Safety and Effectiveness of Sodium–Glucose Cotransporter 2 Inhibitor Combined with Medical Nutrition Therapy for Hyperglycemia in Acute Stroke: A Retrospective Study
Abstract
:1. Introduction
2. Results
2.1. Primary Analysis
2.2. Secondary Analysis
3. Discussion
3.1. Limitations
3.2. Conclusions
4. Materials and Methods
- TBW = body height × body height × 22 kg/m2.
- The TTE for the TER is calculated as follows [4]:
- TTE = TBW × 25 kcal/kg.
4.1. Evaluation
4.2. Statistical Analysis
5. Presentation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kruyt, N.D.; Biessels, G.J.; Devries, J.H.; Roos, Y.B. Hyperglycemia in acute ischemic stroke: Pathophysiology and clinical management. Nat. Rev. Neurol. 2010, 6, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Anderson, C.S.; Wang, X.; Sato, S.; Arima, H.; Chan, E.; Munoz-Venturelli, P.; Delcourt, C.; Robinson, T.; Stapf, C.; et al. Prognostic significance of hyperglycemia in acute intracerebral hemorrhage: The INTERACT2 study. Stroke 2016, 47, 682–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, K.C.; Bruno, A.; Pauls, Q.; Hall, C.E.; Barrett, K.M.; Barsan, W.; Fansler, A.; Van de Bruinhorst, K.; Janis, S.; Durkalski-Mauldin, V.L. Intensive vs standard treatment of hyperglycemia and functional outcome in patients with acute ischemic stroke: The SHINE randomized clinical Trial. JAMA 2019, 322, 326–335. [Google Scholar] [CrossRef]
- Araki, E.; Goto, A.; Kondo, T.; Noda, M.; Noto, H.; Origasa, H.; Osawa, H.; Taguchi, A.; Tanizawa, Y.; Tobe, K.; et al. Japanese clinical practice guideline for diabetes 2019. Diabetol. Int. 2020, 11, 165–223. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 5. Facilitating behavior change and well-being to improve health outcomes: Standards of medical care in Diabetes-2021. Diabetes Care 2021, 44 (Suppl. S1), S53–S72. [Google Scholar] [CrossRef] [PubMed]
- Accurso, A.; Bernstein, R.K.; Dahlqvist, A.; Draznin, B.; Feinman, R.D.; Fine, E.J.; Gleed, A.; Jacobs, D.B.; Larson, G.; Lustig, R.H.; et al. Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: Time for a critical appraisal. Nutr. Metab. 2008, 5, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feinman, R.D.; Pogozelski, W.K.; Astrup, A.; Bernstein, R.K.; Fine, E.J.; Westman, E.C.; Accurso, A.; Frassetto, L.; Gower, B.A.; McFarlane, S.I.; et al. Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition 2015, 31, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, cardiovascular outcomes, and mortality in Type 2 diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Kimura, G. Diuretic action of sodium-glucose Cotransporter 2 inhibitors and its importance in the management of heart failure. Circ. J. 2016, 80, 2277–2281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, G. Sodium-glucose Cotransporter 2 (SGLT2) inhibitors and stroke. Circ. J. 2017, 81, 898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, T.; Tanno, Y.; Kasakura, S.; Yoshioka, K.; Nakai, N. Abstract TP368: Effectiveness and safety of luseogliflozin, sodium-glucose cotransporter2 inhibitor, to treat hyperglycemia in an acute stroke stage. Stroke 2018, 49 (Suppl. S1), ATP368. [Google Scholar] [CrossRef]
- Funk, S.D.; Yurdagul, A., Jr.; Orr, A.W. Hyperglycemia and endothelial dysfunction in atherosclerosis: Lessons from type 1 diabetes. Int. J. Vasc. Med. 2012, 2012, 569654. [Google Scholar] [CrossRef] [Green Version]
- Tuttolomondo, A.; Simonetta, I.; Daidone, M.; Mogavero, A.; Ortello, A.; Pinto, A. Metabolic and vascular effect of the Mediterranean diet. Int. J. Mol. Sci. 2019, 20, 4716. [Google Scholar] [CrossRef] [Green Version]
- Della Corte, V.; Tuttolomondo, A.; Pecoraro, R.; Di Raimondo, D.; Vassallo, V.; Pinto, A. Inflammation, endothelial dysfunction and arterial stiffness as therapeutic targets in cardiovascular medicine. Curr. Pharm. Des. 2016, 22, 4658–4668. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, E.; Charbonnel, B.; Wilcox, R.G.; Skene, A.M.; Massi-Benedetti, M.; Yates, J.; Tan, M.; Spanheimer, R.; Standl, E.; Dormandy, J.A. PROactiveaInvestigators. Pioglitazone use and heart failure in patients with type 2 diabetes and preexisting cardiovascular disease: Data from the PROactive study (PROactive 08). Diabetes Care 2007, 30, 2773–2778. [Google Scholar] [CrossRef] [Green Version]
- de Jong, M.; van der Worp, H.B.; van der Graaf, Y.; Visseren, F.L.J.; Westerink, J. Pioglitazone and the secondary prevention of cardiovascular disease. A meta-analysis of randomized-controlled trials. Cardiovasc. Diabetol. 2017, 16, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, H.; Shi, W.; Fu, S.; Wang, T.; Zhai, S.; Song, Y.; Han, J. Pioglitazone and bladder cancer risk: A systematic review and meta-analysis. Cancer Med. 2018, 7, 1070–1080. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Nagashima, K.; Hamasaki, A.; Kuwamura, N.; Kawasaki, Y.; Ikeda, H.; Yamada, Y.; Inagaki, N.; Seino, Y. Sulfonylurea and glinide reduce insulin content, functional expression of KATP channels, and accelerate apoptotic β-cell death in the chronic phase. Diabetes Res. Clin. Pract. 2007, 77, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Fioretto, P.; Zambon, A.; Rossato, M.; Busetto, L.; Vettor, R. SGLT2 inhibitors and the diabetic kidney. Diabetes Care 2016, 39 (Suppl. S2), S165–S171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Jardine, M.; Heerspink, H.; Neuen, B.; Li, Q.; Arnott, C.; Mahaffey, K.; Perkovic, V.; Neal, B. Effects of SGLT2 inhibitors on stroke in type 2 diabetes according to baseline kidney function. J. Am. Coll. Cardiol. 2020, 75 (Suppl. S1), 221. [Google Scholar] [CrossRef]
- Zhou, Z.; Jardine, M.J.; Li, Q.; Neuen, B.L.; Cannon, C.P.; de Zeeuw, D.; Edwards, R.; Levin, A.; Mahaffey, K.W.; Perkovic, V.; et al. Effect of SGLT2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease: Results from the CREDENCE Trial and meta-analysis. Stroke 2021, 52, 1545–1556. [Google Scholar] [CrossRef] [PubMed]
- Ata, F.; Yousaf, Z.; Khan, A.A.; Razok, A.; Akram, J.; Ali, E.A.H.; Abdalhadi, A.; Ibrahim, D.A.; Al Mohanadi, D.; Danjuma, M.I. SGLT-2 inhibitors associated euglycemic and hyperglycemic DKA in a multicentric cohort. Sci. Rep. 2021, 11, 10293. [Google Scholar] [CrossRef]
- Trachtenbarg, D.E. Diabetic ketoacidosis. Am. Fam. Physician 2005, 71, 1705–1714. [Google Scholar] [PubMed]
- Westerberg, D.P. Diabetic ketoacidosis: Evaluation and treatment. Am. Fam. Physician 2013, 87, 337–346. [Google Scholar]
Variable | Value |
---|---|
Ischemic, n (%) | 48 (94.1%) |
Sex, n (%) | Male 37 (72.5%), Female 14 (27.5) |
Age, y | 71 (63, 77) |
BMI, kg/m2 | 24.3 (22.2, 27.2) |
BH, m | 1.64 (1.60, 1.69) |
BW, kg | 65 (58, 78) |
Alb, g/L | 41 (39, 44) |
Cre, mmol/L | 72.5 (57.5, 86.6) |
eGFR, mL·min−1·m−2 BSA | 68.2 (56.5, 83.5) |
HbA1c, % (NGSP) | 9.3 (7.6, 11.0) |
Hct, % | 43.1 (40.2, 44.7) |
Glucose, mmol/L | 14.54 (12.82, 17.43) |
TC, mmol/L | 5.35 (4.73, 6.36) |
LDL, mmol/L | 3.28 (2.67, 3.94) |
HDL, mmol/L | 1.33 (1.07, 1.74) |
TG, mmol/L | 1.51 (0.89, 2.17) |
hs-CRP, µg/L | 1900 (600, 4000) |
NIHSS at admission | 2 (1, 4) |
NIHSS at discharge | 1 (0, 3) |
Hospitalization, days | 8 (8, 9) |
Discharge to home, n (%) | 23 (45.1%) |
N | 51 |
---|---|
Energy-restricted diet, kcal | 1400 (1200, 1400) |
Carb restriction, g | 140 (120, 160) |
BG adm, mmol/L | 14.5 (12.8, 17.4) |
Day-3 FBG, mmol/L | 8.9 (7.4, 10.3) |
Day-7 FBG, mmol/L | 6.6 (5.8, 7.8) |
Day-7 FBG < 7.0 mmol/L, n (%) | 33 (64.7%) |
Hct adm, % | 43.1 (40.2, 44.7) |
Day-7 Hct, % | 40.6 (39.1, 42.9) |
U-glu score adm | 3.5 (1.6, 4) |
U-glu score on day 7 | 4 (4, 4) |
U-ketone score adm | 0 (0, 0) |
U-ketone score on day 7 | 2 (0, 3) |
N | At Admission | On Day 3 | On Day 7 | ||
---|---|---|---|---|---|
BG, mmol/L | 14.5 (12.8, 17.4) | → | 8.9 (7.4, 10.3) | → | 6.6 (5.8, 7.8) |
p-value | <0.0001 | <0.0001 |
N | At Admission | On Day 7 | p-Value |
---|---|---|---|
BG adm, mmol/L | 14.5 (12.8, 17.4) | 6.6 (5.8, 7.8) | <0.0001 |
Hct, % | 43.1 (40.2, 44.7) | 40.6 (39.1, 42.9) | 0.0072 |
U-glu score | 3.5 (1.6, 4) | 4 (4, 4) | <0.0001 |
U-ketone score | 0 (0, 0) | 2 (0, 3) | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, T.; Yoshioka, K.; Tanno, Y.; Kasakura, S. Safety and Effectiveness of Sodium–Glucose Cotransporter 2 Inhibitor Combined with Medical Nutrition Therapy for Hyperglycemia in Acute Stroke: A Retrospective Study. Metabolites 2022, 12, 25. https://doi.org/10.3390/metabo12010025
Mori T, Yoshioka K, Tanno Y, Kasakura S. Safety and Effectiveness of Sodium–Glucose Cotransporter 2 Inhibitor Combined with Medical Nutrition Therapy for Hyperglycemia in Acute Stroke: A Retrospective Study. Metabolites. 2022; 12(1):25. https://doi.org/10.3390/metabo12010025
Chicago/Turabian StyleMori, Takahisa, Kazuhiro Yoshioka, Yuhei Tanno, and Shigen Kasakura. 2022. "Safety and Effectiveness of Sodium–Glucose Cotransporter 2 Inhibitor Combined with Medical Nutrition Therapy for Hyperglycemia in Acute Stroke: A Retrospective Study" Metabolites 12, no. 1: 25. https://doi.org/10.3390/metabo12010025
APA StyleMori, T., Yoshioka, K., Tanno, Y., & Kasakura, S. (2022). Safety and Effectiveness of Sodium–Glucose Cotransporter 2 Inhibitor Combined with Medical Nutrition Therapy for Hyperglycemia in Acute Stroke: A Retrospective Study. Metabolites, 12(1), 25. https://doi.org/10.3390/metabo12010025