Multi-Modal Mass Spectrometric Imaging of Uveal Melanoma
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Lipid Metabolism in UM Patients
3.2. Elemental Pathology of UM
3.3. Linking Tumour Metabolomic Heterogeneity to Clinical and Pathological Details
4. Materials and Methods
4.1. Sample Preparation
4.2. MALDI Matrix Deposition
4.3. Instrumentation
4.4. Haematoxylin and Eosin Staining
4.5. Statistical Analysis Using MALDI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Linge, A.; Kennedy, S.; O’Flynn, D.; Beatty, S.; Moriarty, P.; Henry, M.; Clynes, M.; Larkin, A.; Meleady, P. Differential Expression of Fourteen Proteins between Uveal Melanoma from Patients Who Subsequently Developed Distant Metastases versus Those Who Did Not. Investig. Opthalmol. Vis. Sci. 2012, 53, 4634–4643. [Google Scholar] [CrossRef] [Green Version]
- Jager, M.J.; Shields, C.L.; Cebulla, C.M.; Abdel-Rahman, M.H.; Grossniklaus, H.E.; Stern, M.H.; Carvajal, R.D.; Belfort, R.N.; Jia, R.; Shields, J.A.; et al. Uveal melanoma. Nat. Rev. Dis Prim. 2020, 6, 24. [Google Scholar] [CrossRef]
- Sisley, K.; Rennie, I.G.; Parsons, M.A.; Jacques, R.; Hammond, D.W.; Bell, S.M.; Potter, A.M.; Rees, R.C. Abnormalities of chromosomes 3 and 8 in posterior uveal melanoma correlate with prognosis. Genes Chromosomes Cancer 1997, 19, 22–28. [Google Scholar] [CrossRef]
- Robertson, A.G.; Shih, J.; Yau, C.; Gibb, E.A.; Oba, J.; Mungall, K.L.; Hess, J.M.; Uzunangelov, V.; Walter, V.; Danilova, L.; et al. Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell 2017, 32, 204–220.e15. [Google Scholar] [CrossRef] [Green Version]
- Dogrusöz, M.; Bagger, M.; van Duinen, S.G.; Kroes, W.G.; Ruivenkamp, C.A.; Böhringer, S.; Andersen, K.K.; Luyten, G.P.; Kiilgaard, J.F.; Jager, M.J. The Prognostic Value of AJCC Staging in Uveal Melanoma Is Enhanced by Adding Chromosome 3 and 8q Status. Investig. Ophthalmol. Vis. Sci. 2017, 58, 833–842. [Google Scholar] [CrossRef] [Green Version]
- Casadonte, R.; Caprioli, R.M. Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry. Nat. Protoc. 2011, 6, 1695–1709. [Google Scholar] [CrossRef] [Green Version]
- Buck, A.; Ly, A.; Balluff, B.; Sun, N.; Gorzolka, K.; Feuchtinger, A.; Janssen, K.P.; Kuppen, P.J.; van de Velde, C.J.; Weirich, G.; et al. High-resolution MALDI-FT-ICR MS imaging for the analysis of metabolites from formalin-fixed, paraffin-embedded clinical tissue samples. J. Pathol. 2015, 237, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Patel, K.A.; Edmondson, N.D.; Talbot, F.; Parsons, M.A.; Rennie, I.G.; Sisley, K. Prediction of prognosis in patients with uveal melanoma using fluorescence in situ hybridisation. Br. J. Ophthalmol. 2001, 85, 1440–1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, D.W.; Al-Shammari, N.S.; Danson, S.; Jacques, R.; Rennie, I.G.; Sisley, K. High-Resolution Array CGH Analysis Identifies Regional Deletions and Amplifications of Chromosome 8 in Uveal Melanoma. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3460–3466. [Google Scholar] [CrossRef] [Green Version]
- Willier, S.; Butt, E.; Grunewald, T.G. Lysophosphatidic acid (LPA) signalling in cell migration and cancer invasion: A focussed review and analysis of LPA receptor gene expression on the basis of more than 1700 cancer microarrays. Biol. Cell 2013, 105, 317–333. [Google Scholar] [CrossRef]
- Singh, A.D.; Sisley, K.; Xu, Y.; Li, J.; Faber, P.; Plummer, S.J.; Mudhar, H.S.; Rennie, I.G.; Kessler, P.M.; Casey, G.; et al. Reduced expression of autotaxin predicts survival in uveal melanoma. Br. J. Ophthalmol. 2007, 91, 1385–1392. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matusch, A.; Depboylu, C.; Palm, C.; Wu, B.; Höglinger, G.U.; Schäfer, M.K.-H.; Becker, S.J. Cerebral bioimaging of Cu, Fe, Zn, and Mn in the MPTP mouse model of Parkinson’s disease using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J. Am. Soc. Mass Spectrom. 2010, 21, 161–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matusch, A.; Becker, S.J. Bio-imaging of Metals in a Mouse Model of Alzheimer’s Disease by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Biomed. Spectrosc. Imaging 2012, 1, 57–65. [Google Scholar] [CrossRef]
- Riesop, D.; Hirner, A.V.; Rusch, P.; Bankfalvi, A. Zinc distribution within breast cancer tissue: A possible marker for histological grading? J. Cancer Res. Clin. Oncol. 2015, 141, 1321–1331. [Google Scholar] [CrossRef]
- Kindness, A.; Sekaran, C.N.; Feldmann, J. Two-Dimensional Mapping of Copper and Zinc in Liver Sections by Laser Ablation–Inductively Coupled Plasma Mass Spectrometry. Clin. Chem. 2003, 49, 1916–1923. [Google Scholar] [CrossRef] [Green Version]
- Grattan, B.; Freake, H. Zinc and Cancer: Implications for LIV-1 in Breast Cancer. Nutrients 2012, 4, 648–675. [Google Scholar] [CrossRef] [Green Version]
- Ferris, J.D.; Bloom, P.A.; Goddard, P.R.; Collins, C. Quantification of melanin and iron content in uveal malignant melanomas and correlation with magnetic resonance image. Br. J. Ophthalmol. 1993, 77, 297–301. [Google Scholar] [CrossRef]
- Wang, F.; Jiao, P.; Qi, M.; Frezza, M.; Dou, Q.P.; Yan, B. Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry. Curr. Med. Chem. 2010, 17, 2685–2698. [Google Scholar] [CrossRef] [Green Version]
- Sen, C.K.; Khanna, S.; Venojarvi, M.; Trikha, P.; Ellison, E.C.; Hunt, T.K.; Roy, S. Copper-induced vascular endothelial growth factor expression and wound healing. Am. J. Physiol. Heart Circ. Physiol. 2002, 282, H1821–H1827. [Google Scholar] [CrossRef] [Green Version]
- Soncin, F.; Guitton, J.D.; Cartwright, T.; Badet, J. Interaction of human angiogenin with copper modulates angiogenin binding to endothelial cells. Biochem. Biophys. Res. Commun. 1997, 236, 604–610. [Google Scholar] [CrossRef] [Green Version]
- Finney, L.; Mandava, S.; Ursosy, L.; Zhang, W.; Rodi, D.; Vogt, S.; Legnini, D.; Maser, J.; Ikpatt, F.; Olopade, O.I.; et al. X-ray fluorescence microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis. Proc. Natl. Acad. Sci. USA 2007, 104, 2247–2252. [Google Scholar] [CrossRef] [Green Version]
- Takeda, A.; Goto, K.; Okada, S. Zinc depletion suppresses tumor growth in mice. Biol. Trace Elem. Res. 1997, 59, 23–29. [Google Scholar] [CrossRef]
- Prasad, A.S.; Mantzoros, C.S.; Beck, F.W.; Hess, J.W.; Brewer, G.J. Zinc status and serum testosterone levels of healthy adults. Nutrition 1996, 12, 344–348. [Google Scholar] [CrossRef]
- Vallee, B.L.; Auld, D.S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 1990, 29, 5647–5659. [Google Scholar] [CrossRef]
- Solano, F. On the Metal Cofactor in the Tyrosinase Family. Int. J. Mol. Sci. 2018, 19, 633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swales, J.G.; Dexter, A.; Hamm, G.; Nilsson, A.; Strittmatter, N.; Michopoulos, F.; Hardy, C.; Morentin-Gutierrez, P.; Mellor, M.; Andren, P.E.; et al. Quantitation of Endogenous Metabolites in Mouse Tumors Using Mass-Spectrometry Imaging. Anal. Chem. 2018, 90, 6051–6058. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Mao, X.; Sun, C.; Luo, Z.; Song, X.; Li, X.; Zhang, R.; Lv, Y.; Chen, J.; He, J.; et al. A graphical data processing pipeline for mass spectrometry imaging-based spatially resolved metabolomics on tumor heterogeneity. Anal. Chim. Acta 2019, 1077, 183–190. [Google Scholar] [CrossRef] [PubMed]
Patient | Clinical and Pathological Details | Survival | Chromosomes 3 and 8 Status Determined by FISH | aCGH | Prognosis Determined by Genetic Biomarkers |
---|---|---|---|---|---|
A | Choroid. Diameter 13.8 mm | Alive at 110 months | M3 | Poor | |
B | Ciliary body, spindle cell type, diameter 20 mm | Died metastatic disease 131 months | D3 | Partial loss 3p and 3q, 6p+, −9 | Good/intermediate |
C | Choroid mixed cell type, diameter 16.4 mm | Alive at 52 months | D3 | Good/intermediate | |
D | Choroid, spindle cell B, diameter 14.9 mm | Died unknown cause 47 months | M3 | Poor | |
E | Choroid epithelioid cell type, diameter 11.1 mm | Alive 57 months | D3 | Good | |
F | Choroid mixed cell type, diameter 12.5 mm | Died metastatic disease 38 months | M3 8q+ | Very poor | |
G | Ciliary body spindle B, diameter 10.16 mm | Alive 120 months | D3 | D3, partial 8q+, 1p-, partial 2p+ 6p+, partial 11p+ | Good/intermediate |
H | Ciliary body spindle, diameter 14.7 mm | Died metastatic disease 38 months | M3 8q+ | M3, 8q+ and partial 1p-,−2,−13, | Very poor |
I | Ciliary body/choroid, epithelioid cell type, diameter 6 mm | Died metastatic disease 32 months | M3 8q+ | M3 8q+ and 1q+,4p+, 6q, −9 −10,−13,−15, 16q- | Very poor |
J | Choroid, spindle B cell type, diameter 10.3 mm | Alive at 3 months | D3 | Good | |
K | Choroid, spindle B cell type, diameter 13.6 mm | Died metastatic disease 39 months | M3, 8q+ | M3, 8q+ and i(1q), partial 6q- | Very poor |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cole, L.M.; Handley, J.; Claude, E.; Duckett, C.J.; Mudhar, H.S.; Sisley, K.; Clench, M.R. Multi-Modal Mass Spectrometric Imaging of Uveal Melanoma. Metabolites 2021, 11, 560. https://doi.org/10.3390/metabo11080560
Cole LM, Handley J, Claude E, Duckett CJ, Mudhar HS, Sisley K, Clench MR. Multi-Modal Mass Spectrometric Imaging of Uveal Melanoma. Metabolites. 2021; 11(8):560. https://doi.org/10.3390/metabo11080560
Chicago/Turabian StyleCole, Laura M., Joshua Handley, Emmanuelle Claude, Catherine J. Duckett, Hardeep S. Mudhar, Karen Sisley, and Malcolm R. Clench. 2021. "Multi-Modal Mass Spectrometric Imaging of Uveal Melanoma" Metabolites 11, no. 8: 560. https://doi.org/10.3390/metabo11080560
APA StyleCole, L. M., Handley, J., Claude, E., Duckett, C. J., Mudhar, H. S., Sisley, K., & Clench, M. R. (2021). Multi-Modal Mass Spectrometric Imaging of Uveal Melanoma. Metabolites, 11(8), 560. https://doi.org/10.3390/metabo11080560