Vertical Transfer of Metabolites Detectable from Newborn’s Dried Blood Spot Samples Using UPLC-MS: A Chemometric Study
Abstract
:1. Introduction
2. Results
2.1. Identification and Matching of Metabolites
2.2. Metabolite Specific Correlation and Transfer
2.3. Robustness Analysis of the Results
2.4. Metabolite Transfer or Common Biology?
2.5. Predicting Child Metabolite Levels from the Totality of Maternal Metabolites
2.6. Persistence of Transfered Metabolites
3. Discussion
3.1. Dietary Metabolites
3.2. Metabolites from Smoking and Coffee
3.3. N6-Methyllysine
3.4. Non-Transferred Metabolites
3.5. Preprocessing and Matching Metabolomics Datasets
4. Materials and Methods
4.1. Study Population
4.2. Ethics
4.3. Dried Blood Spot Samples Collection and Storage
4.4. Blood Samples Collection and Storage
4.5. Ultra High Performance Liquid Chromatography—Tandem Mass Spectrometry (UHPLC-MS/MS) Metabolomics Analysis
4.5.1. DBS Sample Preparation
4.5.2. DBS Metabolomic Profiling
4.5.3. Metabolite Annotation
4.5.4. Blood Metabolomic Profiling of Mothers
4.6. Datasets
4.7. DBS-Blood Metabolites Matching
- Matched by name: The variable identified in the maternal metabolome dataset and in the dataset of newborns with the same annotated name was considered as a match;
- m/z matching: For compounds identified in the maternal metabolome, their exact mass and mass of the adduct ions were calculated and compared with the mass of the unknown compounds of the newborns by choosing an m/z window of based on the mass accuracy of the mass spectrometers employed;
- GNPS confirmation: GNPS metabolite annotations were used for qualitative comparison of tentative compound pairs. The m/z of a DBS compound was searched in the GNPS database, considering an accepted error of 5–10 ppm. Once the m/z was identified in the GNPS database, the molecule was inspected in the GNPS network through the visual inspection of MS2 spectral similarity [33].
4.8. Data Analysis
4.8.1. Preprocessing and Quality Control
4.8.2. Within Maternal and between Mother-Child Correlation Analysis
- Correlation within individuals, relating mothers 24 week of pregnancy and mothers 1 week postpartum ();
- Cross sectional correlation from mother to child within the same week of sampling, relating mothers one week postpartum and children DBS 2–3 days postpartum ();
- Longitudinal correlation across individuals and time, relating mothers 24 weeks of pregnancy and children DBS ().
4.8.3. Newborn and Childhood Correlation Analysis
4.8.4. Robustness Analysis of Transfer Results
4.8.5. Multivariate Regression: Partial Least Squares
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UPLC-MS | Ultra Performance Liquid Chromatography—Mass Spectrometry |
DBS | Dried Blood Spot Samples |
COPSAC | Copenhagen Prospective Studies on Asthma in Childhood |
ESI | Electrospray Ionization |
HILIC | Hydrophilic Interaction Liquid Chromatography |
GNPS | Global Natural Products Social Molecular Networking Platform |
PCA | Principal Component Analysis |
PLS | Partial Least Squares |
RCT | Randomized Controlled Trial |
FDR | False Discovery Rate |
References
- Bellieni, C.V. The golden 1000 days. J. Gen. Pract. 2016, 4, 250. [Google Scholar]
- Tomlinson, M. Infant mental health in the next decade: A call for action. Infant Ment. Health J. 2015, 36, 538. [Google Scholar] [CrossRef] [Green Version]
- Stiles, J.; Jernigan, T.L. The basics of brain development. Neuropsychol. Rev. 2010, 20, 327–348. [Google Scholar] [CrossRef] [Green Version]
- Vinding, R.K.; Rago, D.; Kelly, R.S.; Gürdeniz, G.; Rasmussen, M.A.; Stokholm, J.; Bønnelykke, K.; Litonjua, A.A.; Weiss, S.T.; Lasky-Su, J.; et al. Delayed Motor Milestones Achievement in Infancy Associates with Perturbations of Amino Acids and Lipid Metabolic Pathways. Metabolites 2020, 10, 337. [Google Scholar] [CrossRef]
- Morais, M.B.D. Signs and symptoms associated with digestive tract development. J. Pediatr. 2016, 92, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Kinshella, M.L.W.; Moore, S.E.; Elango, R. The missing focus on women’s health in the First 1000 Days approach to nutrition. Public Health Nutr. 2021, 24, 1526–1530. [Google Scholar] [CrossRef]
- Rahman Fink, N.; Chawes, B.L.; Thorsen, J.; Stokholm, J.; Krogfelt, K.A.; Schjørring, S.; Kragh, M.; Bønnelykke, K.; Brix, S.; Bisgaard, H. Neonates colonized with pathogenic bacteria in the airways have a low-grade systemic inflammation. Allergy 2018, 73, 2150–2159. [Google Scholar] [CrossRef] [Green Version]
- Renz, H.; Holt, P.G.; Inouye, M.; Logan, A.C.; Prescott, S.L.; Sly, P.D. An exposome perspective: Early-life events and immune development in a changing world. J. Allergy Clin. Immunol. 2017, 140, 24–40. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, M.A.; Thorsen, J.; Dominguez-Bello, M.G.; Blaser, M.J.; Mortensen, M.S.; Brejnrod, A.D.; Shah, S.A.; Hjelmsø, M.H.; Lehtimäki, J.; Trivedi, U.; et al. Ecological succession in the vaginal microbiota during pregnancy and birth. ISME J. 2020, 14, 2325–2335. [Google Scholar] [CrossRef]
- Litonjua, A.A.; Carey, V.J.; Burge, H.A.; Weiss, S.T.; Gold, D.R. Parental history and the risk for childhood asthma: Does mother confer more risk than father? Am. J. Respir. Crit. Care Med. 1998, 158, 176–181. [Google Scholar] [CrossRef]
- Cookson, W. The alliance of genes and environment in asthma and allergy. Nature 1999, 402, 5–11. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 8, 828–837. [Google Scholar]
- Ramautar, R.; Berger, R.; van der Greef, J.; Hankemeier, T. Human metabolomics: Strategies to understand biology. Curr. Opin. Chem. Biol. 2013, 17, 841–846. [Google Scholar] [CrossRef] [Green Version]
- Rago, D.; Rasmussen, M.A.; Lee-Sarwar, K.A.; Weiss, S.T.; Lasky-Su, J.; Stokholm, J.; Bønnelykke, K.; Chawes, B.L.; Bisgaard, H. Fish-oil supplementation in pregnancy, child metabolomics and asthma risk. EBioMedicine 2019, 46, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Guertin, K.A.; Moore, S.C.; Sampson, J.N.; Huang, W.Y.; Xiao, Q.; Stolzenberg-Solomon, R.Z.; Sinha, R.; Cross, A.J. Metabolomics in nutritional epidemiology: Identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Am. J. Clin. Nutr. 2016, 100, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Isganaitis, E.; Rifas-Shiman, S.L.; Oken, E.; Dreyfuss, J.M.; Gall, W.; Gillman, M.W.; Patti, M.E. Associations of cord blood metabolites with early childhood obesity risk. Int. J. Obes. 2015, 39, 1041–1048. [Google Scholar] [CrossRef] [Green Version]
- Playdon, M.C.; Sampson, J.N.; Cross, A.J.; Sinha, R.; Guertin, K.A.; Moy, K.A.; Rothman, N.; Irwin, L.M.; Mayne, S.T.; Stolzenberg-Solomon, R.; et al. Comparing metabolite profiles of habitual diet in serum and urine. Am. J. Clin. Nutr. 2016, 104, 776–789. [Google Scholar] [CrossRef] [Green Version]
- Keller, B.O.; Wu, B.T.; Li, S.S.; Monga, V.; Innis, S.M. Hypaphorine is present in human milk in association with consumption of legumes. J. Agric. Food Chem. 2013, 61, 7654–7660. [Google Scholar] [CrossRef]
- Cheah, I.K.; Halliwell, B. Ergothioneine, recent developments. Redox Biol. 2019, 42, 101868. [Google Scholar] [CrossRef]
- Calvaresi, V.; Escuder, D.; Minutillo, A.; Bastons-Compta, A.; García-Algar, O.; Pallas Alonso, C.R.; Pacifici, R.; Pichini, S. Transfer of nicotine, cotinine and caffeine into breast milk in a smoker mother consuming caffeinated drinks. J. Anal. Toxicol. 2016, 40, 473–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darst, B.F.; Koscik, R.L.; Hogan, K.J.; Johnson, S.C.; Engelman, C.D. Longitudinal plasma metabolomics of aging and sex. Aging 2019, 11, 1262. [Google Scholar] [CrossRef]
- Panyard, D.J.; Kim, K.M.; Darst, B.F.; Deming, Y.K.; Zhong, X.; Wu, Y.; Kang, H.; Carlsson, C.M.; Johnson, S.C.; Asthana, S.; et al. Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. Commun. Biol. 2021, 4, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Trifonova, O.P.; Maslov, D.L.; Balashova, E.E.; Lokhov, P.G. Evaluation of dried blood spot sampling for clinical metabolomics: Effects of different papers and sample storage stability. Metabolites 2019, 9, 277. [Google Scholar] [CrossRef] [Green Version]
- Tobin, N.H.; Murphy, A.; Li, F.; Brummel, S.S.; Taha, T.E.; Saidi, F.; Owor, M.; Violari, A.; Moodley, D.; Chi, B.; et al. Comparison of dried blood spot and plasma sampling for untargeted metabolomics. Metabolomics 2021, 17, 1–9. [Google Scholar] [CrossRef]
- Bisgaard, H.; Vissing, N.H.; Carson, C.G.; Bischoff, A.L.; Følsgaard, N.V.; Kreiner-Møller, E.; Chawes, B.L.K.; Stokholm, J.; Pedersen, L.; Bjarnadóttir, E.; et al. Deep phenotyping of the unselected COPSAC 2010 birth cohort study. Clin. Exp. Allergy 2013, 43, 1384–1394. [Google Scholar] [CrossRef] [Green Version]
- Chawes, B.L.; Bønnelykke, K.; Stokholm, J.; Vissing, N.H.; Bjarnadóttir, E.; Schoos, A.M.M.; Wolsk, H.M.; Pedersen, T.M.; Vinding, R.K.; Thorsteinsdóttir, S.; et al. Effect of vitamin D3 supplementation during pregnancy on risk of persistent wheeze in the offspring: A randomized clinical trial. JAMA 2016, 315, 353–361. [Google Scholar] [CrossRef] [Green Version]
- Bisgaard, H.; Stokholm, J.; Chawes, B.L.; Vissing, N.H.; Bjarnadóttir, E.; Schoos, A.M.M.; Wolsk, H.M.; Pedersen, T.M.; Vinding, R.K.; Thorsteinsdóttir, S.; et al. Fish oil–derived fatty acids in pregnancy and wheeze and asthma in offspring. N. Engl. J. Med. 2016, 375, 2530–2539. [Google Scholar] [CrossRef] [PubMed]
- Gürdeniz, G.; Ernst, M.; Rago, D.; Kim, M.; Courraud, J.; Stokholm, J.; Bønnelykke, K.; Björkbom, A.; Trivedi, U.; Sørensen, S.J.; et al. Neonatal metabolome of cesarean section and risk of childhood asthma. Eur. Respir. J. 2021, 2102406. [Google Scholar] [CrossRef]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 1, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nothias, L.F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 2020, 17, 905–908. [Google Scholar] [CrossRef]
- Bittremieux, W.; Chen, C.; Dorrestein, P.C.; Schymanski, E.L.; Schulze, T.; Neumann, S.; Meier, R.; Rogers, S.; Wang, M. Universal MS/MS Visualization and Retrieval with the Metabolomics Spectrum Resolver Web Service. bioRxiv 2020. [Google Scholar] [CrossRef]
- Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem. 2006, 78, 4281–4290. [Google Scholar] [CrossRef] [PubMed]
Biochemical | Taxonomy | |||
---|---|---|---|---|
CMPF ** | Lipid | 0.26 | 0.87 | 0.26 |
CMPF ** (placebo ) | Lipid | 0.58 | 0.60 | 0.50 |
tryptophan betaine | Amino Acid | 0.77 | 0.82 | 0.67 |
ergothioneine | Xenobiotics | 0.82 | 0.68 | 0.69 |
N6-methyllysine | Amino Acid | 0.82 | 0.60 | 0.56 |
N,N,N-trimethyl-5-aminovalerate | Amino Acid | 0.52 | 0.54 | 0.50 |
stachydrine | Xenobiotics | 0.36 | 0.51 | 0.41 |
homostachydrine * | Xenobiotics | 0.32 | 0.43 | 0.30 |
homoarginine | Amino Acid | 0.60 | 0.42 | 0.48 |
paraxanthine | Xenobiotics | 0.43 | 0.40 | 0.37 |
cotinine | Xenobiotics | 0.84 | 0.36 | 0.48 |
caffeine | Xenobiotics | 0.40 | 0.35 | 0.46 |
Taxonomy | n | (%) | (%) |
---|---|---|---|
Amino Acid | 98 | 4 (4%) | 10 (10%) |
Lipid | 78 | 1 (1%) | 11 (14%) |
Xenobiotics | 48 | 6 (12%) | 2 (4%) |
Nucleotide | 13 | 0 (0%) | 1 (8%) |
Peptide | 13 | 0 (0%) | 1 (8%) |
Cofactors and Vitamins | 8 | 0 (0%) | 0 (0%) |
Carbohydrate | 6 | 0 (0%) | 0 (0%) |
Energy | 5 | 0 (0%) | 2 (40%) |
Partially Characterized Molecules | 3 | 0 (0%) | 1 (33%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olarini, A.; Ernst, M.; Gürdeniz, G.; Kim, M.; Brustad, N.; Bønnelykke, K.; Cohen, A.; Hougaard, D.; Lasky-Su, J.; Bisgaard, H.; et al. Vertical Transfer of Metabolites Detectable from Newborn’s Dried Blood Spot Samples Using UPLC-MS: A Chemometric Study. Metabolites 2022, 12, 94. https://doi.org/10.3390/metabo12020094
Olarini A, Ernst M, Gürdeniz G, Kim M, Brustad N, Bønnelykke K, Cohen A, Hougaard D, Lasky-Su J, Bisgaard H, et al. Vertical Transfer of Metabolites Detectable from Newborn’s Dried Blood Spot Samples Using UPLC-MS: A Chemometric Study. Metabolites. 2022; 12(2):94. https://doi.org/10.3390/metabo12020094
Chicago/Turabian StyleOlarini, Alessandra, Madeleine Ernst, Gözde Gürdeniz, Min Kim, Nicklas Brustad, Klaus Bønnelykke, Arieh Cohen, David Hougaard, Jessica Lasky-Su, Hans Bisgaard, and et al. 2022. "Vertical Transfer of Metabolites Detectable from Newborn’s Dried Blood Spot Samples Using UPLC-MS: A Chemometric Study" Metabolites 12, no. 2: 94. https://doi.org/10.3390/metabo12020094