Reproducible Lipid Alterations in Patient-Derived Breast Cancer Xenograft FFPE Tissue Identified with MALDI MSI for Pre-Clinical and Clinical Application
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Technical Reproducibility in Patient Derived Breast Cancer Xenograft
2.2. Lipidomic Differences between Tumor and Necrotic Areas of Xenograft Tumors
2.3. Differences Observed in the Tumor Lipidomes of Treated and Control Xenograft
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Biological Materials
4.3. Sample Preparation and MALDI-MSI Analysis with Rapiflex
4.4. Histopathological Assessment
4.5. Data Analysis
4.6. Lipids Identification by MALDI FT-ICR
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Fernández, L.P.; Gómez de Cedrón, M.; Ramírez de Molina, A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front. Oncol. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Glunde, K.; Jiang, L.; Moestue, S.A.; Gribbestad, I.S. MRS and MRSI guidance in molecular medicine: Targeting and monitoring of choline and glucose metabolism in cancer. NMR Biomed. 2011, 24, 673–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graça, G.; Lau, C.-H.E.; Gonçalves, L.G. Exploring Cancer Metabolism: Applications of Metabolomics and Metabolic Phenotyping in Cancer Research and Diagnostics. In Tumor Microenvironment: The Main Driver of Metabolic Adaptation; Serpa, J., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 367–385. [Google Scholar]
- Dey, P.; Kimmelman, A.C.; DePinho, R.A. Metabolic Codependencies in the Tumor Microenvironment. Cancer Discov. 2021, 11, 1067–1081. [Google Scholar] [CrossRef] [PubMed]
- Buszewska-Forajta, M.; Patejko, M.; Macioszek, S.; Sigorski, D.; Iżycka-Świeszewska, E.; Markuszewski, M.J. Paraffin-Embedded Tissue as a Novel Matrix in Metabolomics Study: Optimization of Metabolite Extraction Method. Chromatographia 2019, 82, 1501–1513. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Breitkopf, S.B.; Yang, X.; Asara, J.M. A positive/negative ion–switching, targeted mass spectrometry–based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 2012, 7, 872–881. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Li, T.; Song, X.; Huang, L.; Zang, Q.; Xu, J.; Bi, N.; Jiao, G.; Hao, Y.; Chen, Y.; et al. Spatially resolved metabolomics to discover tumor-associated metabolic alterations. Proc. Natl. Acad. Sci. USA 2019, 116, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Engstrøm, M.J.; Opdahl, S.; Hagen, A.I.; Romundstad, P.R.; Akslen, L.A.; Haugen, O.A.; Vatten, L.J.; Bofin, A.M. Molecular subtypes, histopathological grade and survival in a historic cohort of breast cancer patients. Breast Cancer Res. Treat. 2013, 140, 463–473. [Google Scholar] [CrossRef] [Green Version]
- Buck, A.; Ly, A.; Balluff, B.; Sun, N.; Gorzolka, K.; Feuchtinger, A.; Janssen, K.-P.; Kuppen, P.J.; van de Velde, C.J.; Weirich, G.; et al. High-resolution MALDI-FT-ICR MS imaging for the analysis of metabolites from formalin-fixed, paraffin-embedded clinical tissue samples. J. Pathol. 2015, 237, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Berghmans, E.; Jacobs, J.; Deben, C.; Hermans, C.; Broeckx, G.; Smits, E.; Maes, E.; Raskin, J.; Pauwels, P.; Baggerman, G. Mass Spectrometry Imaging Reveals Neutrophil Defensins as Additional Biomarkers for Anti-PD-(L)1 Immunotherapy Response in NSCLC Patients. Cancers (Basel) 2020, 12, 863. [Google Scholar] [CrossRef] [Green Version]
- Wigglesworth, V.B. Bound Lipid in the Tissues of Mammal and Insect: A New Histochemical Method. J. Cell Sci. 1971, 8, 709–725. [Google Scholar] [CrossRef]
- Berenbaum, M.C. The Histochemistry of Bound Lipids. J. Cell Sci. 1958, s3-99, 231–242. [Google Scholar] [CrossRef]
- Hughes, C.; Gaunt, L.; Brown, M.; Clarke, N.W.; Gardner, P. Assessment of paraffin removal from prostate FFPE sections using transmission mode FTIR-FPA imaging. Anal. Methods 2014, 6, 1028–1035. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-K.; Rubakhin, S.S.; Kusmartseva, I.; Wasserfall, C.; Atkinson, M.A.; Sweedler, J.V. Removing Formaldehyde-Induced Peptidyl Crosslinks Enables Mass Spectrometry Imaging of Peptide Hormone Distributions from Formalin-Fixed Paraffin-Embedded Tissues. Angew. Chem. Int. Ed. 2020, 59, 22584–22590. [Google Scholar] [CrossRef]
- Denti, V.; Piga, I.; Guarnerio, S.; Clerici, F.; Ivanova, M.; Chinello, C.; Paglia, G.; Magni, F.; Smith, A. Antigen Retrieval and Its Effect on the MALDI-MSI of Lipids in Formalin-Fixed Paraffin-Embedded Tissue. J. Am. Soc. Mass Spectrom. 2020, 31, 1619–1624. [Google Scholar] [CrossRef] [PubMed]
- Cassese, A.; Ellis, S.R.; Ogrinc Potočnik, N.; Burgermeister, E.; Ebert, M.; Walch, A.; van den Maagdenberg, A.M.J.M.; McDonnell, L.A.; Heeren, R.M.A.; Balluff, B. Spatial Autocorrelation in Mass Spectrometry Imaging. Anal. Chem. 2016, 88, 5871–5878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ly, A.; Longuespée, R.; Casadonte, R.; Wandernoth, P.; Schwamborn, K.; Bollwein, C.; Marsching, C.; Kriegsmann, K.; Hopf, C.; Weichert, W.; et al. Site-to-Site Reproducibility and Spatial Resolution in MALDI–MSI of Peptides from Formalin-Fixed Paraffin-Embedded Samples. Proteom. Clin. Appl. 2019, 13, 1800029. [Google Scholar] [CrossRef] [Green Version]
- Oberg, A.L.; Vitek, O. Statistical Design of Quantitative Mass Spectrometry-Based Proteomic Experiments. J. Proteome Res. 2009, 8, 2144–2156. [Google Scholar] [CrossRef]
- Agency, E.M. Guideline on bioanalytical method validation. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (accessed on 6 June 2021).
- Bertevello, P.S.; Teixeira-Gomes, A.-P.; Labas, V.; Cordeiro, L.; Blache, M.-C.; Papillier, P.; Singina, G.; Uzbekov, R.; Maillard, V.; Uzbekova, S. MALDI-TOF Mass Spectrometry Revealed Significant Lipid Variations in Follicular Fluid and Somatic Follicular Cells but Not in Enclosed Oocytes between the Large Dominant and Small Subordinate Follicles in Bovine Ovary. Int. J. Mol. Sci. 2020, 21, 6661. [Google Scholar] [CrossRef]
- Abbassi-Ghadi, N.; Jones, E.A.; Veselkov, K.A.; Huang, J.; Kumar, S.; Strittmatter, N.; Golf, O.; Kudo, H.; Goldin, R.D.; Hanna, G.B.; et al. Repeatability and reproducibility of desorption electrospray ionization-mass spectrometry (DESI-MS) for the imaging analysis of human cancer tissue: A gateway for clinical applications. Anal. Methods 2015, 7, 71–80. [Google Scholar] [CrossRef]
- Kuligowski, J.; Pérez-Guaita, D.; Lliso, I.; Escobar, J.; León, Z.; Gombau, L.; Solberg, R.; Saugstad, O.D.; Vento, M.; Quintás, G. Detection of batch effects in liquid chromatography-mass spectrometry metabolomic data using guided principal component analysis. Talanta 2014, 130, 442–448. [Google Scholar] [CrossRef]
- Balluff, B.; Hopf, C.; Porta Siegel, T.; Grabsch, H.I.; Heeren, R.M.A. Batch Effects in MALDI Mass Spectrometry Imaging. J. Am. Soc. Mass Spectrom. 2021, 32, 628–635. [Google Scholar] [CrossRef]
- Erich, K.; Sammour, D.A.; Marx, A.; Hopf, C. Scores for standardization of on-tissue digestion of formalin-fixed paraffin-embedded tissue in MALDI-MS imaging. Biochim. Biophys. Acta 2017, 1865, 907–915. [Google Scholar] [CrossRef]
- Heijs, B.; Holst, S.; Briaire-de Bruijn, I.H.; van Pelt, G.W.; de Ru, A.H.; van Veelen, P.A.; Drake, R.R.; Mehta, A.S.; Mesker, W.E.; Tollenaar, R.A.; et al. Multimodal Mass Spectrometry Imaging of N-Glycans and Proteins from the Same Tissue Section. Anal. Chem. 2016, 88, 7745–7753. [Google Scholar] [CrossRef] [PubMed]
- Holle, A.; Haase, A.; Kayser, M.; Höhndorf, J. Optimizing UV laser focus profiles for improved MALDI performance. J. Mass Spectrom. 2006, 41, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Horn, D.M.; Peters, E.C.; Klock, H.; Meyers, A.; Brock, A. Improved protein identification using automated high mass measurement accuracy MALDI FT-ICR MS peptide mass fingerprinting. Int. J. Mass spectrom. 2004, 238, 189–196. [Google Scholar] [CrossRef]
- Roozemond, R.C. The effect of fixation with formaldehyde and glutaraldehyde on the composition of phospholipids extractable from rat hypothalamus. J. Histochem. Cytochem. 1969, 17, 482–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaudin, M.; Panchal, M.; Ayciriex, S.; Werner, E.; Brunelle, A.; Touboul, D.; Boursier-Neyret, C.; Auzeil, N.; Walther, B.; Duyckaerts, C.; et al. Ultra performance liquid chromatography – mass spectrometry studies of formalin-induced alterations of human brain lipidome. J. Mass Spectrom. 2014, 49, 1035–1042. [Google Scholar] [CrossRef]
- Vos, D.R.N.; Bowman, A.P.; Heeren, R.M.A.; Balluff, B.; Ellis, S.R. Class-specific depletion of lipid ion signals in tissues upon formalin fixation. Int. J. Mass Spectrom. 2019, 446, 116212. [Google Scholar] [CrossRef]
- Cevc, G. Phospholipids Handbook. CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Fuchs, B.; Schober, C.; Richter, G.; Süß, R.; Schiller, J. MALDI-TOF MS of phosphatidylethanolamines: Different adducts cause different post source decay (PSD) fragment ion spectra. J. Biochem. Biophys. Methods 2007, 70, 689–692. [Google Scholar] [CrossRef]
- Carter, C.L.; Jones, J.W.; Farese, A.M.; MacVittie, T.J.; Kane, M.A. Inflation-Fixation Method for Lipidomic Mapping of Lung Biopsies by Matrix Assisted Laser Desorption/Ionization–Mass Spectrometry Imaging. Anal. Chem. 2016, 88, 4788–4794. [Google Scholar] [CrossRef]
- Karsch-Bluman, A.; Benny, O. Necrosis in the Tumor Microenvironment and Its Role in Cancer Recurrence. In Tumor Microenvironment: Recent Advances; Birbrair, A., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 89–98. [Google Scholar]
- Tata, A.; Woolman, M.; Ventura, M.; Bernards, N.; Ganguly, M.; Gribble, A.; Shrestha, B.; Bluemke, E.; Ginsberg, H.J.; Vitkin, A.; et al. Rapid Detection of Necrosis in Breast Cancer with Desorption Electrospray Ionization Mass Spectrometry. Sci. Rep. 2016, 6, 35374. [Google Scholar] [CrossRef]
- Karsch-Bluman, A.; Feiglin, A.; Arbib, E.; Stern, T.; Shoval, H.; Schwob, O.; Berger, M.; Benny, O. Tissue necrosis and its role in cancer progression. Oncogene 2019, 38, 1920–1935. [Google Scholar] [CrossRef]
- Grinde, M.T.; Hilmarsdottir, B.; Tunset, H.M.; Henriksen, I.M.; Kim, J.; Haugen, M.H.; Rye, M.B.; Mælandsmo, G.M.; Moestue, S.A. Glutamine to proline conversion is associated with response to glutaminase inhibition in breast cancer. Breast Cancer Res. 2019, 21, 61. [Google Scholar] [CrossRef]
- Reis, L.M.d.; Adamoski, D.; Ornitz Oliveira Souza, R.; Rodrigues Ascenção, C.F.; Sousa de Oliveira, K.R.; Corrêa-da-Silva, F.; Malta de Sá Patroni, F.; Meira Dias, M.; Consonni, S.R.; Mendes de Moraes-Vieira, P.M.; et al. Dual inhibition of glutaminase and carnitine palmitoyltransferase decreases growth and migration of glutaminase inhibition–resistant triple-negative breast cancer cells. J. Biol. Chem. 2019, 294, 9342–9357. [Google Scholar] [CrossRef] [PubMed]
- Halama, A.; Kulinski, M.; Dib, S.S.; Zaghlool, S.B.; Siveen, K.S.; Iskandarani, A.; Zierer, J.; Prabhu, K.S.; Satheesh, N.J.; Bhagwat, A.M.; et al. Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis. Cancer Lett. 2018, 430, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Osawa, T.; Shimamura, T.; Saito, K.; Hasegawa, Y.; Ishii, N.; Nishida, M.; Ando, R.; Kondo, A.; Anwar, M.; Tsuchida, R.; et al. Phosphoethanolamine Accumulation Protects Cancer Cells under Glutamine Starvation through Downregulation of PCYT2. Cell Rep. 2019, 29, 89–103.e7. [Google Scholar] [CrossRef] [Green Version]
- Huuse, E.M.; Moestue, S.A.; Lindholm, E.M.; Bathen, T.F.; Nalwoga, H.; Krüger, K.; Bofin, A.; Mælandsmo, G.M.; Akslen, L.A.; Engebraaten, O.; et al. In vivo MRI and histopathological assessment of tumor microenvironment in luminal-like and basal-like breast cancer xenografts. J. Magn. Reson. Imaging 2012, 35, 1098–1107. [Google Scholar] [CrossRef]
- Bergamaschi, A.; Hjortland, G.O.; Triulzi, T.; Sørlie, T.; Johnsen, H.; Ree, A.H.; Russnes, H.G.; Tronnes, S.; Maelandsmo, G.M.; Fodstad, O.; et al. Molecular profiling and characterization of luminal-like and basal-like in vivo breast cancer xenograft models. Mol. Oncol. 2009, 3, 469–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvano, C.D.; Carulli, S.; Palmisano, F. Aniline/α-cyano-4-hydroxycinnamic acid is a highly versatile ionic liquid for matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 1659–1668. [Google Scholar] [CrossRef] [PubMed]
- Strohalm, M.; Kavan, D.; Novák, P.; Volný, M.; Havlíček, V. mMass 3: A Cross-Platform Software Environment for Precise Analysis of Mass Spectrometric Data. Anal. Chem. 2010, 82, 4648–4651. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.K.; Krossa, S.; Høiem, T.S.; Buchholz, R.; Claes, B.S.R.; Balluff, B.; Ellis, S.R.; Richardsen, E.; Bertilsson, H.; Heeren, R.M.A.; et al. Simultaneous Detection of Zinc and Its Pathway Metabolites Using MALDI MS Imaging of Prostate Tissue. Anal. Chem. 2020, 92, 3171–3179. [Google Scholar] [CrossRef]
- Andersen, M.K.; Høiem, T.S.; Claes, B.S.R.; Balluff, B.; Martin-Lorenzo, M.; Richardsen, E.; Krossa, S.; Bertilsson, H.; Heeren, R.M.A.; Rye, M.B.; et al. Spatial differentiation of metabolism in prostate cancer tissue by MALDI-TOF MSI. Cancer Metab. 2021, 9, 9. [Google Scholar]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2017, 46, D608–D617. [Google Scholar] [CrossRef] [PubMed]
m/z | CV (%) | Accurate m/z | ID [Adduct]+ |
---|---|---|---|
534.6 | 41 | n.i. (1) | |
548.6 | 50 | n.i. (1) | |
562.6 | 45 | n.i. (1) | |
576.7 | 9 | n.i. (1) | |
604.7 | 50 | n.i. (1) | |
609.4 | 14 | 609.340 | PI 20:1 [M + H − H2O]+ (2,4) |
639.5 | 32 | 639.408 | PA 32:5 [M+H]+ (3,4) |
683.5 | 22 | 683.434 | PG 31:4 [M + H − H2O]+ (3,4) |
707.6 | 23 | n.i. (1) | |
722.5 | 21 | n.i. (1) | |
727.6 | 16 | 727.460 | PG 33:5 [M + H]+ (3,4) |
740.6 | 31 | 740.520 | PE 34:1 [M + Na]+ (2) |
758.6 | 23 | n.i. (1) | |
766.6 | 29 | 766.536 | PE 36:2 [M + Na]+ (2) |
768.6 | 33 | 768.554 | PE 38:4 [M + H]+ (2) |
771.6 | 8 | 771.486 | PA 40:6 [M + Na]+ (3,4) |
779.3 | 18 | 779.254 | n.i. |
784.6 | 23 | n.i. (1) | |
786.6 | 23 | n.i. (1) | |
788.6 | 28 | 788.5201 | PE 38:5 [M + Na]+ (2) |
790.6 | 32 | 790.536 | PE 38:4 [M + Na]+ (2) |
801.2 | 16 | 801.193 | n.i. |
812.6 | 32 | 812.541 | PS (36:1) [M + Na]+ (2) |
815.6 | 14 | n.i. (1) | |
826.6 | 8 | n.i. (1) | |
867.2 | 30 | 867.088 | n.i. |
Tumor vs. Necrosis | ||
---|---|---|
m/z | Log2FC (Range) | p-Value (Range) |
639.5 | −0.61 (−0.8, −0.38) | 0.018 (0.001, 0.041) |
683.5 | −0.62 (−0.67, −0.59) | 0.034 (0.023, 0.05) |
740.6 | 0.68 (0.5, 0.84) | 0.011 (0.002, 0.028) |
766.6 | 0.89 (0.81, 1.02) | 0.01 (0.001, 0.026) |
768.6 | 0.87 (0.8, 0.9) | 0.02 (0.004, 0.044) |
788.6 | 0.8 (0.67, 1.07) | 0.015 (0.002, 0.037) |
790.6 | 1.01 (0.85, 1.17) | 0.011 (0, 0.033) |
812.6 | 1.03 (0.72, 1.39) | 0.015 (0.001, 0.024) |
Control Tumor vs. Treated Tumor | |||||
---|---|---|---|---|---|
m/z | log2FC | p-Value | AUC | Group | |
768.6 | −0.34 | 0.01 | 0.71 | ↑ | Treated Tumor |
784.6 | −0.23 | 0.08 | 0.70 | ↑ | Treated Tumor |
786.6 | −0.19 | 0.08 | 0.75 | ↑ | Treated Tumor |
790.6 | −0.30 | 0.03 | 0.70 | ↑ | Treated Tumor |
812.6 | −0.42 | 0.03 | 0.70 | ↑ | Treated Tumor |
604.7 | 1.11 | 0.06 | 0.87 | ↑ | Control Tumor |
779.3 | 0.53 | 0.01 | 0.65 | ↑ | Control Tumor |
801.2 | 0.50 | 0.01 | 0.64 | ↑ | Control Tumor |
867.2 | 0.58 | 0.02 | 0.63 | ↑ | Control Tumor |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denti, V.; Andersen, M.K.; Smith, A.; Bofin, A.M.; Nordborg, A.; Magni, F.; Moestue, S.A.; Giampà, M. Reproducible Lipid Alterations in Patient-Derived Breast Cancer Xenograft FFPE Tissue Identified with MALDI MSI for Pre-Clinical and Clinical Application. Metabolites 2021, 11, 577. https://doi.org/10.3390/metabo11090577
Denti V, Andersen MK, Smith A, Bofin AM, Nordborg A, Magni F, Moestue SA, Giampà M. Reproducible Lipid Alterations in Patient-Derived Breast Cancer Xenograft FFPE Tissue Identified with MALDI MSI for Pre-Clinical and Clinical Application. Metabolites. 2021; 11(9):577. https://doi.org/10.3390/metabo11090577
Chicago/Turabian StyleDenti, Vanna, Maria K. Andersen, Andrew Smith, Anna Mary Bofin, Anna Nordborg, Fulvio Magni, Siver Andreas Moestue, and Marco Giampà. 2021. "Reproducible Lipid Alterations in Patient-Derived Breast Cancer Xenograft FFPE Tissue Identified with MALDI MSI for Pre-Clinical and Clinical Application" Metabolites 11, no. 9: 577. https://doi.org/10.3390/metabo11090577
APA StyleDenti, V., Andersen, M. K., Smith, A., Bofin, A. M., Nordborg, A., Magni, F., Moestue, S. A., & Giampà, M. (2021). Reproducible Lipid Alterations in Patient-Derived Breast Cancer Xenograft FFPE Tissue Identified with MALDI MSI for Pre-Clinical and Clinical Application. Metabolites, 11(9), 577. https://doi.org/10.3390/metabo11090577