Urinary Metabolomic Changes Accompanying Albuminuria Remission following Gastric Bypass Surgery for Type 2 Diabetic Kidney Disease
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics of MOMS RCT Patients Included in Sub-Study
2.2. Improvements in Metabolic and Renal Parameters Amongst Patients Included in Sub-Study
2.3. Overview of the Urinary 1H-NMR Metabolome and Quality Control Metrics
2.4. Principal Component Analysis of Urinary 1H-NMR Peaks
2.5. Fold Change Differences in Urinary 1H-NMR Peak Intensity by Univariate Testing
2.6. Baseline Urinary Metabolomic Differences between Study Arms: MTA0 vs. CSM0
2.7. Urinary Metabolites Attributable to Differences in Ethnicity in the MTA Arm: Caucasian vs. Other Ethnicities in MTA0 Samples
2.8. Changes in the Urinary Metabolome Following MTA: MTA0 vs. MTA6
2.9. Changes in the Urinary Metabolome Following CSM: CSM0 vs. CSM6
2.10. Differences in the Urinary Metabolome between CSM and MTA Arms after 6 Months of Treatment: MTA6 vs. CSM6
2.11. Inter-Peak Correlations and Abundance by Study Arm and Timepoint of Peaks Changed by CSM from Baseline to Month 6
2.12. Correlations between Changes in Metabolites Reflective of Host–Microbial Co-Metabolism and BCAA Catabolism with Improvements in Metabolic and Renal Indices Following CSM for DKD
3. Discussion
4. Materials and Methods
4.1. MOMS RCT: Study Design and Outcomes
4.2. Metabolomic Analyses: Nuclear Magnetic Resonance (NMR) Spectroscopy
4.3. 1H-NMR Spectral Processing
4.4. Principal Component Analysis of 1H-NMR Data
4.5. Fold Change Testing of 1H-NMR Data
4.6. 1H-NMR Classification Modelling
4.7. Inter-Peak Correlations
4.8. Correlations between Changes in Urinary Metabolites with Changes in Metabolic and Renal Indices Following CSM
4.9. Descriptive and Inferential Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reutens, A.T. Epidemiology of diabetic kidney disease. Med. Clin. N. Am. 2013, 97, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Johansen, K.L.; Chertow, G.M.; Foley, R.N.; Gilbertson, D.T.; Herzog, C.A.; Ishani, A.; Israni, A.K.; Ku, E.; Kurella Tamura, M.; Li, S.; et al. US Renal Data System 2020 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2021, 77, A7–A8. [Google Scholar] [CrossRef]
- de Boer, I.H.; Caramori, M.L.; Chan, J.C.N.; Heerspink, H.J.L.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, S.D.; Olowu, W.A.; et al. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020, 98, S1–S115. [Google Scholar] [CrossRef]
- Martin, W.P.; Griffin, T.P.; Lappin, D.W.; Griffin, D.G.; Ferguson, J.P.; O’Brien, T.; Griffin, M.D. Influence of Referral to a Combined Diabetology and Nephrology Clinic on Renal Functional Trends and Metabolic Parameters in Adults With Diabetic Kidney Disease. Mayo Clin. Proc. Innov. Qual. Outcomes 2017, 1, 150–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarafidis, P.; Ortiz, A.; Ferro, C.J.; Halimi, J.M.; Kreutz, R.; Mallamaci, F.; Mancia, G.; Wanner, C. Sodium—glucose co-transporter-2 inhibitors for patients with diabetic and nondiabetic chronic kidney disease: A new era has already begun. J. Hypertens. 2021, 39, 1090–1097. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giugliano, D.; Scappaticcio, L.; Longo, M.; Caruso, P.; Maiorino, M.I.; Bellastella, G.; Ceriello, A.; Chiodini, P.; Esposito, K. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: An updated meta-analysis of eight CVOTs. Cardiovasc. Diabetol. 2021, 20, 189. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Parving, H.H.; Andress, D.L.; Bakris, G.; Correa-Rotter, R.; Hou, F.F.; Kitzman, D.W.; Kohan, D.; Makino, H.; McMurray, J.J.V.; et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): A double-blind, randomised, placebo-controlled trial. Lancet 2019, 393, 1937–1947. [Google Scholar] [CrossRef]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef]
- Foster, M.C.; Hwang, S.J.; Larson, M.G.; Lichtman, J.H.; Parikh, N.I.; Vasan, R.S.; Levy, D.; Fox, C.S. Overweight, obesity, and the development of stage 3 CKD: The Framingham Heart Study. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2008, 52, 39–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.Y.; McCulloch, C.E.; Iribarren, C.; Darbinian, J.; Go, A.S. Body mass index and risk for end-stage renal disease. Ann. Intern. Med. 2006, 144, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Kuja-Halkola, R.; Chen, X.; Magnusson, P.K.E.; Svensson, P.; Carrero, J.J. Higher body mass index is associated with incident diabetes and chronic kidney disease independent of genetic confounding. Kidney Int. 2019, 95, 1225–1233. [Google Scholar] [CrossRef]
- Vivante, A.; Golan, E.; Tzur, D.; Leiba, A.; Tirosh, A.; Skorecki, K.; Calderon-Margalit, R. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch. Intern. Med. 2012, 172, 1644–1650. [Google Scholar] [CrossRef]
- Martin, W.P.; Bauer, J.; Coleman, J.; Dellatorre-Teixeira, L.; Reeve, J.L.V.; Twomey, P.J.; Docherty, N.G.; O’Riordan, A.; Watson, A.J.; le Roux, C.W.; et al. Obesity is common in chronic kidney disease and associates with greater antihypertensive usage and proteinuria: Evidence from a cross-sectional study in a tertiary nephrology centre. Clin. Obes. 2020, 10, e12402. [Google Scholar] [CrossRef]
- Chang, A.R.; Grams, M.E.; Navaneethan, S.D. Bariatric Surgery and Kidney-Related Outcomes. Kidney Int. Rep. 2017, 2, 261–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, W.P.; Docherty, N.G.; Le Roux, C.W. Impact of bariatric surgery on cardiovascular and renal complications of diabetes: A focus on clinical outcomes and putative mechanisms. Expert Rev. Endocrinol. Metab. 2018, 13, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.P.; White, J.; López-Hernández, F.J.; Docherty, N.G.; le Roux, C.W. Metabolic Surgery to Treat Obesity in Diabetic Kidney Disease, Chronic Kidney Disease, and End-Stage Kidney Disease; What Are the Unanswered Questions? Front. Endocrinol. 2020, 11, 289. [Google Scholar] [CrossRef] [PubMed]
- Docherty, N.G.; le Roux, C.W. Bariatric surgery for the treatment of chronic kidney disease in obesity and type 2 diabetes mellitus. Nat. Rev. Nephrol. 2020, 16, 709–720. [Google Scholar] [CrossRef]
- Cohen, R.V.; Pereira, T.V.; Aboud, C.M.; Caravatto, P.P.d.P.; Petry, T.B.Z.; Correa, J.L.L.; Schiavon, C.A.; Correa, M.; Pompílio, C.E.; Pechy, F.N.Q.; et al. Microvascular Outcomes after Metabolic Surgery (MOMS) in patients with type 2 diabetes mellitus and class I obesity: Rationale and design for a randomised controlled trial. BMJ Open 2017, 7, e013574. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.V.; Pereira, T.V.; Aboud, C.M.; Petry, T.B.Z.; Lopes Correa, J.L.; Schiavon, C.A.; Pompílio, C.E.; Pechy, F.N.Q.; da Costa Silva, A.C.C.; de Melo, F.L.G.; et al. Effect of Gastric Bypass vs Best Medical Treatment on Early-Stage Chronic Kidney Disease in Patients With Type 2 Diabetes and Obesity: A Randomized Clinical Trial. JAMA Surg. 2020, 155, e200420. [Google Scholar] [CrossRef]
- Neff, K.J.; Elliott, J.A.; Corteville, C.; Abegg, K.; Boza, C.; Lutz, T.A.; Docherty, N.G.; le Roux, C.W. Effect of Roux-en-Y gastric bypass and diet-induced weight loss on diabetic kidney disease in the Zucker diabetic fatty rat. Surg. Obes. Relat. Dis. 2017, 13, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Canney, A.L.; Cohen, R.V.; Elliott, J.A.; Aboud, M.C.; Martin, W.P.; Docherty, N.G.; le Roux, C.W. Improvements in diabetic albuminuria and podocyte differentiation following Roux-en-Y gastric bypass surgery. Diabetes Vasc. Dis. Res. 2019, 17, 1479164119879039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, M.; Martin, W.P.; Zhernovkov, V.; Elliott, J.A.; Fearon, N.; Eckhardt, H.; McCormack, J.; Godson, C.; Brennan, E.P.; Fandriks, L.; et al. Characterization of the renal cortical transcriptome following Roux-en-Y gastric bypass surgery in experimental diabetic kidney disease. BMJ Open Diabetes Res. Care 2020, 8, e001113. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.P.; le Roux, C.W.; Docherty, N.G. Impact of Metabolic Surgery on Renal Injury in Pre-Clinical Models of Diabetic Kidney Disease. Nephron 2021, 145, 585–594. [Google Scholar] [CrossRef]
- Wickham, H.; Seidel, D. scales: Scale Functions for Visualization. R Package Version 1.1.1. 2020. Available online: https://cran.r-project.org/package=scales (accessed on 15 January 2022).
- Beirnaert, C.; Meysman, P.; Vu, T.N.; Hermans, N.; Apers, S.; Pieters, L.; Covaci, A.; Laukens, K. speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification. PLoS Comput. Biol. 2018, 14, e1006018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, B.A. ChemoSpec: Exploratory Chemometrics for Spectroscopy. R Package Version 6.0.1. 2021. Available online: https://cran.r-project.org/package=ChemoSpec (accessed on 15 January 2022).
- Li, J.; Reshat, R.; Wu, Q.; Ashrafian, H.; Bueter, M.; Le ROux, C.; Darzi, A.; Athanasiou, T.; Marchesi, J.; Nicholson, J.; et al. Experimental Bariatric Surgery in Rats Generates a Cytotoxic Chemical Environment in the Gut Contents. Front. Microbiol. 2011, 2, 183. [Google Scholar] [CrossRef] [Green Version]
- Li, J.V.; Ashrafian, H.; Bueter, M.; Kinross, J.; Sands, C.; le Roux, C.W.; Bloom, S.R.; Darzi, A.; Athanasiou, T.; Marchesi, J.R.; et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut 2011, 60, 1214–1223. [Google Scholar] [CrossRef]
- Li, J.V.; Ashrafian, H.; Sarafian, M.; Homola, D.; Rushton, L.; Barker, G.; Cabrera, P.M.; Lewis, M.R.; Darzi, A.; Lin, E.; et al. Roux-en-Y gastric bypass-induced bacterial perturbation contributes to altered host-bacterial co-metabolic phenotype. Microbiome 2021, 9, 139. [Google Scholar] [CrossRef]
- Seyfried, F.; Li, J.V.; Miras, A.D.; Cluny, N.L.; Lannoo, M.; Fenske, W.K.; Sharkey, K.A.; Nicholson, J.K.; le Roux, C.W.; Holmes, E. Urinary phenotyping indicates weight loss-independent metabolic effects of Roux-en-Y gastric bypass in mice. J. Proteome Res. 2013, 12, 1245–1253. [Google Scholar] [CrossRef]
- Seyfried, F.; Phetcharaburanin, J.; Glymenaki, M.; Nordbeck, A.; Hankir, M.; Nicholson, J.K.; Holmes, E.; Marchesi, J.R.; Li, J.V. Roux-en-Y gastric bypass surgery in Zucker rats induces bacterial and systemic metabolic changes independent of caloric restriction-induced weight loss. Gut Microbes 2021, 13, e1875108. [Google Scholar] [CrossRef]
- Martin, W.P.; Chuah, Y.H.D.; Abdelaal, M.; Pedersen, A.; Malmodin, D.; Abrahamsson, S.; Hutter, M.; Godson, C.; Brennan, E.P.; Fändriks, L.; et al. Medications Activating Tubular Fatty Acid Oxidation Enhance the Protective Effects of Roux-en-Y Gastric Bypass Surgery in a Rat Model of Early Diabetic Kidney Disease. Front. Endocrinol. 2022, 12, 757228. [Google Scholar] [CrossRef]
- Flores-Guerrero, J.L.; Groothof, D.; Connelly, M.A.; Otvos, J.D.; Bakker, S.J.L.; Dullaart, R.P.F. Concentration of Branched-Chain Amino Acids Is a Strong Risk Marker for Incident Hypertension. Hypertension 2019, 74, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.-S. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism. Nutrients 2016, 8, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Würtz, P.; Soininen, P.; Kangas, A.J.; Rönnemaa, T.; Lehtimäki, T.; Kähönen, M.; Viikari, J.S.; Raitakari, O.T.; Ala-Korpela, M. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 2013, 36, 648–655. [Google Scholar] [CrossRef] [Green Version]
- Würtz, P.; Tiainen, M.; Mäkinen, V.P.; Kangas, A.J.; Soininen, P.; Saltevo, J.; Keinänen-Kiukaanniemi, S.; Mäntyselkä, P.; Lehtimäki, T.; Laakso, M.; et al. Circulating metabolite predictors of glycemia in middle-aged men and women. Diabetes Care 2012, 35, 1749–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teymoori, F.; Asghari, G.; Mirmiran, P.; Azizi, F. Dietary amino acids and incidence of hypertension: A principle component analysis approach. Sci. Rep. 2017, 7, 16838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef]
- West, K.A.; Kanu, C.; Maric, T.; McDonald, J.A.K.; Nicholson, J.K.; Li, J.V.; Johnson, M.R.; Holmes, E.; Savvidou, M.D. Longitudinal metabolic and gut bacterial profiling of pregnant women with previous bariatric surgery. Gut 2020, 69, 1452. [Google Scholar] [CrossRef]
- Haange, S.-B.; Jehmlich, N.; Krügel, U.; Hintschich, C.; Wehrmann, D.; Hankir, M.; Seyfried, F.; Froment, J.; Hübschmann, T.; Müller, S.; et al. Gastric bypass surgery in a rat model alters the community structure and functional composition of the intestinal microbiota independently of weight loss. Microbiome 2020, 8, 13. [Google Scholar] [CrossRef]
- Kurihara, S.; Kato, K.; Asada, K.; Kumagai, H.; Suzuki, H. A putrescine-inducible pathway comprising PuuE-YneI in which gamma-aminobutyrate is degraded into succinate in Escherichia coli K-12. J. Bacteriol. 2010, 192, 4582–4591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gameiro, A.; Reimann, F.; Habib, A.M.; O’Malley, D.; Williams, L.; Simpson, A.K.; Gribble, F.M. The neurotransmitters glycine and GABA stimulate glucagon-like peptide-1 release from the GLUTag cell line. J. Physiol. 2005, 569, 761–772. [Google Scholar] [CrossRef]
- le Roux, C.W.; Aylwin, S.J.; Batterham, R.L.; Borg, C.M.; Coyle, F.; Prasad, V.; Shurey, S.; Ghatei, M.A.; Patel, A.G.; Bloom, S.R. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann. Surg. 2006, 243, 108–114. [Google Scholar] [CrossRef]
- Docherty, N.G.; Fandriks, L.; le Roux, C.W.; Hallersund, P.; Werling, M. Urinary sodium excretion after gastric bypass surgery. Surg. Obes. Relat. Dis. 2017, 13, 1506–1514. [Google Scholar] [CrossRef]
- Takano, K.; Yatabe, M.S.; Abe, A.; Suzuki, Y.; Sanada, H.; Watanabe, T.; Kimura, J.; Yatabe, J. Characteristic expressions of GABA receptors and GABA producing/transporting molecules in rat kidney. PLoS ONE 2014, 9, e105835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ligthart-Melis, G.C.; van de Poll, M.C.; Boelens, P.G.; Dejong, C.H.; Deutz, N.E.; van Leeuwen, P.A. Glutamine is an important precursor for de novo synthesis of arginine in humans. Am. J. Clin. Nutr. 2008, 87, 1282–1289. [Google Scholar] [CrossRef] [Green Version]
- Bojsen-Møller, K.N.; Jacobsen, S.H.; Dirksen, C.; Jørgensen, N.B.; Reitelseder, S.; Jensen, J.E.; Kristiansen, V.B.; Holst, J.J.; van Hall, G.; Madsbad, S. Accelerated protein digestion and amino acid absorption after Roux-en-Y gastric bypass. Am. J. Clin. Nutr. 2015, 102, 600–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, B.S.; Meirelles, K.; Meng, Q.; Pan, M.; Cooney, R.N. Roux-en-Y gastric bypass alters small intestine glutamine transport in the obese Zucker rat. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 297, G594–G601. [Google Scholar] [CrossRef] [Green Version]
- Thams, P.; Capito, K. L-arginine stimulation of glucose-induced insulin secretion through membrane depolarization and independent of nitric oxide. Eur. J. Endocrinol. 1999, 140, 87–93. [Google Scholar] [CrossRef]
- Clemmensen, C.; Smajilovic, S.; Smith, E.P.; Woods, S.C.; Bräuner-Osborne, H.; Seeley, R.J.; D’Alessio, D.A.; Ryan, K.K. Oral L-arginine stimulates GLP-1 secretion to improve glucose tolerance in male mice. Endocrinology 2013, 154, 3978–3983. [Google Scholar] [CrossRef] [Green Version]
- Greenfield, J.R.; Farooqi, I.S.; Keogh, J.M.; Henning, E.; Habib, A.M.; Blackwood, A.; Reimann, F.; Holst, J.J.; Gribble, F.M. Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects. Am. J. Clin. Nutr. 2009, 89, 106–113. [Google Scholar] [CrossRef]
- Neinast, M.D.; Jang, C.; Hui, S.; Murashige, D.S.; Chu, Q.; Morscher, R.J.; Li, X.; Zhan, L.; White, E.; Anthony, T.G.; et al. Quantitative Analysis of the Whole-Body Metabolic Fate of Branched-Chain Amino Acids. Cell Metab. 2019, 29, 417–429.e414. [Google Scholar] [CrossRef] [Green Version]
- Lips, M.A.; Van Klinken, J.B.; van Harmelen, V.; Dharuri, H.K.; t’Hoen, P.A.; Laros, J.F.; van Ommen, G.J.; Janssen, I.M.; Van Ramshorst, B.; Van Wagensveld, B.A.; et al. Roux-en-Y gastric bypass surgery, but not calorie restriction, reduces plasma branched-chain amino acids in obese women independent of weight loss or the presence of type 2 diabetes. Diabetes Care 2014, 37, 3150–3156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, H.C.; Khoo, C.M.; Tan, M.Z.; Kovalik, J.P.; Ng, A.C.; Eng, A.K.; Lai, O.F.; Ching, J.H.; Tham, K.W.; Pasupathy, S. The Effects of Sleeve Gastrectomy and Gastric Bypass on Branched-Chain Amino Acid Metabolism 1 Year After Bariatric Surgery. Obes. Surg. 2016, 26, 1830–1835. [Google Scholar] [CrossRef] [PubMed]
- Bozadjieva Kramer, N.; Evers, S.S.; Shin, J.H.; Silverwood, S.; Wang, Y.; Burant, C.F.; Sandoval, D.A.; Seeley, R.J. The Role of Elevated Branched-Chain Amino Acids in the Effects of Vertical Sleeve Gastrectomy to Reduce Weight and Improve Glucose Regulation. Cell Rep. 2020, 33, 108239. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.M.; Ahn, S.H.; Choi, P.; Ko, Y.A.; Han, S.H.; Chinga, F.; Park, A.S.; Tao, J.; Sharma, K.; Pullman, J.; et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 2015, 21, 37–46. [Google Scholar] [CrossRef]
- Piret, S.E.; Guo, Y.; Attallah, A.A.; Horne, S.J.; Zollman, A.; Owusu, D.; Henein, J.; Sidorenko, V.S.; Revelo, M.P.; Hato, T.; et al. Krüppel-like factor 6-mediated loss of BCAA catabolism contributes to kidney injury in mice and humans. Proc. Natl. Acad. Sci. USA 2021, 118, e2024414118. [Google Scholar] [CrossRef] [PubMed]
- Trygg, J.; Wold, S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 2002, 16, 119–128. [Google Scholar] [CrossRef]
- Shi, L.; Westerhuis, J.A.; Rosén, J.; Landberg, R.; Brunius, C. Variable selection and validation in multivariate modelling. Bioinformatics 2019, 35, 972–980. [Google Scholar] [CrossRef]
- Mendez, K.M.; Reinke, S.N.; Broadhurst, D.I. A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification. Metabolomics 2019, 15, 150. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association Professional Practice Committee. Summary of Revisions: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45, S4–S7. [Google Scholar] [CrossRef]
- Dona, A.C.; Jiménez, B.; Schäfer, H.; Humpfer, E.; Spraul, M.; Lewis, M.R.; Pearce, J.T.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping. Anal. Chem. 2014, 86, 9887–9894. [Google Scholar] [CrossRef] [PubMed]
- Nyberg, N. RBNMR, MATLAB Central File Exchange. Available online: https://www.mathworks.com/matlabcentral/fileexchange/40332-rbnmr (accessed on 15 January 2022).
- The MathWorks Inc.: MATLAB (R2021a) 2021. Available online: https://www.mathworks.com (accessed on 15 January 2022).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 15 January 2022).
- Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem. 2006, 78, 4281–4290. [Google Scholar] [CrossRef] [PubMed]
- Hedjazi, L.; Cazier, J.-B. mQTL: Metabolomic Quantitative Trait Locus Mapping. R Package Version 1.0. 2013. Available online: https://cran.r-project.org/package=mQTL (accessed on 15 January 2022).
- Weljie, A.M.; Newton, J.; Mercier, P.; Carlson, E.; Slupsky, C.M. Targeted Profiling: Quantitative Analysis of 1H NMR Metabolomics Data. Anal. Chem. 2006, 78, 4430–4442. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef]
- Ulrich, E.L.; Akutsu, H.; Doreleijers, J.F.; Harano, Y.; Ioannidis, Y.E.; Lin, J.; Livny, M.; Mading, S.; Maziuk, D.; Miller, Z.; et al. BioMagResBank. Nucleic Acids Res. 2008, 36, D402–D408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soetaert, K. plot3D: Plotting Multi-Dimensional Data. R Package Version 1.4. 2021. Available online: https://cran.r-project.org/package=plot3D (accessed on 15 January 2022).
- Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R Package Version 0.6.0. 2020. Available online: https://cran.r-project.org/package=rstatix (accessed on 15 January 2022).
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Kuhn, M. caret: Classification and Regression Training. R Package Version 6.0-86. 2020. Available online: https://cran.r-project.org/package=caret (accessed on 15 January 2022).
- Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R Package Version 0.2.5. 2020. Available online: https://cran.r-project.org/package=ggpubr (accessed on 15 January 2022).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; D’Agostino McGowan, L.; Francois, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Kolde, R. pheatmap: Pretty Heatmaps. R Package Version 1.0.12. 2019. Available online: https://cran.r-project.org/package=pheatmap (accessed on 15 January 2022).
- Kassambara, A. ggcorrplot: Visualization of a Correlation Matrix Using ‘ggplot2’. R Package Version 0.1.3. 2019. Available online: https://cran.r-project.org/package=ggcorrplot (accessed on 15 January 2022).
Variable | CSM (n = 26) | MTA (n = 28) | p |
---|---|---|---|
Demographics | |||
Age (mean ± SD; years) | 51.8 ± 8.1 | 50.3 ± 7.4 | 0.50 |
Male (n (%)) | 15 (57.7) | 13 (46.4) | 0.58 |
Caucasian ethnicity (n (%)) | 24 (92.3) | 18 (64.3) | 0.05 |
Anthropometry | |||
Body weight (kg) | 94.5 ± 14.0 | 91.6 ± 14.5 | 0.45 |
Waist circumference (cm) | 114.3 ± 7.9 | 112.0 ± 8.4 | 0.33 |
Body-mass index (mean ± SD; kg/m2) | 33.0 ± 2.0 | 32.8 ± 2.1 | 0.75 |
Blood pressure | |||
Systolic blood pressure (mean ± SD; mmHg) | 143.8 ± 20.2 | 138.9 ± 13.7 | 0.32 |
Diastolic blood pressure (mean ± SD; mmHg) | 91.6 ± 14.5 | 86.4 ± 7.8 | 0.13 |
Metabolic parameters | |||
Total cholesterol (mean ± SD; mg/dL) | 182.2 ± 38.2 | 204.5 ± 45.6 | 0.06 |
LDL cholesterol (mean ± SD; mg/dL) | 102.9 ± 37.3 | 120.2 ± 41.9 | 0.12 |
HDL cholesterol (mean ± SD; mg/dL) | 37.3 ± 9.4 | 38.8 ± 9.2 | 0.54 |
Triglycerides (median [IQR]; mg/dL) | 189.5 [147.0] | 208.5 [199.3] | 0.43 |
HbA1c (mean ± SD; mmol/mol) | 74.2 ± 23.1 | 73.9 ± 18.0 | 0.95 |
HbA1c (mean ± SD; %) | 8.9 ± 2.1 | 8.9 ± 1.6 | 0.95 |
Renal parameters | |||
Serum creatinine (mean ± SD; mg/dL) | 0.79 ± 0.22 | 0.82 ± 0.29 | 0.72 |
uACR (median [IQR]; mg/g) | 70.0 [43.8] | 73.5 [97.8] | 0.46 |
Timepoint | Absolute Difference | Percentage Difference | |||||
---|---|---|---|---|---|---|---|
CSM (n = 11) | MTA (n = 12) | p | CSM (n = 11) | MTA (n = 12) | p | ||
Body-mass index (median [IQR]; kg/m2 [absolute] or %) | Month 6 | −9.0 [1.0] | −1.0 [2.3] | <0.001 | −25.7 [4.6] | −2.9 [6.4] | <0.001 |
Month 24 | −9.0 [1.8] | −2.0 [2.5] | <0.001 | −25.8 [2.9] | −5.7 [7.9] | <0.001 | |
Systolic blood pressure (median [IQR]; mmHg [absolute] or %) | Month 6 | −20.0 [15.0] | −5.0 [10.0] | 0.01 | −14.3 [7.7] | −3.3 [7.3] | 0.005 |
Month 24 | 0 [28.0] | 0 [25.0] | 0.94 | 0 [17.5] | 0 [17.1] | 0.94 | |
Diastolic blood pressure (median [IQR]; mmHg [absolute] or %) | Month 6 | −15.0 [17.5] | 0 [10.0] | 0.19 | −15.6 [18.9] | 0 [10.3] | 0.18 |
Month 24 | −10.0 [10.0] | 0 [10.0] | 0.28 | −10.0 [11.1] | 0 [11.3] | 0.23 | |
LDL-cholesterol (median [IQR]; mg/dL [absolute] or %) | Month 6 | −14.0 [41.5] | −14.0 [27.0] | 0.76 | −14.0 [33.4] | −8.4 [23.9] | 0.57 |
Month 24 | −21.0 [42.3] | −13.0 [66.5] | 0.53 | −17.2 [42.6] | −10.7 [50.9] | 0.31 | |
Triglycerides (median [IQR]; mg/dL [absolute] or %) | Month 6 | −86.0 [107.5] | −40.0 [85.5] | 0.42 | −53.7 [40.9] | −19.8 [27.6] | 0.10 |
Month 24 | −68.0 [74.5] | −27.0 [117.5] | 0.28 | −38.7 [34.8] | −11.5 [52.8] | 0.15 | |
HbA1c (median [IQR]; mmol/mol [absolute] or %) | Month 6 | −39.3 [37.2] | −9.8 [15.3] | 0.02 | −43.9 [34.8] | −15.1 [18.0] | 0.009 |
Month 24 | −33.9 [28.4] | −12.0 [17.5] | 0.11 | −36.5 [32.3] | −27.8 [19.3] | 0.13 | |
uACR (median [IQR]; mg/g [absolute] or %) | Month 6 | −67.0 [35.0] | −51.0 [92.3] | 0.95 | −80.6 [16.7] | −70.4 [32.2] | 0.29 |
Month 24 | −45.5 [41.0] | −49.0 [100.0] | 1 | −90.1 [29.0] | −84.6 [12.9] | 0.58 |
Metabolite(s) | PPM | HMDB ID | CSM6 Abundance | All Available Samples CSM0 (n = 26) vs. CSM6 (n = 19) | Paired Samples CSM0 (n = 11) vs. CSM6 (n = 11) | All Available Samples MTA6 (n = 24) vs. CSM6 (n = 19) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
log2FC | p.adj | VIP | log2FC | p.adj | VIP | log2FC | p.adj | VIP | ||||
N-phenylacetyl-glycine | 7.366 | 0000821 | ↑ | 1.81 | <0.001 | 4.87 | 2.38 | 0.007 | 4.21 | 1.37 | 0.01 | 5.47 |
Glutamine + glutamate | 2.098 | 0000641 + 0000148 | ↑ | 1.11 | 0.001 | 11.77 | 1.41 | 0.007 | 11.83 | 0.81 | 0.02 | 9.19 |
Glycerol-3-phosphate + ethanol | 3.659 | 0000126 + 0000108 | ↑ | 1.25 | 0.002 | 17.89 | 1.57 | 0.02 | 32.48 | 0.83 | 0.04 | 31.21 |
Glutamine | 2.143 | 0000641 | ↑ | 1.13 | 0.002 | 21.00 | 1.16 | 0.03 | 79.40 | 0.97 | 0.02 | 20.05 |
Arginine | 1.948 | 0000517 | ↑ | 1.32 | 0.004 | 22.27 | 1.59 | 0.02 | 37.72 | 1.10 | 0.02 | 13.85 |
Not annotated + S-sulfocysteine + pyroglutamate | 4.185 | N/A + 0000731 + 0000267 | ↑ | 1.02 | 0.003 | 22.28 | 1.37 | 0.02 | 46.82 | 0.82 | 0.02 | 14.72 |
4-aminobutyrate | 2.287 | 0000112 | ↑ | 1.73 | 0.007 | 26.15 | 2.19 | 0.04 | 66.71 | 1.45 | 0.03 | 18.26 |
Trimethylamine N-oxide | 3.278 | 0000925 | ↑ | 1.38 | 0.003 | 33.63 | 1.78 | 0.02 | 43.75 | 0.94 | 0.04 | 35.38 |
Glucose | 5.348 | 0000122 | ↓ | −0.69 | 0.03 | 34.48 | −0.61 | 0.28 | 231.23 | -0.86 | 0.03 | 20.34 |
Valine | 1.052 | 0000883 | ↓ | −0.47 | 0.003 | 36.53 | −0.59 | 0.03 | 67.48 | −0.47 | 0.04 | 43.10 |
Methylguanidine | 2.836 | 0001522 | ↑ | 0.64 | 0.005 | 45.90 | 1.02 | 0.02 | 43.52 | 0.31 | 0.39 | 292.93 |
Phenylalanine | 7.394 | 0000159 | ↓ | −1.74 | 0.01 | 78.94 | −3.10 | 0.02 | 41.33 | −1.86 | 0.05 | 59.63 |
Urea + xanthosine | 5.861 | 0000294 + 0000299 | ↑ | 0.45 | 0.04 | 88.00 | 0.86 | 0.02 | 38.63 | 0.09 | 0.67 | N/A |
Sample Number | Breakdown by Study Arm | Breakdown by Study Timepoint | Breakdown by Study Group and Timepoint |
---|---|---|---|
All samples | |||
n = 97 | CSM, n = 45 | Baseline, n = 54 | CSM0, n = 26 |
MTA, n = 52 | Month 6, n = 43 | CSM6, n = 19 | |
MTA0, n = 28 | |||
MTA6, n = 24 | |||
Paired samples | |||
n = 46 | CSM, n = 22 | Baseline, n = 23 | CSM0, n = 11 |
MTA, n = 24 | Month 6, n = 23 | CSM6, n = 11 | |
MTA0, n = 12 | |||
MTA6, n = 12 |
Comparison | Number of Samples | Figure Number |
---|---|---|
All samples (n = 97 in total; primary analyses) | ||
MTA0 vs. CSM0 | Total, n = 54 CSM0, n = 26 MTA0, n = 28 | Figure S1 |
Caucasian vs. other ethnicities in MTA0 samples | Total, n = 28 Caucasian, n = 18 Other ethnicities, n = 10 | Figure S2 |
MTA0 vs. MTA6 | Total, n = 52 MTA0, n = 28 MTA6, n = 24 | Figure S3 |
CSM0 vs. CSM6 | Total, n = 45 CSM0, n = 26 CSM6, n = 19 | Figure 4 |
MTA6 vs. CSM6 | Total, n = 43 CSM6, n = 19 MTA6, n = 24 | Figure 5 |
Paired samples (n = 46 in total; sensitivity analyses) | ||
MTA0 vs. MTA6 | Total, n = 24 MTA0, n = 12 MTA6, n = 12 | Figure S4 |
CSM0 vs. CSM6 | Total, n = 22 CSM0, n = 11 CSM6, n = 11 | Figure S5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, W.P.; Malmodin, D.; Pedersen, A.; Wallace, M.; Fändriks, L.; Aboud, C.M.; Petry, T.B.Z.; Cunha da Silveira, L.P.; da Costa Silva, A.C.C.; Cohen, R.V.; et al. Urinary Metabolomic Changes Accompanying Albuminuria Remission following Gastric Bypass Surgery for Type 2 Diabetic Kidney Disease. Metabolites 2022, 12, 139. https://doi.org/10.3390/metabo12020139
Martin WP, Malmodin D, Pedersen A, Wallace M, Fändriks L, Aboud CM, Petry TBZ, Cunha da Silveira LP, da Costa Silva ACC, Cohen RV, et al. Urinary Metabolomic Changes Accompanying Albuminuria Remission following Gastric Bypass Surgery for Type 2 Diabetic Kidney Disease. Metabolites. 2022; 12(2):139. https://doi.org/10.3390/metabo12020139
Chicago/Turabian StyleMartin, William P., Daniel Malmodin, Anders Pedersen, Martina Wallace, Lars Fändriks, Cristina M. Aboud, Tarissa B. Zanata Petry, Lívia P. Cunha da Silveira, Ana C. Calmon da Costa Silva, Ricardo V. Cohen, and et al. 2022. "Urinary Metabolomic Changes Accompanying Albuminuria Remission following Gastric Bypass Surgery for Type 2 Diabetic Kidney Disease" Metabolites 12, no. 2: 139. https://doi.org/10.3390/metabo12020139
APA StyleMartin, W. P., Malmodin, D., Pedersen, A., Wallace, M., Fändriks, L., Aboud, C. M., Petry, T. B. Z., Cunha da Silveira, L. P., da Costa Silva, A. C. C., Cohen, R. V., le Roux, C. W., & Docherty, N. G. (2022). Urinary Metabolomic Changes Accompanying Albuminuria Remission following Gastric Bypass Surgery for Type 2 Diabetic Kidney Disease. Metabolites, 12(2), 139. https://doi.org/10.3390/metabo12020139