 | 2.44 |
PUFA | 26.87 | 4.48 | 52.55 | 11.06 | 41.17 | 1.92 |
UFA | 57.21 | 10.94 | 76.60 | 19.81 | 34.63 | 3.45 |
UFA:SFA | 1.72 | 0.12 | 3.27 | 0.90 | 52.61 | 0.16 |
PUFA:SFA | 0.79 | 0.05 | 1.49 | 0.41 | 52.09 | 0.07 |
C18:1/C18:0 | 14.19 | 0.00 | 73.53 | 13.03 | 91.80 | 2.46 |
n-6:n-3 | 2.76 | 0.11 | 11.32 | 2.36 | 84.59 | 0.42 |
SCD:16 | 15.18 | 3.69 | 24.37 | 4.99 | 32.86 | 0.88 |
SCD:18 | 87.11 | 0.21 | 98.66 | 18.74 | 21.51 | 3.54 |
Variable | Parity | Stage of Lactation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1–3 (n = 9) | SD | >3 (n = 8) | SD | p | 4th (n = 17) | SD | 6th (n = 17) | SD | p | |
Solids-not-fat (%) | 9.02 | 0.13 | 9.00 | 0.14 | 0.68 | 8.99 | 0.15 | 9.03 | 0.11 | 0.43 |
Fat (%) | 1.20 | 0.94 | 1.16 | 0.57 | 0.85 | 1.66 a | 0.66 | 0.70 b | 0.57 | 0.0002 |
Lactose (%) | 6.61 | 0.26 | 6.61 | 0.15 | 0.11 | 6.43 a | 0.24 | 6.69 b | 0.08 | 0.0003 |
Protein (%) | 1.60 | 0.17 | 1.49 | 0.08 | 0.09 | 1.51 | 0.18 | 1.53 | 0.10 | 0.95 |
FA | Parity | Stage of Lactation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1–3 (n = 9) | SD | >3 (n = 8) | SD | p | 4th (n = 17) | SD | 6th (n = 17) | SD | p | |
SFA | 43.65 | 21.62 | 42.50 | 18.40 | 0.85 | 32.81 a | 6.78 | 53.34 b | 23.61 | 0.002 |
UFA | 56.35 | 21.60 | 57.50 | 18.37 | 0.85 | 67.18 a | 6.76 | 46.65 b | 23.79 | 0.002 |
MUFA | 30.10 | 14.57 | 30.31 | 13.89 | 0.96 | 34.91 | 11.70 | 25.50 | 14.99 | 0.06 |
n-3 FA | 8.38 | 3.57 | 8.70 | 3.32 | 0.80 | 8.28 | 2.85 | 8.80 | 3.97 | 0.67 |
n-6 FA | 20.38 | 10.53 | 18.49 | 8.22 | 0.54 | 23.82 a | 6.73 | 14.95 b | 6.84 | 0.006 |
n-6/n-3 | 3.13 | 3.13 | 2.26 | 1.21 | 0.28 | 3.54 a | 2.74 | 1.84 b | 1.34 | 0.04 |
SCDi16 | 15.11 | 4.90 | 15.24 | 5.23 | 0.94 | 17.17 a | 4.67 | 13.20 b | 4.60 | 0.02 |
SCDi18 | 91.69 | 5.19 | 83.31 | 24.90 | 0.26 | 86.62 | 23.35 | 88.07 | 10.86 | 0.87 |
C18-1-C18-0 | 13.66 | 5.68 | 14.74 | 17.30 | 0.83 | 13.88 | 6.28 | 14.51 | 19.04 | 0.90 |
PUFA | 26.24 | 12.40 | 27.19 | 9.84 | 0.79 | 32.27 a | 6.67 | 21.16 b | 12.09 | 0.003 |
PUFA: SFA | 2.16 a | 0.43 | 1.25 b | 0.40 | 0.002 | 1.00 a | 0.22 | 0.56 b | 0.45 | 0.001 |
UFA: SFA | 1.72 | 0,91 | 1.70 | 0.92 | 0.99 | 2.16 a | 0.61 | 1.24 b | 0.94 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gregić, M.; Mijić, P.; Baban, M.; Aladrović, J.; Pađen, L.; Gantner, V.; Bobić, T. Changes in the Fatty Acid Composition of Milk of Lipizzaner Mares during the Lactation Period. Metabolites 2022, 12, 506. https://doi.org/10.3390/metabo12060506
Gregić M, Mijić P, Baban M, Aladrović J, Pađen L, Gantner V, Bobić T. Changes in the Fatty Acid Composition of Milk of Lipizzaner Mares during the Lactation Period. Metabolites. 2022; 12(6):506. https://doi.org/10.3390/metabo12060506
Chicago/Turabian StyleGregić, Maja, Pero Mijić, Mirjana Baban, Jasna Aladrović, Lana Pađen, Vesna Gantner, and Tina Bobić. 2022. "Changes in the Fatty Acid Composition of Milk of Lipizzaner Mares during the Lactation Period" Metabolites 12, no. 6: 506. https://doi.org/10.3390/metabo12060506
APA StyleGregić, M., Mijić, P., Baban, M., Aladrović, J., Pađen, L., Gantner, V., & Bobić, T. (2022). Changes in the Fatty Acid Composition of Milk of Lipizzaner Mares during the Lactation Period. Metabolites, 12(6), 506. https://doi.org/10.3390/metabo12060506