Clinical Perspectives for 18F-FDG PET Imaging in Pediatric Oncology: Μetabolic Tumor Volume and Radiomics
Abstract
:1. Introduction
2. Metabolic Tumor Volume and Radiomics
- (a)
- “Manual” ROI outlines of tumor lesions could be the most accurate method for MTV calculation but they are time-consuming and have low reproducibility due to inter-observer variability.
- (b)
- “Fixed threshold”-based methods, as those using SUVmax or SULmax absolute values, for example 2.0, 2.5 or above, are simple and widely used for tumor volume delineation. However, “fixed threshold” selection is arbitrary and presents an inherent risk of excluding low or overestimating high 18F-FDG uptake tumor lesions.
- (c)
- “Fixed relative threshold”-based methods, as those based on 41% or 50% of tumor SUVmax or SULmax, may also overestimate the volume of tumor lesions close to high background areas, as it is the heart in the mediastinum or otherwise, the volume of low-uptake tumor lesions. Consequently, MTV/TLG calculation could be inaccurate because of intra- and/or inter-lesional SUV variability during initial staging or treatment response evaluation [42].
- (d)
- (e)
- “Gradient” methods are based on the SUV gradient evaluation to offer a tumor FDG uptake-independent method and optimize the less reproducible threshold-based segmentation methods [46].
- (f)
- “Fully automated” methods are relatively easy to apply to PET imaging but, unlike the manual or semi-automated processes, their accuracy is seriously challenged by tumor heterogeneity and imaging conditions [47].
3. Pediatric Sarcomas
1st Author, [ref] | Year | Study Design | Cancer Type | Population (Mean/Median Age) | 18F-FDG PET/CT Time-Points | 18F-FDG Parameters Correlated with Prognosis | Segmentation Methods (Thresholds) | Prognostic Parameters Predicted |
---|---|---|---|---|---|---|---|---|
Li Y-J., [90] | 2016 | Meta-analysis P:8/R:15 | B & STS | 1261 * | Baseline, post-NAC | SUVmax, MTV, TLG | NR | EFS, OS |
Im HJ., [91] | 2018 | P | OST | 34 (12.2) | Baseline, interim, post-NAC | SUVpeak, MTV, TLG | Fixed-absolute and liver-based | EFS, OS Histologic response |
Annovazzi A., [92] | 2021 | R | ESFT | 28 (28.7) * | Baseline, post-NAC | ΔTLG (cut-off: −60%) | Fixed-relative (40% SUVmax) | Histologic response |
El-Hennawy G., [93] | 2020 | P | ESFT | 36 (9.6) | Baseline, post-NAC | MTV2(L) (cut-off: 17 mL) TLG2(L) (cut-off: 60 g) ΔTLG(L) (cut-off: −90%) | Fixed-absolute and liver-based | Histologic response |
Byun BH., [94] | 2014 | P | OST | 30 ** (NS) [17 ≤ 15 years 13 > 15 years] | Baseline, interim, post-NAC | MTV2.5 (interim) ≥ 47 mL TLG2.5 (interim) ≥ 190 g | Fixed-absolute (SUVmax: 2.0 and 2.5) | Histologic response |
Bailly C., [96] | 2017 | R | OST, ESFT | 61 (13.9) | Baseline, post-NAC | Elongation (shape textural feature) † | Adaptive | EFS, OS for OST |
Song H., [104] | 2019 | R | OST | 35 (33) * | Baseline post-NAC | MTV and radiomics (LA, DNU, GLRL_NU, GLSZ_NU) | Manual (ITK-SNAP 3.8.0) | EFS Histologic response |
Jeong SY., [97] | 2019 | R | OST | 70 * (NS) | Baseline, post-NAC | MTV, TLG, and radiomics (LCM_Entropy) | MLA | Histologic response |
Kim J., [98] | 2021 | R | OST | 105 ** (NS) [80 ≤ 19 years 25 > 19 years] | Baseline post-NAC | MTV, TLG, and radiomics (GLCM_entropy, GLSZM_HGLZE GLRLM_SGHGE, NGLDM_SNE) | MLA DLA (2D-CNN) | Histologic response |
- (a)
- The method of MTV evaluation should “join” the clinical context, otherwise, the type of sarcoma and time of evaluation. OST patients, in general, have lesions with less soft-tissue component and consequently less post-treatment volume shrinkage than ESFT patients. Moreover, persistent bone 18F-FDG uptake could be related to the post-treatment bone-healing reaction [92]. Thus, MTV-fixed “relative” methods could preferably be avoided to limit post-treatment MTV overestimation in OST patients [92].
- (b)
- An early prediction of histopathological response by MTV/TLG and textural features could be most useful after approval of new targeted therapies, which aim to change the standard of care and outcome for pediatric sarcomas. In the current published guide for the practical evaluation of PET response criteria in solid tumors (PERCIST) [105], the concomitant estimation of MTV/TLG parameters (usually by liver-based threshold segmentation methods) has been proposed for better consensus in the assignment of stable, partial, or progressive response to induction treatment. However, reproducibility of MTV/TLG evaluation is a prerequisite for treatment response prediction, still interfering with the MTV/TLG prognostic value in clinical practice.
- (c)
- It should be clear that given the histologic type, pediatric sarcomas are different compared to those of adults. The tumor microenvironment is much more important and a possible target for immunotherapy agents, as implicated in the tumor response to treatment. On the contrary, mutational load and relative neoantigens are less expressed by tumor cells of pediatric sarcomas compared to adult sarcomas. Thus, targeted agents, as those implicated in cell differentiation, are probably more effective in pediatric sarcomas, according to experimental data for the “embryonal” RMS histologic subtype, the most common soft-tissue pediatric sarcoma [85,106,107,108]. Overall, tumor heterogeneity 18F-FDG imaging data reflects the histologic subtype, tumor microenvironment, and tumor molecular and genomic characteristics. Integrating all this information could lead to a more accurate interpretation of PET-based risk stratification and treatment monitoring of the whole tumor lesion of pediatric sarcomas. Interestingly, the first data in “radiogenomics” of adulthood carcinomas revealed an accurate tumor phenotyping and decoding of breast cancer lesions by PET/MR textural features [109,110].
4. Pediatric Lymphomas
1st Author, [Reference] | Year | Study Design | Type of Lymphomas | Population (Mean/ Median Age) | 18F-FDG PET/CT Time-Points | 18F-FDG Parameters Correlated with Prognosis | Segmentation Methods (Thresholds) | Prognostic Parameters Predicted |
---|---|---|---|---|---|---|---|---|
Guo B., [133] | 2019 | Meta-analysis P:3/R:24 | HL:3 DLBCL:16 Other NHL:8 | 2729 * | Baseline | MTV, TLG | Fixed-absolute, liver-based, fixed-relative | PFS, OS |
Frood R., [134] | 2021 | Meta-analysis R:41 | HL:10 DLBCL:31 | >4000 * | Baseline | SUVmax, MTV, TLG MH ** (radiomics) | fixed-absolute, liver-based, fixed-relative | PFS, OS |
Ceriani L., [135] | 2020 | P | DLBCL | 141 * (59) | Baseline | MTV, MH ** (radiomics) MTVand MH ** | Fixed-absolute (SUVmax: 2.5) | PFS, OS |
Vercellino L., [136] | 2020 | P | DLBCL | 298 * (68) | Baseline | MTV (cut-off: 220 mL), MTV and ECOG PS | Fixed-relative (41% of SUVmax) | PFS, OS |
Mikhaeel NG., [139] | 2016 | P | DLBCL | 147 * (57) | Baseline Interim | MTV (cut-off: 396 mL), TLG MTV and iPET | Fixed-absolute (SUVmax: 2.5) | PFS, OS |
Schmitz C., [140] | 2020 | P | DLBCL | 510 * (62) | Baseline, Interim | MTV (cut-off: 328 mL), ΔSUVmax (cut-off: 66%) MTV and iPET | Fixed-relative (41% of SUVmax) | PFS, OS |
Albano D., [143] | 2019 | R | Burkitt | 65 * (53) | Baseline End-treatment | MTV (cut-off: 230 mL) TLG | Fixed-relative (41% of SUVmax) | PFS, OS |
Cottereau AS., [141] | 2020 | P | HL (early stage) | 258 * (31) | Baseline Interim | MTV (cut-off: 147 mL) MTV and iPET | Fixed-relative (41% of SUVmax) | PFS, OS |
Bouallègue FB., [142] | 2017 | R | Bulky HL and NHL | 57 * (52) | Baseline | MTV (cut-off: 600 mL) Shape/texture parameters (radiomics) | Fixed-Relative (30% of SUVmax) | PFS, OS |
Zhou Y., [146] | 2020 | R | HL and NHL | 47 (14.8) | Baseline | TLG | Fixed-absolute (SUVmax: 2.5) | PFS |
Kim J., [144] | 2019 | P | B-NHL | 46 (7.5) | Baseline | MTV, TLG | Fixed-Relative (41% of SUVmax) | PFS, OS |
Xiao Z., [147] | 2021 | R | Burkitt | 68 (7) | Baseline | MTV (cut-off: 550 mL) TLG (cut-off: 2881 g) | Fixed-relative (41% of SUVmax) | PFS, OS |
Yang J., [148] | 2021 | R | LBL | 30 (6.5) | Baseline | MTV (cut-off: 243 mL) | Fixed-relative (41% of SUVmax) | PFS, OS |
Mathew B., [149] | 2020 | R | ALCL | 50 (8.5) | Baseline, interim | MTV(cut-off: 180 mL) MTV and iPET | Fixed-relative (40% of SUVmax) | PFS, OS |
Milgrom S., [150] | 2021 | P | Intermediate-risk HL | 86 (14.5) | Baseline | MTV | Fixed-absolute (SUV blood pool × 2) | PFS |
Rogasch J., [129] | 2018 | R | HL | 50 (14.8) | Baseline | MTV, TLG asphericity (radiomics) | Fixed-relative (41% of SUVmax) | PFS, OS iPET |
Rodriguez-Taroco MG., [152] | 2021 | P | HL | 21 (12) | Baseline | GLCM (Entropy, energy) NGTDM (coarseness, busyness) | Fixed-relative (41% of SUVmax) | iPET |
5. Other Tumors
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- American Cancer Society. Key Statistics for Childhood Cancers. January 2021. Available online: https://www.cancer.org/cancer/cancer-in-children/key-statistics.html (accessed on 20 February 2021).
- Childhood Cancer by the ICCC Group: SEER Incidence Rates 2013–2017. Available online: https://seer.cancer.gov/csr/1975_2017/results_merged/sect_29_childhood_cancer_iccc.pdf (accessed on 20 February 2021).
- Steliarova-Foucher, E.; Colombet, M.; Ries, L.A.G.; Moreno, F.; Dolya, A.; Bray, F.; Hesseling, P.; Shin, H.Y.; Stiller, C.A.; the IICC-3 Contributors. International incidence of childhood cancer, 2001–2010: A population-based registry study. Lancet Oncol. 2017, 18, 719–731. [Google Scholar] [CrossRef]
- Kehm, R.D.; Osypuk, T.L.; Poynter, J.N.; Vock, D.M.; Spector, L.G. Do pregnancy characteristics contribute to rising childhood cancer incidence rates in the United States? Pediatr. Blood Cancer 2018, 65, 3. [Google Scholar] [CrossRef]
- Zhang, J.; Walsh, M.F.; Wu, G.; Edmonson, M.N.; Gruber, T.A.; Easton, J.; Hedges, D.; Ma, X.; Zhou, X.; Yergeau, D.A.; et al. Germline Mutations in Predisposition Genes in Pediatric Cancer. N. Engl. J. Med. 2015, 373, 2336–2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Cancer Society. Cancer Facts & Figures. 2021. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html (accessed on 20 February 2021).
- Children’s Cancer and Leukemia Group. Available online: http//ccld.org.uk/Types-of-childhood-cancer (accessed on 20 February 2021).
- Allen, C.E.; Kelly, K.M.; Bollard, C.M. Pediatric Lymphomas and Histiocytic disorders of childhood. Pediatr. Clin. N. Am. 2015, 62, 139–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaatsch, P.; Strothotte, J.; Becker, C.; Bielack, S.; Dirksen, U.; Blettner, M. Pediatric bone tumors in Germany from 1987 to 2011: Incidence rates, time trends and survival. Acta Oncol. 2016, 55, 1145–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, D.; Bilsky, M.H.; Luzzati, A.; Fisher, C.G.; Gokaslan, Z.L.; Rhines, L.D.; Dekutoski, M.B.; Fehlings, M.G.; Ghag, R.; Varga, P.; et al. Malignant peripheral nerve sheath tumors of the spine: Results of surgical management from a multicenter study. J. Neurosurg. Spine 2017, 26, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, T.F.N.; Zamudio, A.; Marques-Piubelli, M.L.; Cuglievan, B.; Harrison, D. Advances in the management of pediatric sarcomas. Curr. Oncol. Rep. 2020, 23, 3. [Google Scholar] [CrossRef]
- Adamson, P.C. Improving the Outcome for Children with Cancer: Development of Targeted New Agents. CA Cancer J. Clin. 2015, 65, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, S.; Yasui, Y.; Robinson, L.L.; Birch, J.M.; Bogue, M.K.; Diller, L.; DeLaat, C.; Fossati-Bellani, F.; Morgan, E.; Oberlin, O.; et al. High risk of subsequent neoplasms continues with extended follow-up of childhood Hodgkin’s disease: Report from the late effects study group. J. Clin. Oncol. 2003, 21, 4386–4394. [Google Scholar] [CrossRef]
- Holmqvist, A.S.; Chen, Y.; Teh, J.B.; Sun, C.; Birch, J.M.; van den Bos, C.; Diller, L.R.; Dilley, K.; Ginsberg, L.; Martin, L.T.; et al. Risk of solid subsequent malignant neoplasms after childhood Hodgkin lymphoma—Identification of high-risk populations to guide surveillance: A report from the Late Effects Study Group. Cancer 2019, 125, 1373–1383. [Google Scholar] [CrossRef] [Green Version]
- Morton, L.M.; Onel, K.; Curtis, R.E.; Hungate, E.A.; Armstrong, G.T. The rising incidence of second cancers: Patterns of occurrence and identification of risk factors for children and adults. Am. Soc. Clin. Oncol. Educ. Book 2014, 34, e57–e67. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, G.T.; Liu, Q.; Yasui, Y.; Neglia, J.P.; Leisenring, W.; Robison, L.L.; Mertens, A.C. Late Mortality among 5-Year Survivors of Childhood Cancer: A Summary from the Childhood Cancer Survivor Study. J. Clin. Oncol. 2009, 27, 2328–2338. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.A.; Altekruse, S.F.; Adamson, P.C.; Reaman, G.H.; Selbel, N.L. Declining Childhood and Adolescent Cancer Mortality. Cancer 2014, 120, 2497–2506. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, G.T.; Yutaka, Y.C.; Leisenring, W.; Gibson, T.M.; Mertens, A.C.; Stovall, M.; Oeffinger, K.C.; Bhatia, S.; Krull, K.R.; Nathan, P.C.; et al. Reduction in late mortality among five-year survivors of childhood cancer. N. Engl. J. Med. 2016, 374, 833–842. [Google Scholar] [CrossRef]
- Chambers, G.; Frood, R.; Patel, C.; Scarsbrook, A. 18F-FDG PET-CT in paediatric oncology: Established and emerging applications. Br. J. Radiol. 2019, 91, 20180584. [Google Scholar] [CrossRef]
- Lim, H.J.; Ong, C.; Tan, J.; Teo, M. Utility of positron emission tomography/computed tomography (PET/CT) imaging in the evaluation of sarcomas: A systematic review. Crit. Rev. Oncol. Hematol. 2019, 143, 1–13. [Google Scholar] [CrossRef]
- Ponisio, M.R.; McConathy, J.; Laforest, R.; Khanna, G. Evaluation of diagnostic performance of whole-body simultaneous PET/MRI in pediatric lymphoma. Pediatric Radiol. 2016, 46, 1258–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thie, J. Understanding the standardized uptake value, its methods, and implications for usage. J. Nucl. Med. 2004, 45, 1431–1434. [Google Scholar] [PubMed]
- Lucignani, G.; Paganelli, G.; Bombardieri, E. The use of standardized uptake values for assessing FDG uptake with PET in oncology: A clinical perspective. Nucl. Med. Commun. 2004, 25, 651–656. [Google Scholar] [CrossRef]
- Vanderhoek, M.; Perlman, S.B.; Jeraj, R. Impact of the definition of peak standardized uptake value on quantification of treatment response. J. Nucl. Med. 2012, 53, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Sher, A.; Lacoeuille, F.; Fosse, P.; Vervueren, L.; Cahouet-Vannier, A.; Dabli, D.; Bouchet, F.; Couturier, O. For avid glucose tumors, the SUV peak is the most reliable parameter for 18F-FDG PET/CT quantification, regardless of acquisition time. EJNMMI Res. 2016, 6, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itti, E.; Lin, C.; Dupuis, J.; Paone, G.; Capacchione, D.; Rahmouni, A. Prognostic Value of Interim 18F-FDG PET in Patients with Diffuse Large B-Cell Lymphoma: SUV-Based Assessment at 4 Cycles of Chemotherapy. J. Nucl. Med. 2009, 50, 527–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xianwu, X.; Yaqi, W.; Jianjun, Y.; Wenjie, S.; Jinjin, J.; Chang, L.; Qunling, Z.; Xuejun, M. Baseline SUVmax of 18F-FDG PET-CT indicates prognosis of extranodal natural killer/T-cell lymphoma. Medicine 2020, 99, 37. [Google Scholar] [CrossRef]
- Hwang, J.P.; Lim, I.; Kong, C.B.; Jeon, D.G.; Byun, B.H.; Kim, B.I.; Choi, C.W.; Lim, S.M. Prognostic Value of SUVmax Measured by Pretreatment Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Patients with Ewing Sarcoma. PLoS ONE 2016, 11, e0153281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fendler, W.P.; Chalkidis, R.P.; Ilhan, H.; Knosel, T.; Herrmann, K.; Issels, R.D.; Bartenstein, P.; Cyran, C.C.; Lindner, L.H.; Hacker, M. Evaluation of several FDG PET parameters for prediction of soft tissue tumour grade at primary diagnosis and recurrence. Eur. Radiol. 2015, 25, 2214–2221. [Google Scholar] [CrossRef] [PubMed]
- Blautzik, J.; Grelich, L.; Schramm, N.; Henke, R.; Bartenstein, P.; Pfluger, T. What and how should we measure in paediatric oncology FDG-PET/CT? Comparison of commonly used SUV metrics for differentiation between paediatric tumours. EJNMMI Res. 2019, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Hasenclever, D.; Kurch, L.; Mauz-Korholz, C.; Elsner, A.; Georgi, T.; Wallace, H.; Landman-Parker, J.; Moryl-Bujakowska, A.; Cepelova, M.; Karlen, J. qPET-a quantitative extension of the Deauville scale to assess response in interim FDG-PET scans in lymphoma. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1301–1308. [Google Scholar] [CrossRef]
- Landman-Parker, J.; Hasenclever, D.; Balwierz, W.; Karlen, J.F.A.; Fernandez-Teijero Alvarez, A.; Cepelova, M.; Dieckmann, K.L.T. First International Inter-Group Study for Classical Hodgkin Lymphoma in Children and Adolescents: EuroNet-PHL-C1. Report of the Latest Interim Analysis 10th International Symposium on Hodgkin Lymphoma. 2016. Available online: http://www.who.int/trialsearch/Trial2.aspx?TrialID=EUCTR2007-004092-19-CZ (accessed on 20 February 2021).
- Larson, S.M.; Erdi, Y.; Akhurst, T.; Mazumdar, M.; Macapinlac, H.A.; Finn, R.D.; Casilla, C.; Fazzari, M.; Srivastava, N.; Yeung, H.W.D.; et al. Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. The visual response score and the change in total lesion glycolysis. Mol. Imaging Biol. 1999, 2, 159–171. [Google Scholar] [CrossRef]
- Pellegrino, S.; Fonti, R.; Mazziotti, E.; Piccin, L.; Mozzillo, E.; Damiano, V.; Matano, E.; De Placido, S.; Del Vecchio, S. Total metabolic tumor volume by 18F-FDG PET/CT for the prediction of outcome in patients with non-small cell lung cancer. Ann. Nucl. Med. 2019, 33, 937–944. [Google Scholar] [CrossRef]
- An, Y.S.; Kang, D.K.; Jung, Y.; Kim, T.H. Volume-based metabolic parameter of breast cancer on preoperative F-FDG PET/CT could predict axillary lymph node metastasis. Medicine 2017, 96, e8557. [Google Scholar] [CrossRef]
- Shady, W.; Kishore, S.; Gavane, S.; Do, R.K.; Osborne, J.R.; Ulaner, G.A.; Gonen, M.; Ziv, E.; Boas, F.E.; Sofocleous, C.T. Metabolic tumor volume and total lesion glycolysis on FDG PET/CT can predict overall survival after (90)Y radioembolization of colorectal liver metastases: A comparison with SUVmax, SUVpeak, and RECIST 1.0. Eur. J. Radiol. 2016, 65, 1224–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, S.H.; Jung, M.; Jeong, Y.H.; Jo, K.; Kim, S.; Wang, J.; Cho, A. Prognostic value of metabolic tumor volume and total lesion glycolysis on preoperative 18F-FDG PET/CT in patients with localized primary gastrointestinal stromal tumors. Cancer Metab. 2021, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Gao, X.; Wei, G.; Qiu, C.; Qu, H.; Zhou, X. Prognostic value of MTV, SUVmax and the T/N ratio of PET/CT in patients with glioma: A systematic review and meta-analysis. J. Cancer 2019, 10, 1707–1716. [Google Scholar] [CrossRef] [Green Version]
- Biehl, K.J.; Kong, F.M.; Dehdashti, F.; Jin, J.Y.; Mutic, S.; El Naqa, I.; Siegel, B.A.; Bradley, J.D. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: Is a single standardized uptake value threshold approach appropriate? J. Nucl. Med. 2006, 47, 1808–1812. [Google Scholar]
- Cheebsumon, P.; van Velden, F.H.P.; Yaqub, M.; Frings, V.; de Langen, A.J.; Hoekstra, O.S.; Lammertsma, A.A.; Boellaard, R. Effects of image characteristics on performance of tumor delineation methods: A test-retest assessment. J. Nucl. Med. 2011, 52, 1550–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Im, H.J.; Bradshaw, T.; Solaiyappan, M.; Cho, S.Y. Current Methods to define metabolic tumor in PET: Which one is better? Nucl. Med. Mol. Imaging 2018, 52, 5–15. [Google Scholar] [CrossRef]
- Boellaard, R.; Delgrado-Bolton, R.; Oyen, W.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef]
- Nestle, U.; Kremp, S.; Schaefer-Schuler, A.; Sebastian-Welsch, C.; Hellwig, D.; Rube, C.; Kirsch, C.M. Comparison of different methods for delineation of 18F-FDG PET–positive tissue for target volume definition in radiotherapy of patients with non–small cell lung cancer. J. Nucl. Med. 2005, 46, 1342–1348. [Google Scholar]
- Erdi, Y.E.; Mawlawi, O.; Larson, S.M.; Imbriaco, M.; Yeung, H.; Finn, R.; Humm, J. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997, 80, 2505–2509. [Google Scholar] [CrossRef]
- Hofheinz, F.; Maus, J.; Petr, J.; Beuthien-Baumann, B.; Steinbach, J.; Kotzerke, J.; van den Hoff, J. An automatic method for accurate volume delineation of heterogeneous tumors in PET. Med. Phys. 2013, 40, 082503. [Google Scholar] [CrossRef]
- Geets, X.; Lee, J.A.; Bol, A.; Lonneux, M.; Gregoire, V.A. Gradient-based method for segmenting FDG-PET images: Methodology and validation. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 1427–1438. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Im, H.J.; Solaiyappan, M.; Cho, S.Y. Comparison of novel multi-level Otsu (MO-PET) and conventional PET segmentation methods for measuring FDG metabolic tumor volume in patients with soft tissue sarcoma. EJNMMI Phys. 2017, 4, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocak, B.; Durmaz, E.S.; Ates, E.; Kilickesmez, O. Radiomics with artificial intelligence: A practical guide for beginners. Diagn. Interv. Radiol. 2019, 25, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Ypsilantis, P.P.; Siddique, M.; Sohn, H.M.; Davies, A.; Cook, G.; Goh, V.; Montana, G. Predicting response to neoadjuvant chemotherapy with PET imaging using Convolutional Neural Networks. PLoS ONE 2015, 10, e0137036. [Google Scholar] [CrossRef] [PubMed]
- Aerts, H.; Velazquez, E.; Leijenaar, R.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by non-invasive imaging using a quantitative radiomic approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef] [PubMed]
- Limkin, E.; Sun, R.; Dercle, L.; Zacharaki, E.I.; Robert, C.; Reuze, S.; Schernberg, A.; Paragios, N.; Deutsch, E.; Ferte, C. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann. Oncol. 2017, 28, 1191–1206. [Google Scholar] [CrossRef]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. AI in cancer imaging: Clinical challenges and applications. CA Cancer 2019, 69, 127–157. [Google Scholar]
- Hatt, M.; Tixier, F.; Pierce, L.; Kinahan, P.E.; Le Rest, C.C.; Visvikis, D. Characterization of PET/CT imaging using texture analysis: The past, the present…any future? Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 151–165. [Google Scholar] [CrossRef]
- O’Connor, J.; Rose, C.; Waterton, J.; Carano, R.; Parker, G.; Jackson, A. Imaging intratumoral heterogeneity: Role in therapy response, resistance and clinical outcome. Clin. Cancer Res. 2015, 21, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Jamal-Hanjani, M.; Quezada, S.A.; Larkin, J.; Swanton, C. Translational Implications of Tumor Heterogeneity. Clin. Cancer Res. 2015, 21, 1258–1266. [Google Scholar] [CrossRef] [Green Version]
- Leijenaar, R.; Nalbantov, G.; Carvalho, S.; van Elmpt, W.J.C.; Troost, E.G.C.; Boellaard, R.; Aerts, H.J.W.; Gillies, R.J.; Lambin, P. The effect of SUV discretization in quantitative FDG-PET Radiomics: The need for standardized methodology in tumor texture analysis. Sci. Rep. 2015, 5, 11075. [Google Scholar] [CrossRef] [PubMed]
- Hatt, M.; Majdoub, M.; Vallieres, M.; Tixier, F.; Le Rest, C.C.; Groheux, D.; Hindie, E.; Martineau, A.; Pradier, O.; Hustinx, R.; et al. 18F-FDG PET uptake characterization through texture analysis: Investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J. Nucl. Med. 2015, 56, 38–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailly, C.; Bodet-Milin, C.; Couespel, S.; Necib, H.; Kraeber-Bodere, F.; Ansquer, C.; Carlier, T. Revisiting the Robustness of PET-Based Textural Features in the Context of Multi-Centric Trials. PLoS ONE 2016, 11, e0159984. [Google Scholar] [CrossRef]
- Van Timmeren, J.; Cester, D.; Tanadini-lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging, “how-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Mazurowski, M.A. Radiogenomics: What it is and why it is important. J. Am. Coll. Radiol. 2015, 12, 862–866. [Google Scholar] [CrossRef]
- Shui, L.; Ren, H.; Yang, X.; Li, J.; Chen, Z.; Yi, C.; Zhu, H.; Shui, P. The era of radiogenomics in precision medicine: An emerging approach to support diagnosis, treatment decisions and prognostication in oncology. Front. Oncol. 2020, 10, 570465. [Google Scholar] [CrossRef]
- Fei, B.; Schuster, D.M. PET Molecular Imaging—Directed Biopsy: A review. Am. J. Roentgenol. 2017, 209, 255–269. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.M.; Yoo, C.J.; Han, J.W.; Cho, Y.J.; Kim, S.H.; Ahn, J.B.; Rha, S.Y.; Shin, S.J.; Chung, H.C.; Yang, W.I.; et al. Incidence and Survival of Pediatric Soft Tissue Sarcomas: Comparison between Adults and Children. Cancer Res. Treat. 2015, 47, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Euro Ewing Consortium. International Randomized Controlled Trial for the Treatment of Newly Diagnosed Ewing’s Sarcoma Family of Tumours. Euro Ewing 2012. Version 5.0. 2 June 2017. Available online: http://birmingham.ac.uk/Documents/college-mds/trials/crctu/ee2012/EE2012-Protocol-version-5.0-02Jun2017.pdf (accessed on 20 February 2021).
- Anderton, J.; Moroz, V.; Berard, P.M.; Gaspar, N.; Laurence, V.; Martin-Broto, J.; Sastre, A.; Gelderblom, H.; Owens, C.; Kaiser, S.; et al. International randomised controlled trial for the treatment of newly diagnosed EWING sarcoma family of tumours—EURO EWING 2012 Protocol. BMC 2020, 29, 3945–3954. [Google Scholar] [CrossRef] [Green Version]
- Fuglo, H.M.; Moller, J.S.; Loft, A.; Hovgaard, D.; Petersen, M.M. The diagnostic and prognostic value of 18F-FDG PET/CT in the initial assessment of high-grade bone and soft tissue sarcoma. A retrospective study of 89 patients. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 1416–1424. [Google Scholar] [CrossRef]
- Ulaner, G.A.; Magnan, H.; Haley, J.H.; Weber, W.A.; Meyers, P.A. Is methylene diphosphonate bone scan necessary for initial staging of Ewing sarcoma if 18F-FDG PET/CT is performed? Am. J. Roentgenol. 2014, 202, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Quartuccio, N.; Fox, J.; Kuk, D.; Wexler, L.H.; Baldari, S.; Cistaro, A.; Schöder, H. Pediatric bone sarcoma: Diagnostic performance of F-FDG PET/CT versus conventional imaging for initial staging and follow up. Am. J. Roentgenol. 2015, 204, 153–160. [Google Scholar] [CrossRef]
- Ruggiero, A.; Lanni, V.; Librizzi, A.; Maurizi, P.; Attina, G.; Mastrangelo, S.; Giordano, A.; Riccardi, R. Diagnostic accuracy of 18F-FDG PET/CT in the staging and assessment of response to chemotherapy in children with Ewing sarcoma. J. Pediatr. Hematol. Oncol. 2018, 40, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Hurley, C.; McCarville, B.; Shulkin, B.; Mao, S.; Wu, J.; Navid, F.; Daw, N.C.; Pappo, A.S.; Bishop, M.W. Comparison of 18F-FDG-PET/CT and bone scintigraphy for evaluation of osseous metastases in newly diagnosed and recurrent osteosarcoma. Pediatr. Blood Cancer 2016, 63, 1381–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Federico, S.M.; Spunt, S.L.; Krasin, M.J.; Billup, C.A.; Wu, J.; Shulkin, B.; Mandell, G.; McCarville, M.B. Comparison of PET-CT and conventional imaging in staging pediatric Rhabdomyosarcoma. Pediatr. Blood Cancer 2013, 60, 1128–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, G.; Fayter, D.; Lewis-Light, K.; Chisholm, J.; McHugh, K.; Levine, D.; Jenney, M.; Mandeville, H.; Gatz, S.; Phillips, B. An emerging evidence base for PET-CT in the management of childhood rhabdomyosarcoma: Systematic review. BMJ Open 2015, 5, e006030. [Google Scholar] [CrossRef] [PubMed]
- Tal, A.L.; Doshi, H.; Parkar, F.; Abraham, T.; Love, C.; Ye, K.; Yang, R.; Hoang, B.; Loeb, D.; Chou, A.; et al. The utility of 18FDG PET/CT versus bone scan for identification of bone metastases in a pediatric sarcoma population and a review of the literature. J. Pediatr. Hematol. Oncol. 2021, 43, 52–58. [Google Scholar] [CrossRef]
- Borinstein, S.C.; Steppan, D.; Hayashi, M.; Loeb, D.M.; Isakoff, M.S.; Binitie, O.; Brohl, A.S.; Bridge, J.A.; Stavas, M.; Shinohara, E.T.; et al. Consensus and controversies regarding the treatment of rhabdomyosarcoma. Pediatr. Blood Cancer 2018, 65, e26809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, L.M.; Kremer, N.; Gelfand, M.J.; Sharp, S.E.; Turpin, B.K.; Nagarajan, R.; Tiao, G.M.; Pressey, J.G.; Yin, J. Detection of Lymph Node Metastases in Pediatric and Adolescent/Young Adult Sarcoma: Sentinel Lymph Node Biopsy versus FDG-PET Imaging—A Prospective Trial. Cancer 2017, 123, 155–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladenstein, R.; Potschger, U.; Le Deley, M.C.; Whelan, J.; Paulussen, M.; Oberlin, O.; van den Berg, H.; Dirksen, U.; Hjorth, L.; michom, J.; et al. Primary Disseminated Multifocal Ewing Sarcoma: Results of the Euro-EWING 99 Trial. J. Clin. Oncol. 2010, 28, 3284–3291. [Google Scholar] [CrossRef]
- Rosolenm, A.; Perkinsm, S.; Pinkertonm, R.; Guillermanm, R.P.; Sandlund, J.T.; Patte, C.; Reiter, A.; Cairo, M.S. Revised International Pediatric Non-Hodgkin Lymphoma Staging System. J. Clin. Oncol. 2015, 33, 2112–2118. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, J.; Ballet, S.; Oberlin, O.; Peter, M.; Pierron, G.; Longavenne, E.; Laurence, V.; Kanold, J.; Chastagner, P.; Lejars, O.; et al. Incidence and prognostic value of tumour cells detected by RT-PCR in peripheral blood stem cell collections from patients with Ewing tumour. Br. J. Cancer 2006, 95, 1326–1333. [Google Scholar] [CrossRef] [PubMed]
- Almazan-Moga, A.; Roma, J.; Molist, C.; Vidal, I.; Jubierre, L.; Soriano, A.; Segura, M.F.; Liort, A.; de Toledo, J.S.; Gallego, S. Optimization of rhabdomyosarcoma disseminated disease assessment by flow cytometry. Cytom. A 2014, 85, 1020–1029. [Google Scholar] [CrossRef] [PubMed]
- Schiers, S.; Delbecque, K.; Galant, C.; Francotte, N.; Philippet, P.; Chantrain, C.F. Microscopic Infiltration of Cryopreserved Ovarian Tissue in 2 Patients with Ewing Sarcoma. J. Pediatr. Hematol. Oncol. 2018, 40, e167–e170. [Google Scholar] [CrossRef]
- Ferrari, A.; Miceli, R.; Meazza, C.; Casanova, M.; Favoni, F.; Morosi, C.; Trecate, G.; Marchiano, A.; Luksch, R.; Cefalo, G.; et al. Comparison of the prognostic value of assessing tumor diameter versus tumor volume at diagnosis or in response to initial chemotherapy in rhabdomyosarcoma. J. Clin. Oncol. 2010, 28, 1322–1328. [Google Scholar] [CrossRef] [PubMed]
- Grünwald, V.; Litiére, S.; Young, R.; Messiou, C.; Lia, M.; Wardelmann, E.; van der Graaf, W.; Gronchi, A.; Judson, J. Absence of progression, not extent of tumour shrinkage, defines prognosis in soft-tissue sarcoma -an analysis of the EORTC 62012 study of the EORTC STBSG. Eur. J. Cancer 2016, 64, 44–51. [Google Scholar] [CrossRef]
- Tanaka, K.; Ogawa, G.; Mizusawa, J.; Naka, N.; Kawai, A.; Takahashi, M.; Toru, H.; Matsumoto, Y.; Tsuchiya, H.; Nakayama, R.; et al. Prospective comparison of various radiological response criteria and pathological response to preoperative chemotherapy and survival in operable high-grade soft tissue sarcomas in the Japan Clinical Oncology Group study JCOG0304. World J. Surg. Oncol. 2018, 16, 162. [Google Scholar] [CrossRef]
- Tirkes, T.; Hollar, M.A.; Tann, M.; Kohli, M.D.; Akisik, F.; Sandrasegaran, K. Response Criteria in Oncologic Imaging: Review of traditional and new criteria. Radiographics 2013, 33, 1323–1341. [Google Scholar] [CrossRef]
- Bailey, K.; Cost, C.; Davis, I.; Glade-Bender, J.; Grohar, P.; Houghton, P.; Isakoff, M.; Stewart, E.; Laack, N.; Yestein, J.; et al. Emerging novel agents for patients with advanced Ewing sarcoma: A report from the Children’s Oncology Group (COG) new agents for Ewing sarcoma Task Force. F1000Research 2019, 8, 493. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, D.S.; Schuetze, S.M.; Butrynski, J.E.; Rajendran, J.G.; Vernon, C.B.; Conrad, E.U.; Eary, J.F. [18F] Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J. Clin. Oncol. 2005, 23, 8828–8834. [Google Scholar] [CrossRef]
- Andersen, K.F.; Fuglo, H.M.; Rasmussen, S.H.; Petersen, M.M.; Loft, A. Semi-Quantitative Calculations of Primary Tumor Metabolic Activity Using F-18 FDG PET/CT as a Predictor of Survival in 92 Patients with High-Grade Bone or Soft Tissue Sarcoma. Medicine 2015, 94, e1142. [Google Scholar] [CrossRef]
- Raciborska, A.; Bilska, K.; Drabko, K.; Michalak, E.; Chaber, R.; Pogorzala, M.; Polczynska, K.; Sobol, G.; Wieczorek, M.; Muszynska-Roslan, K.; et al. Response to chemotherapy estimates by FDG PET is an important prognostic factor in patients with Ewing sarcoma. Clin. Transl. Oncol. 2016, 18, 189–195. [Google Scholar] [CrossRef]
- Palmerini, E.; Colangeli, M.; Nanni, C.; Fanti, S.; Marchesi, E.; Paioli, A.; Picci, P.; Cambioli, S.; Donato, D.; Cevolani, L.; et al. The role of FDG PET/CT in patients with neoadjuvant chemotherapy for localized bone sarcomas. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.J.; Dai, Y.L.; Cheng, Y.S.; Zhang, W.B.; Tu, C.Q. positron emission tomography (18)F-fluorodeoxyglucose uptake and prognosis in patients with bone and soft tissue sarcoma: A meta-analysis. Eur. J. Surg. Oncol. 2016, 42, 1103–1114. [Google Scholar] [CrossRef] [PubMed]
- Im, H.J.; Zhang, Y.; Wu, H.; Wu, J.; Daw, N.C.; Navid, F.; Shulkin, B.L.; Cho, S.Y. Prognostic value of metabolic and volumetric parameters of FDG PET in pediatric osteosarcoma. A hypothesis-generating study. Radiology 2018, 287, 303–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annovazzi, A.; Ferraresi, V.; Anelli, V.; Covello, R.; Vari, S.; Zocal, C.; Biagini, R.; Sciuto, R. [18F] FDG PET/CT quantitative parameters for the prediction of histological response to induction chemotherapy and clinical outcome in patients with localised bone and soft-tissue Ewing sarcoma. Eur. Radiol. 2021, 31, 7012–7021. [Google Scholar] [CrossRef] [PubMed]
- El-Hennawy, G.; Moustafa, H.; Omar, W.; Elkinaai, N.; Kamel, A.; Zaki, I.; Farid, N.; El-Kholy, E. Different 18F-FDG PET parameters for the prediction of histological response to neoadjuvant chemotherapy in pediatric Ewing sarcoma family of tumors. Pediatr. Blood Cancer 2020, 67, e28605. [Google Scholar] [CrossRef] [PubMed]
- Byun, B.H.; Kong, C.B.; Lim, I.; Kim, B.I.; Choi, C.W.; Song, W.S.; Cho, W.H.; Jeon, D.G.; Koh, J.S.; Lee, S.Y.; et al. Early response monitoring to neoadjuvant chemotherapy in OS using sequential FDG PET/CT and MRI. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1553–1562. [Google Scholar] [CrossRef]
- Im, H.J.; Kim, T.S.; Park, S.Y.; Min, H.S.; Kim, J.H.; Kang, H.G.; Park, S.E.; Kwon, M.M.; Yoon, J.H.; Park, H.J.; et al. Prediction of tumor necrosis fractions using metabolic and volumetric PET/CT indices after one course and at the completion of neoadjuvant chemotherapy in children and young adults with OS. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 39–49. [Google Scholar] [CrossRef]
- Bailly, C.; Leforestier, R.; Campion, L.; Thebaud, E.; Moreau, A.; Kraeber-Bodere, F.; Carlier, T.; Bodet-Milin, C. Prognostic value of FDG-PET indices for the assessment of histopathological response to neoadjuvant chemotherapy and outcome in pediatric patients with ES and OS. PLoS ONE 2017, 12, e0183841. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.Y.; Kim, W.; Byun, B.H.; Kong, C.B.; Song, W.S.; Lim, I.; Lim, S.M.; Woo, S.K. Prediction of chemotherapy response to osteosarcoma using baseline 18F-FDG Textural features Machine Learning approaches with PCA. Contrast Media Mol. Imaging 2019, 2019, 3515080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Jeong, S.Y.; Kim, B.C.; Byun, B.H.; Lim, I.; Kong, C.B.; Song, W.S.; Lim, S.M.; Woo, S.K. Prediction of Neoadjuvant Chemotherapy Response in Osteosarcoma Using Convolutional Neural Network of Tumor Center 18F-FDG PET Images. Diagnostics 2021, 11, 1976. [Google Scholar] [CrossRef]
- Antunovic, L.; De Sanctis, R.; Cozzi, L.; Kirienko, M.; Sagona, A.; Torrisi, R.; Tinterri, C.; Santoro, A.; Chiti, A.; Zelic, R.; et al. PET/CT radiomics in breast cancer: Promising tool for prediction of pathological response to neoadjuvant chemotherapy. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1468–1477. [Google Scholar] [CrossRef] [PubMed]
- Chetan, M.R.; Gleeson, F.V. Radiomics in predicting treatment response in non-small-cell lung cancer: Current status, challenges and future perspectives. Eur. Radiol. 2021, 31, 1049–1058. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Beck, M.; Päßler, T.; Lili, C.; Hua, W.; Mai, H.D.; Amthauer, H.; Biebl, M.; Thuss-Patience, P.C.; Berger, J.; et al. A FDG-PET radiomics signature detects esophageal squamous cell carcinoma patients who do not benefit from chemoradiation. Sci. Rep. 2020, 10, 17671. [Google Scholar] [CrossRef]
- Macpherson, R.E.; Pratap, S.; Tyrrell, H.; Khonsari, M.; Wilson, S.; Gibbons, M.; Whitwell, D.; Giele, H.; Critchley, P.; Cogswell, L.; et al. Retrospective audit of 957 consecutive 18F-FDG PET-CT scans compared to CT and MRI in 493 patients with different histological subtypes of bone and soft tissue sarcoma. Clin. Sarcoma Res. 2018, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Feng, H.; Xie, J.; Li, C.; Zhang, Y.; Wang, S. Differentiation of soft tissue and bone sarcomas from benign lesions utilizing 18F-FDG PET/CT-derived parameters. BMC Med. Imaging 2020, 20, 85. [Google Scholar] [CrossRef]
- Song, H.; Jiao, Y.; Wei, W.; Ren, X.; Shen, C.; Qiu, Z.; Yang, Q.; Wang, Q.; Luo, Q.Y. Can pretreatment 18F-FDG PET tumor texture features predict the outcomes of osteosarcoma treated by neoadjuvant chemotherapy? Eur. Radiol. 2019, 29, 3945–3954. [Google Scholar] [CrossRef]
- Hyun, J.; Lodge, M.A.; Wahl, R.L. Practical PERCIST: A simplified guide to PET response criteria in solid tumors 1.0. Radiology 2016, 280, 576–584. [Google Scholar]
- Dyson, K.A.; Stover, B.D.; Grippin, A.; Mendez-Gomez, H.R.; Lagmay, J.; Mitchell, D.A.; Sayour, E.J. Emerging trends in immunotherapy for pediatric sarcomas. J. Hematol. Oncol. 2019, 12, 78. [Google Scholar] [CrossRef]
- Chen, C.; Garcia, H.D.; Scheer, M.; Henssen, A.G. Current and future treatment strategies for rhabdomyosarcoma. Front. Oncol. 2019, 9, 1458. [Google Scholar] [CrossRef] [PubMed]
- Yohe, M. Targeting RAS Signaling in Pediatric Solid Tumors. Presented at: 2021 AACR Annual Meeting; Comments. Available online: Onclive.com/view/trametinib-ganitumab-combo-shows-early-promise-in-pediatric-rhabdomyosarcoma (accessed on 31 May 2021).
- Umutlu, L.; Kirchner, J.; Bruckmann, N.M.; Morawitz, J.; Antoch, G.; Ingenwerth, M.; Bittner, A.K.; Hoffmann, O.; Haubold, J.; Grieneisen, J.; et al. Multiparametric integrated 18F-FDG PET/MRI-based radiomics for breast cancer phenotyping and tumor decoding. Cancers 2021, 13, 2928. [Google Scholar] [CrossRef] [PubMed]
- Leithner, D.; Helbich, T.H.; Bernard-Davila, B.; Marino, M.A.; Avendano, D.; Martinez, D.F.; Jochelson, M.S.; Kapetas, P.; Baltzer, P.A.T.; Haug, A.; et al. Multiparametric18F-FDG PET/MRI of the breast: Are there differences in imaging biomarkers of contralateral healthy tissue between patients with and without breast cancer? J. Nucl. Med. 2020, 61, 20–25. [Google Scholar] [CrossRef]
- Van Gaal, J.C.; Van Der Graaf, W.; Rikhof, B.; van Hoesel, Q.; Teerenstra, S.; Suuemeijer, A.J.H.; Flucke, U.E.; Loeffen, J.L.C.M.; Sleijfer, S.; De Bont, E.S.J.M. The impact of age on outcome of embryonal and alveolar RMS patients. A multicenter study. Anticancer Res. 2012, 32, 4485–4497. [Google Scholar] [PubMed]
- Nardone, V.; Boldrini, L.; Grassi, R.; Franceschini, D.; Morelli, I.; Becherini, C.; Loi, M.; Greto, D.; Desideri, I. Radiomics in the setting of neoadjuvant radiotherapy: A new approach for tailored treatment. Cancers 2021, 13, 3590. [Google Scholar] [CrossRef]
- Vuong, D.; Tanadini-Lang, S.; Huellner, M.W.; Veit-Haibach, P.; Unkelbach, J.; Andratschke, N.; Kraft, J.; Guckenberger, M.; Bogowicz, M. Interchangeability of radiomic features between 18F-FDG PET/CT and 18F-FDG PET/MR. Med. Phys. 2019, 46, 1677–1685. [Google Scholar] [CrossRef]
- Lin, P.; Yang, P.F.; Chen, S.; Shao, Y.Y.; Xu, L.; Wu, Y.; Teng, W.; Zhou, X.Z.; Li, B.H.; Luo, C.; et al. A delta-radiomics model for preoperative evaluation of Neoadjuvant chemotherapy response in high-grade osteosarcoma. Cancer Imaging 2020, 20, 7. [Google Scholar] [CrossRef] [Green Version]
- Kelly, K.M. Hodgkin lymphoma in children and adolescents: Improving the therapeutic index. Blood 2015, 126, 2452–2458. [Google Scholar] [CrossRef] [Green Version]
- Lopci, E.; Meignan, M. Deauville score: The Phoenix rising from ashes. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1043–1045. [Google Scholar] [CrossRef] [Green Version]
- EuroNet-Paediatric Hodgkin’s Lymphoma Group Second Trial in Children and Adolescents. Available online: http://www.who.int/trialsearch/Trial2.aspx?TrialID=EUCTR2012-004053-88-AT (accessed on 20 February 2021).
- Mussolin, L.; Damm-Welk, C.; Pillon, M.; Woessmann, W. Minimal Disease Monitoring in pediatric NHL: Current clinical application and future challenges. Cancers 2021, 13, 1907. [Google Scholar] [CrossRef]
- Sandlund, J.T.; Guillerman, R.P.; Perkins, S.L.; Pinkerton, C.R.; Rosolen, A.; Patte, C.; Reiter, A.; Cairo, M.S. International Pediatric Non-Hodgkin Lymphoma Response Criteria. J. Clin. Oncol. 2015, 33, 2106–2111. [Google Scholar] [CrossRef]
- Kulkarni, N.M.; Pinho, D.; Narayanan, S.; Kambadakone, A.R.; Abramson, J.S.; Sahani, D.V. Imaging for oncologic response assessment in lymphoma. Am. J. Roentgenol. 2017, 208, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Bhojwani, D.; Mccarville, B.; Choi, J.K. The role of FDG-PET/CT in the evaluation of residual disease in paediatric non-Hodgkin lymphoma. Br. J. Haematol. 2015, 168, 845–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrington, S.F.; Kluge, R. FDG PET for therapy monitoring in Hodgkin and non-Hodgkin lymphomas. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Cheson, B.; Ansell, S.; Schwartz, L.; Gordon, L.I.; Advani, R.; Jacene, H.A.; Hoos, A.; Barrington, S.F.; Armand, P. Refinement of the Lugano Classification lymphoma response criteria in the era of immunomodulatory therapy. Blood 2016, 128, 2489–2496. [Google Scholar] [CrossRef] [Green Version]
- Molet, M.L.; Test, A.M.; Foa, R. Treatment of relapsed/refractory paediatric aggressive B-cell non Hodgkin Lymphoma. Br. J. Haematol. 2020, 189, 826–843. [Google Scholar] [CrossRef] [PubMed]
- Minard-Colin, V.; Aupérin, A.; Pillon, M.; Burke, A.; Barkauskas, D.A.; Wheatley, K.; Degado, R.F.; Alexander, S.; Uyttebroeck, A.; Bollard, C.M.; et al. Rituximab for High-Risk marure B-cell non-Hodgkin’s Lymphoma in children. N. Engl. J. Med. 2020, 382, 2207–2219. [Google Scholar] [CrossRef]
- Termuhlen, A.; Gross, T. Overview of Non-Hodgkin in Children and Adolescents. Available online: http://uptodate.com/contents/overview-of-non-hodgkin-lymphoma-in-children-and-adolescents#H1876620 (accessed on 20 May 2021).
- Alobthani, G.; Romanov, V.; Isohashi, K.; Matsunaga, K.; Watabe, T.; Kato, H.; Tatsumi, M.; Shimosegawa, E.; Hatazawa, J. Value of 18F-FDG PET/CT in discrimination between indolent and aggressive non-Hodgkin’s lymphoma: A study of 328 patients. Hell. J. Nucl. Med. 2018, 21, 7–14. [Google Scholar]
- Mir, F.; Barrington, S.F.; Brown, H.; Nielsen, T.; Sahin, D.; Meignan, M.; Trotman, J. Baseline SUVmax did not predict histological transformation in follicular lymphoma in the phase 3 GALLIUM study. Blood 2020, 135, 1214–1218. [Google Scholar] [CrossRef]
- Rogash, L.M.; Hundsdoerfer, P.; Hofheinz, F.; Wedel, F.; Schatka, I.; Amthaauer, H.; Furth, C. Pretherpeutic FDG-PET total metabolic tumor volume predicts response to induction therapy in pediatric Hodgkin’s lymphoma. BMC Cancer 2018, 18, 521. [Google Scholar] [CrossRef] [Green Version]
- Narkhede, M.; Qureshi, S.; Yazdy, M.; Juarez, R.; Esposito, G. Lack of prognostic significance of pre-treatment total metabolic tumor volume in diffuse large B-cell Lymphoma (DLBCL). Blood 2018, 132, 1720. [Google Scholar] [CrossRef]
- Mettler, J.; Muller, H.; Voltin, C.A.; Baues, C.; Klaeser, B.; Moccia, A.; Borchmann, P.; Engert, A.; Kuhnert, G.; Drzezga, A.E.; et al. Metabolic Tumor Volume for response prediction in advanced-stage Hodgkin Lymphoma. J. Nucl. Med. 2019, 60, 207–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrington, S.F.; Trotman, J.; Sahin, D.; Belada, D.; Davies, A.; MacEwan, R.; Owen, C.; Ptacnik, V.; Rosta, A.; Hiddemann, W.; et al. Baseline PET-derived Metabolic Tumor Volume did not predict outcomes in follicular lymphoma patients treated with line immunochemotherapy and antibody maintenance in the phase III GALLIUM study. Blood 2018, 132, 2882. [Google Scholar] [CrossRef]
- Guo, B.; Tan, X.; Ke, Q.; Cen, H. Prognostic value of baseline metabolic tumor volume and total lesion glycolysis in patients with lymphoma: A meta-analysis. PLoS ONE 2019, 14, e0210224. [Google Scholar] [CrossRef] [PubMed]
- Frood, R.; Burton, C.; Tsoumpas, C.; Frangi, A.F.; Gleeson, F.; Patel, C.; Scarsbrook, A. Baseline PET/CT imaging parameters for prediction of treatment outcome in Hodgkin and Diffuse Large B-cell lymphoma: A systematic review. EJNMMI 2021, 48, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Ceriani, L.; Gritti, G.; Cascione, L.; Pirosa, M.C.; Polino, A.; Ruberto, T.; Stathis, A.; Bruno, A.; Moccia, A.A.; Giovanella, L.; et al. SAKK 38/07 study: Integration of baseline metabolic heterogeneity and MTV in DLBCL prognostic model. Blood Adv. 2020, 4, 1082–1092. [Google Scholar] [CrossRef] [Green Version]
- Vercellino, L.; Cottereau, A.S.; Casasnovas, O.; Tilly, H.; Feugier, P.; Chartier, L.; Fruchart, C.; Roulin, L.; Oberic, L.; Pica, G.M.; et al. High total metabolic tumor volume at baseline predicts survival independent of response to therapy. Blood 2020, 135, 1396–1405. [Google Scholar] [CrossRef]
- Prochazka, K.; Henzlova, L.; Lucasova, M.; Hanackova, V.; Kriegova, E.; Mikulkova, Z.; Gabcova, G.; Minarik, J.; Sykorava, A.; Krcalova, E.; et al. Metabolic tumor volume and soluble cytokines levels in newly diagnosed Hodgkin Lymphoma: What it brings into the staging precision? Blood 2018, 132, 2933. [Google Scholar] [CrossRef]
- Capobianco, N.; Meignan, M.; Cottereau, A.S.; Vercellino, L.; Sibille, L.; Spottiswoode, B.; Zuehlsdorff, S.; Casanovas, O.; Thieblemont, C.; Buvat, I. Deep learning FDG uptake classification enables total metabolic tumor volume estimation in DLBCL. J. Nucl. Med. 2021, 62, 30–36. [Google Scholar] [CrossRef]
- Mikhaeel, N.G.; Smith, D.; Dunn, J.T.; Phillips, M.; Moller, h.; Fields, P.A.; Wrench, D.; Barrington, S.F. Combination of baseline metabolic tumour volume and early response on PET/CT improves progression-free survival prediction in DLBCL. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1209–1219. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, C.; Huttman, A.; Muller, S.P.; Hanoun, M.; Boellaard, R.; Brinkmann, M.; Jockel, K.H.; Duhrsen, U.; Rekowski, J. Dynamic risk assessment on positron emission tomography scanning in diffuse large B-cell lymphoma: Post-hoc analysis from the PETAL trial. Eur. J. Cancer 2020, 124, 25–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cottereau, A.S.; Versari, A.; Loft, A.; Casasnovas, O.; Bellei, M.; Ricci, R.; Bardet, S.; Castagnoli, A.; Brice, P.; Raemaekers, J. Prognostic value of baseline metabolic tumor volume in early-stage Hodgkin lymphoma in the standard arm of the H10 trial. Blood 2018, 131, 1456–1463. [Google Scholar] [CrossRef] [PubMed]
- Bouallegue, F.B.; Cartron, G.; Vauchot, F.; Mariano-Goulart, D. Association between textural and morphological tumor indices on baseline PET-CT and early metabolic response on interim PET-CT in bulky malignant lymphomas. Med. Phys. 2017, 44, 4608–4619. [Google Scholar] [CrossRef]
- Albano, D.; Bosio, G.; Pagani, C.; Re, A.; Tucci, A.; Giubbini, R.; Bertagna, F. Prognostic role of baseline 18F-FDG PET/CT metabolic parameters in Burkitt lymphoma. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; He, K.; Feng, F.; Wang, S.; Yin, Y.; Fu, H.; Wang, H. Metabolic tumor burden on baseline 18F-FDG PET/CT improves risk stratification in pediatric patients with mature B-cell lymphoma. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1831–1839. [Google Scholar] [CrossRef]
- Cairo, M.; Auperin, A.; Perkins, S.L.; Pinkerton, R.; Harrison, L.; Goldaman, S.; Patte, C. Overall survival of children and adolescents with mature B-cell non-Hodgkin lymphoma who had refractory or relapsed disease during or after treatment with FAB/LMB 96: A report from the FAB/LMB 96 study group. Br. J. Haematol. 2018, 182, 859–869. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Hong, Z.; Zhou, M.; Sang, S.; Zhang, B.; Li, J.; Li, Q.; Wu, Y.; Deng, S. Prognostic value of baseline 18F-FDG PET/CT metabolic parameters in paediatric lymphoma. JMIRO 2020, 64, 87–95. [Google Scholar]
- Xiao, Z.; Mo, Y.; Long, W.; Li, R.; Li, X.; Wei, Y.; Fan, W.; Zhang, X. Value of baseline and end of chemotherapy 18F-FDG PET/CT in pediatric patients with Burkitt lymphoma. Leuk. Lymphoma 2021, 62, 2873–2881. [Google Scholar] [CrossRef]
- Yang, J.; Yan, J.; Li, J.; Yang, Z.; Zhang, H.; Zhao, Q.; Xu, W. The role of 18F-FDG PET/CT metabolic parameters in pediatric lymphoblastic lymphoma. Rev. Española Med. Nucl. Imagen Mol. 2021, in press. [Google Scholar] [CrossRef]
- Mathew, B.; Vijayasekharan, K.; Shah, S.; Purandare, N.C.; Agrawal, A.; Puranik, A.; Prasad, M.; Narula, G.; Banavali, S.; Rangarajan, V. Prognostic Value of 18F-FDG PET/CT-Metabolic Parameters at Baseline and Interim Assessment in Pediatric Anaplastic Large Cell Lymphoma. Clin. Nucl. Med. 2020, 45, 182–186. [Google Scholar] [CrossRef]
- Milgrom, S.; Kim, J.; Chirindel, A.; Kim, J.; Pei, Q.; Chen, L.; Buxton, A.; Kessel, S.; Leal, J.; McCarten, K.M.; et al. Prognostic value of baseline MTV in children and adolescents with intermediate-risk HL treated with chemo-radiation therapy FDG-PET parameter analysis in a subgroup from COG AHODOO31. Pediatr. Blood Cancer 2021, 68, e29212. [Google Scholar] [CrossRef]
- Albano, D. Metabolic tumor volume as prognostic factor in pediatric Hodgkin Lymphoma: Dream or reality? Pediatr. Blood Cancer 2021, 68, e29232. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, T.M.; Cuña, A.; Pages, C.; Schelotto, M.; Gonzalez-Sprinberg, G.A.; Castillo, L.A.; Alonso, O. Prognostic value of imaging markers from 18FDG-PET/CT in paediatric patients with Hodgkin lymphoma. Nucl. Med. Commun. 2021, 42, 306–314. [Google Scholar] [CrossRef]
- Ganeshan, B.; Miles, K.A.; Babikir, S.; Shortman, R.; Afaq, A.; Ardeshna, K.M.; Groves, A.M.; Kayani, I. CT-based texture analysis potentially provides prognostic information complementary to interim FDG-PET for patients with Hodgkin’s and aggressive non-Hodgkin’s lymphomas. Eur. Radiol. 2017, 27, 1012–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tout, M.; Casasnovas, O.; Meignan, M.; Lamy, T.; Morschhauser, F.; Salles, G.; Gyan, E.; Haioun, C.; Mercier, M.; Feugier, P.; et al. Rituximab exposure is influenced by baseline metabolic tumor volume and predicts outcome of DLBCL patients: A Lymphoma Study Association report. Blood 2017, 129, 2616–2623. [Google Scholar] [CrossRef] [PubMed]
- Haupt, R.; Minkov, M.; Astigarraga, I.; Schafer, E.; Nanduri, V.; Jubran, R.; Egeler, R.M.; Janka, G.; Micic, D.; Rodriguez-Galindo, C.; et al. Langerhans Cell Histiocytosis (LCH): Guidelines for diagnosis, clinical work-up, and treatment for patients till the age of 18 years. Pediatr. Blood Cancer 2013, 60, 175–184. [Google Scholar] [CrossRef]
- Go, R.S.; Jacobsen, E.; Baiocchi, R.; Buhtoiarov, I.; Butler, E.B.; Campbell, P.K.; Coutler, D.W.; Diamond, E.; Flagg, A.; Goodman, A.M.; et al. Histiocytic Neoplasms, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. JNCCN 2021, 12, 1277–1303. [Google Scholar] [CrossRef]
- Kim, J.R.; Yoon, H.M.; Jung, A.Y.; Cho, Y.A.; Seo, J.J.; Lee, J.S. Comparison of whole-body MRI, bone scan, and radiographic skeletal survey for lesion detection and risk stratification of Langerhans Cell Histiocytosis. Sci. Rep. 2019, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Rajakulasingam, R.; Siddiqui, M.; Michelagnoli, M.; Saifuddin, A. Skeletal staging in Langerhans cell histiocytosis: A multimodality imaging review. Skelet. Radiol. 2021, 50, 1081–1093. [Google Scholar] [CrossRef]
- Jessop, S.; Crudgington, D.; London, K.; Kellie, S.; Howman-Giles, R. FDG PET/CT in pediatric Langerhans cell histiocytosis. Pediatr. Blood Cancer 2020, 67, e28034. [Google Scholar] [CrossRef]
- Niu, J.; Liang, J.; Feng, Q.; Wang, M.; Wang, L.; Ge, X.; Wang, X.; Ding, Z. 18F-FDG PET/MR assessment of pediatric Langerhans cell Histiocytosis. Inter. J. Gen. Med. 2021, 14, 6251–6259. [Google Scholar] [CrossRef]
- Marina, N.; London, W.B.; Lindsay-Frazier, A.; Lauer, S.; Rescorla, F.; Cushing, B.; Malogolowkin, M.H.; Castleberry, R.P.; Womer, R.B.; Olson, T. Prognostic factors in children with extragonadal malignant germ cell tumors: A pediatric intergroup study. J. Clin. Oncol. 2006, 24, 2544–2548. [Google Scholar] [CrossRef] [PubMed]
- Aydos, U.; Tahtaci, G.; Akdemir, U.O.; Ozet, A. 18F-FDG PET/CT for primary staging of patients with testicular germ cell tumors: The predictors of 18F-FDG PET positivity and prognostic value of PET derived metabolic parameters. Nucl. Med. Commun. 2020, 41, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Tomazini Pinto, M.; Mavignier-Carcano, F.; Vieira, A.G.S.; Cabral, E.R.M.; Lopes, L.F. Molecular biology of pediatric and adult male germ cell tumors. Cancers 2021, 13, 2349. [Google Scholar] [CrossRef] [PubMed]
- Pierce, J.L.; Lindsay, F.A.; Amatruda, J.F. Pediatric germ cell tumors: A developmental perspective. Adv. Urol. 2018, 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, V.; Foster, J. High-risk neuroblastoma treatment review. Children 2018, 5, 114. [Google Scholar] [CrossRef] [Green Version]
- Sharp, S.E.; Trout, A.T.; Weiss, B.D.; Gelfand, M.J. MIBG in neuroblastoma diagnostic imaging and therapy. Radiographics 2016, 36, 258–278. [Google Scholar] [CrossRef] [Green Version]
- Piccardo, A.; Morana, G.; Puntoni, M.; Campora, S.; Stefania, S.; Zucchetta, P.; Ugolini, M.; Conte, M.; Cistaro, A.; Ferrarazzo, G.; et al. Diagnosis, treatment response, and prognosis: The role of 18F-DOPA PET/CT in children affected by neuroblastoma in comparison with 123I-MIBG scan: The first prospective study. J. Nucl. Med. 2020, 61, 367–374. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyra, V.; Chatziioannou, S.; Kallergi, M. Clinical Perspectives for 18F-FDG PET Imaging in Pediatric Oncology: Μetabolic Tumor Volume and Radiomics. Metabolites 2022, 12, 217. https://doi.org/10.3390/metabo12030217
Lyra V, Chatziioannou S, Kallergi M. Clinical Perspectives for 18F-FDG PET Imaging in Pediatric Oncology: Μetabolic Tumor Volume and Radiomics. Metabolites. 2022; 12(3):217. https://doi.org/10.3390/metabo12030217
Chicago/Turabian StyleLyra, Vassiliki, Sofia Chatziioannou, and Maria Kallergi. 2022. "Clinical Perspectives for 18F-FDG PET Imaging in Pediatric Oncology: Μetabolic Tumor Volume and Radiomics" Metabolites 12, no. 3: 217. https://doi.org/10.3390/metabo12030217
APA StyleLyra, V., Chatziioannou, S., & Kallergi, M. (2022). Clinical Perspectives for 18F-FDG PET Imaging in Pediatric Oncology: Μetabolic Tumor Volume and Radiomics. Metabolites, 12(3), 217. https://doi.org/10.3390/metabo12030217