Prediction of Healthy Pregnancy Outcomes in Women with Overweight and Obesity: The Role of Maternal Early-Pregnancy Metabolites
Abstract
:1. Introduction
2. Results
2.1. Subject Characteristics
2.2. Model Selection
2.3. Maternal Metabolites
2.4. Sensitivity Analyses
3. Discussion
3.1. Interpretation of Main Findings
3.2. Methodological Considerations
4. Materials and Methods
4.1. Subjects
4.2. Maternal Clinical Candidate Predictors
4.3. Maternal Metabolites
4.4. Healthy Pregnancy Outcome
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, S.; Voerman, E.; Amiano, P.; Barros, H.; Beilin, L.J.; Bergstrom, A.; Charles, M.A.; Chatzi, L.; Chevrier, C.; Chrousos, G.P.; et al. Impact of maternal body mass index and gestational weight gain on pregnancy complications: An individual participant data meta-analysis of european, north american and australian cohorts. BJOG 2019, 126, 984–995. [Google Scholar] [CrossRef]
- Martin, J.A.; Hamilton, B.E.; Osterman, M.J.K.; Driscoll, A.K.; Drake, P. Births: Final data for 2017. Natl. Vital Stat. Rep. 2018, 67, 1–50. [Google Scholar] [PubMed]
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.B.; Narwal, R.; Adler, A.; Vera Garcia, C.; Rohde, S.; Say, L.; et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 2012, 379, 2162–2172. [Google Scholar] [CrossRef] [Green Version]
- Catalano, P.M.; Shankar, K. Obesity and pregnancy: Mechanisms of short term and long term adverse consequences for mother and child. BMJ 2017, 356, j1. [Google Scholar] [CrossRef] [PubMed]
- Nelson, S.M.; Matthews, P.; Poston, L. Maternal metabolism and obesity: Modifiable determinants of pregnancy outcome. Hum. Reprod. Update 2010, 16, 255–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denison, F.C.; Aedla, N.R.; Keag, O.; Hor, K.; Reynolds, R.M.; Milne, A.; Diamond, A.; on behalf of the Royal College of Obstetricians and Gynaecologistss. Care of women with obesity in pregnancy: Green-top guideline no. 72. BJOG 2019, 126, e62–e106. [Google Scholar] [CrossRef] [Green Version]
- Jarvie, E.; Ramsay, J.E. Obstetric management of obesity in pregnancy. Semin. Fetal Neonatal Med. 2010, 15, 83–88. [Google Scholar] [CrossRef]
- Commissie Kwaliteit NVOG. Nederlandse Vereniging voor Obstetrie en Gynaecologie; Zwangerschap bij Obesitas: 2009. Available online: https://www.nvog.nl/wp-content/uploads/2017/12/Zwangerschap-bij-obesitas-1.0-12-06-2009.pdf (accessed on 28 November 2021).
- Relph, S.; Guo, Y.; Harvey, A.L.J.; Vieira, M.C.; Corsi, D.J.; Gaudet, L.M.; Pasupathy, D. Characteristics associated with uncomplicated pregnancies in women with obesity: A population-based cohort study. BMC Pregnancy Childbirth 2021, 21, 182. [Google Scholar] [CrossRef]
- Vieira, M.C.; White, S.L.; Patel, N.; Seed, P.T.; Briley, A.L.; Sandall, J.; Welsh, P.; Sattar, N.; Nelson, S.M.; Lawlor, D.A.; et al. Prediction of uncomplicated pregnancies in obese women: A prospective multicentre study. BMC Med. 2017, 15, 194. [Google Scholar] [CrossRef] [Green Version]
- Achterberg, P.W.; Harbers, M.M.; Post, N.A.M.; Visscher, K. Beter weten: Een beter begin: Samen sneller naar een betere zorg rond de zwangerschap. In Knowing More: A Better Start: Better and Faster Collaboration to Improve Maternity Care; Rijksinstituut voor Volksgezondheid en Milieu RIVM: Utrecht, The Netherlands, 2020. [Google Scholar]
- NHS England. Better Births: Improving Outcomes of Maternity Services in England: A Five Year Forward View for Maternity Care; National Health Service: London, UK, 2016.
- Knight, M. Sharper focus on uncomplicated pregnancy. BMJ 2013, 347, f6470. [Google Scholar] [CrossRef]
- Iacobini, C.; Pugliese, G.; Blasetti Fantauzzi, C.; Federici, M.; Menini, S. Metabolically healthy versus metabolically unhealthy obesity. Metabolism 2018, 92, 51–60. [Google Scholar] [CrossRef]
- Pétursdóttir Maack, H.; Larsson, A.; Axelsson, O.; Olovsson, M.; Wikström, A.K.; Sundström Poromaa, I. Pregnancy in metabolic healthy and unhealthy obese women. Acta Obstet. Gynecol. Scand. 2020, 99, 1640–1648. [Google Scholar] [CrossRef]
- Wahab, R.J.; Jaddoe, V.W.V.; Voerman, E.; Ruijter, G.J.G.; Felix, J.F.; Marchioro, L.; Uhl, O.; Shokry, E.; Koletzko, B.; Gaillard, R. Maternal body mass index, early-pregnancy metabolite profile and birthweight. J. Clin. Endocrinol. Metab. 2021, 107, e315–e327. [Google Scholar] [CrossRef] [PubMed]
- McBride, N.; Yousefi, P.; White, S.L.; Poston, L.; Farrar, D.; Sattar, N.; Nelson, S.M.; Wright, J.; Mason, D.; Suderman, M.; et al. Do nuclear magnetic resonance (nmr)-based metabolomics improve the prediction of pregnancy-related disorders? Findings from a uk birth cohort with independent validation. BMC Med. 2020, 18, 366. [Google Scholar] [CrossRef] [PubMed]
- Practice bulletin no 156: Obesity in pregnancy. Obstet. Gynecol. 2015, 126, e112–e126. [CrossRef] [PubMed]
- National Institute of Health and Care Excellence. Weight Management before, during and after Pregnancy. 2010. Available online: https://www.nhs.uk/Planners/pregnancycareplanner/Documents/NICE_reference_weight_management_pregnancy.pdf (accessed on 28 November 2021).
- Godfrey, K.M.; Reynolds, R.M.; Prescott, S.L.; Nyirenda, M.; Jaddoe, V.W.; Eriksson, J.G.; Broekman, B.F. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 2017, 5, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Shokry, E.; Marchioro, L.; Uhl, O.; Bermúdez, M.G.; García-Santos, J.A.; Segura, M.T.; Campoy, C.; Koletzko, B. Impact of maternal bmi and gestational diabetes mellitus on maternal and cord blood metabolome: Results from the preobe cohort study. Acta Diabetol. 2019, 56, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Huerta, O.D.; Pastor-Villaescusa, B.; Gil, A. Are we close to defining a metabolomic signature of human obesity? A systematic review of metabolomics studies. Metabolomics 2019, 15, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellmuth, C.; Lindsay, K.L.; Uhl, O.; Buss, C.; Wadhwa, P.D.; Koletzko, B.; Entringer, S. Association of maternal prepregnancy bmi with metabolomic profile across gestation. Int. J. Obes. 2017, 41, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Catalano, P.; Demouzon, S.H. Maternal obesity and metabolic risk to the offspring: Why lifestyle interventions may have not achieved the desired outcomes. Int. J. Obes. 2015, 39, 642–649. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues-Krause, J.; Krause, M.; Rocha, I.; Umpierre, D.; Fayh, A.P.T. Association of l-arginine supplementation with markers of endothelial function in patients with cardiovascular or metabolic disorders: A systematic review and meta-analysis. Nutrients 2018, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- McKnight, J.R.; Satterfield, M.C.; Jobgen, W.S.; Smith, S.B.; Spencer, T.E.; Meininger, C.J.; McNeal, C.J.; Wu, G. Beneficial effects of l-arginine on reducing obesity: Potential mechanisms and important implications for human health. Amino Acids 2010, 39, 349–357. [Google Scholar] [CrossRef]
- Hu, S.; Han, M.; Rezaei, A.; Li, D.; Wu, G.; Ma, X. L-arginine modulates glucose and lipid metabolism in obesity and diabetes. Curr. Protein Pept. Sci. 2017, 18, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Bazer, F.W.; Davis, T.A.; Kim, S.W.; Li, P.; Marc Rhoads, J.; Carey Satterfield, M.; Smith, S.B.; Spencer, T.E.; Yin, Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2009, 37, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.N.; Tain, Y.L. Impact of arginine nutrition and metabolism during pregnancy on offspring outcomes. Nutrients 2019, 11, 1452. [Google Scholar] [CrossRef] [Green Version]
- Terstappen, F.; Tol, A.J.C.; Gremmels, H.; Wever, K.E.; Paauw, N.D.; Joles, J.A.; Beek, E.M.V.; Lely, A.T. Prenatal amino acid supplementation to improve fetal growth: A systematic review and meta-analysis. Nutrients 2020, 12, 2535. [Google Scholar] [CrossRef]
- Kooijman, M.N.; Kruithof, C.J.; van Duijn, C.M.; Duijts, L.; Franco, O.H.; van IJzendoorn, M.H.; de Jongste, J.C.; Klaver, C.C.; van der Lugt, A.; Mackenbach, J.P.; et al. The generation r study: Design and cohort update 2017. Eur. J. Epidemiol. 2016, 31, 1243–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaddoe, V.W.; van Duijn, C.M.; van der Heijden, A.J.; Mackenbach, J.P.; Moll, H.A.; Steegers, E.A.; Tiemeier, H.; Uitterlinden, A.G.; Verhulst, F.C.; Hofman, A. The generation r study: Design and cohort update until the age of 4 years. Eur. J. Epidemiol. 2008, 23, 801–811. [Google Scholar] [CrossRef]
- Voortman, T.; Steegers-Theunissen, R.P.M.; Bergen, N.E.; Jaddoe, V.W.V.; Looman, C.W.N.; Kiefte-de Jong, J.C.; Schalekamp-Timmermans, S. Validation of a semi-quantitative food-frequency questionnaire for dutch pregnant women from the general population using the method or triads. Nutrients 2020, 12, 1341. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, R.; Bakker, R.; Willemsen, S.P.; Hofman, A.; Steegers, E.A.; Jaddoe, V.W. Blood pressure tracking during pregnancy and the risk of gestational hypertensive disorders: The generation r study. Eur. Heart J. 2011, 32, 3088–3097. [Google Scholar] [CrossRef] [Green Version]
- Kruithof, C.J.; Kooijman, M.N.; van Duijn, C.M.; Franco, O.H.; de Jongste, J.C.; Klaver, C.C.; Mackenbach, J.P.; Moll, H.A.; Raat, H.; Rings, E.H.; et al. The generation r study: Biobank update 2015. Eur. J. Epidemiol. 2014, 29, 911–927. [Google Scholar] [CrossRef]
- Verlohren, S.; Galindo, A.; Schlembach, D.; Zeisler, H.; Herraiz, I.; Moertl, M.G.; Pape, J.; Dudenhausen, J.W.; Denk, B.; Stepan, H. An automated method for the determination of the sflt-1/pigf ratio in the assessment of preeclampsia. Am. J. Obstet. Gynecol. 2010, 202, 161.e1–161.e11. [Google Scholar] [CrossRef] [PubMed]
- Adank, M.C.; Benschop, L.; Peterbroers, K.R.; Smak Gregoor, A.M.; Kors, A.W.; Mulder, M.T.; Schalekamp-Timmermans, S.; Roeters Van Lennep, J.E.; Steegers, E.A.P. Is maternal lipid profile in early pregnancy associated with pregnancy complications and blood pressure in pregnancy and long term postpartum? Am. J. Obstet. Gynecol. 2019, 221, e113–e150. [Google Scholar] [CrossRef] [Green Version]
- Wahab, R.J.; Jaddoe, V.W.V.; Roest, A.A.W.; Toemen, L.; Gaillard, R. Associations of maternal glycemia in the first half of pregnancy with alterations in cardiac structure and function in childhood. Diabetes Care 2020, 43, 2272–2280. [Google Scholar] [CrossRef] [PubMed]
- Ernst, G.D.; de Jonge, L.L.; Hofman, A.; Lindemans, J.; Russcher, H.; Steegers, E.A.; Jaddoe, V.W. C-reactive protein levels in early pregnancy, fetal growth patterns, and the risk for neonatal complications: The generation r study. Am. J. Obstet. Gynecol. 2011, 205, 132.e1–132.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadlock, F.P.; Harrist, R.B.; Sharman, R.S.; Deter, R.L.; Park, S.K. Estimation of fetal weight with the use of head, body, and femur measurements--a prospective study. Am. J. Obstet. Gynecol. 1985, 151, 333–337. [Google Scholar] [CrossRef]
- Gaillard, R.; Steegers, E.A.; de Jongste, J.C.; Hofman, A.; Jaddoe, V.W. Tracking of fetal growth characteristics during different trimesters and the risks of adverse birth outcomes. Int. J. Epidemiol. 2014, 43, 1140–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaillard, R.; Steegers, E.A.P.; Tiemeier, H.; Hofman, A.; Jaddoe, V.W.V. Placental vascular dysfunction, fetal and childhood growth, and cardiovascular development: The generation r study. Circulation 2013, 128, 2202–2210. [Google Scholar] [CrossRef] [Green Version]
- Voerman, E.; Jaddoe, V.W.V.; Uhl, O.; Shokry, E.; Horak, J.; Felix, J.F.; Koletzko, B.; Gaillard, R. A population-based resource for intergenerational metabolomics analyses in pregnant women and their children: The generation r study. Metabolomics 2020, 16, 43. [Google Scholar] [CrossRef] [Green Version]
- Ussher, J.R.; Elmariah, S.; Gerszten, R.E.; Dyck, J.R. The emerging role of metabolomics in the diagnosis and prognosis of cardiovascular disease. J. Am. Coll. Cardiol. 2016, 68, 2850–2870. [Google Scholar] [CrossRef]
- Newgard, C.B. Metabolomics and metabolic diseases: Where do we stand? Cell Metab. 2017, 25, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Harder, U.; Koletzko, B.; Peissner, W. Quantification of 22 plasma amino acids combining derivatization and ion-pair lc-ms/ms. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 495–504. [Google Scholar] [CrossRef]
- IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature and symbolism for amino acids and peptides. Recommendations 1983. Eur. J. Biochem. 1984, 138, 9–37. [Google Scholar] [CrossRef] [PubMed]
- Hellmuth, C.; Weber, M.; Koletzko, B.; Peissner, W. Nonesterified fatty acid determination for functional lipidomics: Comprehensive ultrahigh performance liquid chromatography-tandem mass spectrometry quantitation, qualification, and parameter prediction. Anal. Chem. 2012, 84, 1483–1490. [Google Scholar] [CrossRef] [PubMed]
- Uhl, O.; Fleddermann, M.; Hellmuth, C.; Demmelmair, H.; Koletzko, B. Phospholipid species in newborn and 4 month old infants after consumption of different formulas or breast milk. PLoS ONE 2016, 11, e0162040. [Google Scholar] [CrossRef]
- Niklasson, A.; Ericson, A.; Fryer, J.G.; Karlberg, J.; Lawrence, C.; Karlberg, P. An update of the swedish reference standards for weight, length and head circumference at birth for given gestational age (1977–1981). Acta Paediatr. Scand. 1991, 80, 756–762. [Google Scholar] [CrossRef] [PubMed]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
Total Group (n = 1180) | Healthy Pregnancy Outcome (n = 293) | Any Adverse Pregnancy Outcome (n = 887) | |
---|---|---|---|
Early-pregnancy characteristics | |||
Gestational age at measurement, median (95% range), weeks | 12.9 (9.6; 17.3) | 12.9 (8.2; 17.2) | 12.9 (9.8; 17.4) |
Age, mean (SD), years | 31.1 (4.4) | 30.2 (4.5) | 31.3 (4.4) |
Prepregnancy Body Mass Index, median (95% range), kg/m2 | 26.6 (23.0; 38.1) | 26.5 (23.4; 36.7) | 26.7 (23.0; 38.5) |
Prepregnancy obesity, n yes (%) | 228 (23) | 42 (19) | 186 (24) |
Early-pregnancy Body Mass Index, median (95% range), kg/m2 | 27.6 (25.0; 38.6) | 27.7 (25.1; 38.9) | 27.7 (25.1; 38.9) |
Early-pregnancy obesity, n yes (%) | 297 (28) | 63 (24) | 234 (30) |
Parity, n multiparous (%) | 518 (44) | 140 (48) | 378 (43) |
Education, n higher education (%) | 522 (45) | 119 (41) | 403 (46) |
Income, n > 2200 euro (%) | 714 (71) | 167 (68) | 547 (71) |
Relationship status, n married or living together (%) | 1070 (94) | 254 (90) | 816 (95) |
History of obstetric complications, n no (%) | 392 (97) | 97 (97) | 295 (97) |
Smoking, n no (%) | 779 (72) | 185 (70) | 594 (72) |
Folic acid supplementation, n yes (%) | 837 (86) | 190 (83) | 647 (88) |
Fruit consumption, n ≥ 200 grams/day, n yes (%) | 638 (54) | 164 (64) | 474 (61) |
Vegetable consumption, n ≥ 250 grams/day, n yes (%) | 67 (6) | 18 (7) | 49 (6) |
Energy intake, mean (SD), kcal/day | 2090 (508) | 2062 (517) | 2101 (505) |
Carbohydrate intake, mean (SD), g/day | 256 (75) | 252 (78) | 257 (74) |
Fat intake, mean (SD), g/day | 84 (24) | 83 (23) | 84 (24) |
Protein intake, mean (SD), g/day | 77 (19) | 76 (20) | 78 (19) |
Systolic blood pressure, mean (SD), mmHg | 123 (13) | 122 (13) | 122 (13) |
Diastolic blood pressure, mean (SD), mmHg | 73.1 (9.9) | 72 (10) | 73 (10) |
Glucose, mean (SD), mmol/L | 4.5 (0.9) | 4.4 (0.7) | 4.5 (0.9) |
HDL-concentrations, mean (SD), mmol/L | 1.7 (0.3) | 1.7 (0.3) | 1.7 (0.3) |
Triglycerides concentrations, median (95% range), mmol/L | 1.4 (0.7; 2.8) | 1.4 (0.7; 2.7) | 1.4 (0.7; 2.8) |
CRP concentrations, median (95% range), mg/L | 4.9 (0.9; 9.6) | 5.2 (0.8; 9.7) | 4.8 (0.9; 9.6) |
Placental growth factor, median (95% range), mom | 0.99 (0.42; 4.21) | 1.05 (0.39; 3.86) | 0.99 (0.39; 4.31) |
sFlt-1, median, (95% range), mom | 1.00 (0.41; 2.60) | 1.02 (0.42; 2.59) | 0.99 (0.39; 2.62) |
Mid-pregnancy characteristics | |||
Gestational age at measurement, median (95% range), weeks | 20.6 (18.7; 23.3) | 20.4 (18.7; 23.3) | 20.5 (18.8; 23.5) |
Mid-pregnancy weight, median (95% range), kg/m2 | 84.0 (69.0; 116.0) | 82.0 (67.5; 112.2) | 84.8 (70.0; 117.0) |
Gestational weight gain, median (95% range), kg/week | 0.29 (−0.19; 0.71) | 0.24 (−0.24; 0.67) | 0.30 (−0.15; 0.72) |
Systolic blood pressure, mean (SD), mmHg | 123 (12) | 122 (11) | 125 (13) |
Diastolic blood pressure, mean (SD), mmHg | 72 (10) | 71 (9) | 72 (10) |
25(OH)D concentrations, median (95% range), nmol/L | 60.1 (16.3; 121.9) | 59.9 (13.5; 114.2) | 60.3 (16.6; 122.7) |
Placental growth factor, median (95% range), mom | 1.00 (0.39; 3.15) | 0.97 (0.37; 3.39) | 1.01 (0.40; 2.93) |
sFlt-1, median, (95% range), mom | 1.00 (0.33; 3.15) | 0.99 (0.31; 2.99) | 1.00 (0.33; 3.48) |
Estimated fetal weight, mean (SD), SDS | 0.01 (1.00) | −0.14 (0.97) | 0.05 (1.00) |
Uterine artery resistance index, mean (SD), SDS | 0.00 (1.00) | 0.03 (0.97) | −0.01 (1.01) |
Umbilical artery pulsatility index, mean (SD), SDS | 0.00 (1.00) | 0.08 (1.03) | −0.02 (0.99) |
Birth characteristics | |||
Sex, n female (%) | 594 (51) | 146 (50) | 448 (51) |
Gestational age at birth, median (95%), weeks | 40.3 (35.5; 42.3) | 40.3 (37.1; 42.3) | 40.3 (34.4; 42.3) |
Birthweight, mean (SD), grams | 3534 (591) | 3370 (389) | 3590 (635) |
Model Selection Based on Clusters of Maternal Clinical Candidate Predictors | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Models | Variables Included per Model | AUC (95% CI) | Sensitivity at Specificity (%) | Positive Likelihood Ratio at Specificity | p-Value * | |||||
70% | 80% | 90% | 70% | 80% | 90% | |||||
Early-pregnancy (red line) | Age + relationship status + parity + BMI + early-pregnancy systolic blood pressure + early-pregnancy CRP concentrations | 0.61 (0.58; 0.65) | 48 | 37 | 23 | 1.6 | 1.9 | 2.3 | ||
Full maternal (blue line) | Age + relationship status + parity + BMI + mid-pregnancy gestational weight gain + mid-pregnancy systolic blood pressure + mid-pregnancy estimated fetal weight | 0.65 (0.61; 0.68) | 50 | 41 | 23 | 1.7 | 2.1 | 2.3 | 0.016 |
Multivariable, Early-Pregnancy Model OR (95% CI) * | Multivariable, Mid-Pregnancy Model OR (95% CI) * | |
---|---|---|
Early-pregnancy characteristics | ||
Intercept | 36.80 | 102.26 |
Age (per 1 year increase) | 0.94 (0.91 to 0.97) | 0.94 (0.91 to 0.97) |
Relationship status | ||
No partner | Reference | Reference |
Married or in a relationship | 0.60 (0.36 to 1.00) | 0.58 (0.35 to 0.98) |
Missing | 0.98 (0.41 to 2.31) | 0.88 (0.36 to 2.11) |
Parity | ||
Nulliparous | Reference | Reference |
Multiparous | 1.41 (1.06 to 1.87) | 1.37 (1.03 to 1.82) |
BMI (per 1 kg/m2 increase) | 0.96 (0.92 to 1.00) | 0.96 (0.92 to 1.00) |
Systolic blood pressure (per 10 mmHg increase) | 0.91 (0.81 to 1.03) | |
CRP concentrations | 1.05 (0.98 to 1.13) | |
Mid-pregnancy characteristics | ||
Gestational weight gain (per 1 kg/week increase) | 0.44 (0.22 to 0.89) | |
Systolic blood pressure (per 10 mmHg) | 0.89 (0.79 to 1.00) | |
Estimated fetal weight | ||
First quintile | 1.10 (0.71 to 1.72) | |
Second quintile | 0.82 (0.51 to 1.29) | |
Third quintile | Reference | |
Fourth quintile | 0.79 (0.50 to 1.26) | |
Fifth quintile | 0.49 (0.30 to 0.82) | |
Missing | 1.18 (0.70 to 1.98) |
No Adverse Outcome of Pregnancy | |||||||||
---|---|---|---|---|---|---|---|---|---|
Models | Variables Included per Model | AUC (95% CI) | Sensitivity at Specificity (%) | Positive Likelihood Ratio | p-Value * | ||||
70% | 80% | 90% | 70% | 80% | 90% | ||||
Metabolomics (n = 273) | Full model + Arg + NEFA.14.0 + NEFA.14.1 + NEFA.16.0 + NEFA.17.1 + NEFA.20.3 | 0.70 (0.63; 0.78) | 56 | 47 | 37 | 1.9 | 2.4 | 3.7 | 0.240 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wahab, R.J.; Jaddoe, V.W.V.; Gaillard, R. Prediction of Healthy Pregnancy Outcomes in Women with Overweight and Obesity: The Role of Maternal Early-Pregnancy Metabolites. Metabolites 2022, 12, 13. https://doi.org/10.3390/metabo12010013
Wahab RJ, Jaddoe VWV, Gaillard R. Prediction of Healthy Pregnancy Outcomes in Women with Overweight and Obesity: The Role of Maternal Early-Pregnancy Metabolites. Metabolites. 2022; 12(1):13. https://doi.org/10.3390/metabo12010013
Chicago/Turabian StyleWahab, Rama J., Vincent W. V. Jaddoe, and Romy Gaillard. 2022. "Prediction of Healthy Pregnancy Outcomes in Women with Overweight and Obesity: The Role of Maternal Early-Pregnancy Metabolites" Metabolites 12, no. 1: 13. https://doi.org/10.3390/metabo12010013
APA StyleWahab, R. J., Jaddoe, V. W. V., & Gaillard, R. (2022). Prediction of Healthy Pregnancy Outcomes in Women with Overweight and Obesity: The Role of Maternal Early-Pregnancy Metabolites. Metabolites, 12(1), 13. https://doi.org/10.3390/metabo12010013