Plasma Bile Acid Profile in Patients with and without Type 2 Diabetes
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Clinical and Laboratory Variables
4.3. Plasma BA Measurements
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, T.R.; Haeusler, R.A. Bile acids in glucose metabolism and insulin signalling-mechanisms and research needs. Nat. Rev. Endocrinol. 2019, 15, 701–712. [Google Scholar] [CrossRef]
- Ferrell, J.M.; Chiang, J.Y.L. Understanding bile acid signaling in diabetes: From pathophysiology to therapeutic targets. Diabetes Metab. J. 2019, 43, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Pols, T.W.; Noriega, L.G.; Nomura, M.; Auwerx, J.; Schoonjans, K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J. Hepatol. 2011, 54, 1263–1272. [Google Scholar] [CrossRef] [Green Version]
- Nervi, F.O.; Severin, C.H.; Valdivieso, V.D. Bile acid pool changes and regulation of cholate synthesis in experimental diabetes. Biochim. Biophys. Acta 1978, 529, 212–223. [Google Scholar] [CrossRef]
- Chen, C.; Hu, B.; Wu, T.; Zhang, Y.; Xu, Y.; Feng, Y.; Jiang, H. Bile acid profiles in diabetic (db/db) mice and their wild type littermates. J. Pharm. Biomed. Anal. 2016, 131, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Steiner, C.; Othman, A.; Saely, C.H.; Rein, P.; Drexel, H.; von Eckardstein, A.; Rentsch, K.M. Bile acid metabolites in serum: Intraindividual variation and associations with coronary heart disease, metabolic syndrome and diabetes mellitus. PLoS ONE 2011, 6, e25006. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.G.; Lee, Y.H.; Choi, E.; Cho, Y.; Kim, J.H. Fasting serum bile acids concentration is associated with insulin resistance independently of diabetes status. Clin. Chem. Lab. Med. 2019, 57, 1218–1228. [Google Scholar] [CrossRef]
- Brufau, G.; Bahr, M.J.; Staels, B.; Claudel, T.; Ockenga, J.; Boker, K.H.; Murphy, E.J.; Prado, K.; Stellaard, F.; Manns, M.P.; et al. Plasma bile acids are not associated with energy metabolism in humans. Nutr. Metab. 2010, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Brufau, G.; Stellaard, F.; Prado, K.; Bloks, V.W.; Jonkers, E.; Boverhof, R.; Kuipers, F.; Murphy, E.J. Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism. Hepatology 2010, 52, 1455–1464. [Google Scholar] [CrossRef] [PubMed]
- Wewalka, M.; Patti, M.E.; Barbato, C.; Houten, S.M.; Goldfine, A.B. Fasting serum taurine-conjugated bile acids are elevated in type 2 diabetes and do not change with intensification of insulin. J. Clin. Endocrinol. Metab. 2014, 99, 1442–1451. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Wang, S.; Li, M.; Gao, Z.; Xu, Y.; Zhao, X.; Hu, C.; Zhang, Y.; Liu, R.; Hu, R.; et al. Association of serum bile acids profile and pathway dysregulation with the risk of developing diabetes among normoglycemic chinese adults: Findings from the 4C study. Diabetes Care 2021, 44, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, A.F. Bile acid sequestrants improve glycemic control in type 2 diabetes: A proposed mechanism implicating glucagon-like peptide 1 release. Hepatology 2011, 53, 1784. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.D.; Cui, J.Y.; Klaassen, C.D. Atorvastatin induces bile acid-synthetic enzyme Cyp7a1 by suppressing FXR signaling in both liver and intestine in mice. J. Lipid. Res. 2014, 55, 2576–2586. [Google Scholar] [CrossRef] [Green Version]
- Fisher, E.; Nitz, I.; Lindner, I.; Rubin, D.; Boeing, H.; Mohlig, M.; Hampe, J.; Schreiber, S.; Schrezenmeir, J.; Doring, F. Candidate gene association study of type 2 diabetes in a nested case-control study of the EPIC-Potsdam cohort-role of fat assimilation. Mol. Nutr. Food Res. 2007, 51, 185–191. [Google Scholar] [CrossRef]
- Thaiss, C.A.; Levy, M.; Grosheva, I.; Zheng, D.; Soffer, E.; Blacher, E.; Braverman, S.; Tengeler, A.C.; Barak, O.; Elazar, M.; et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 2018, 359, 1376–1383. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Xie, C.; Wang, G.; Wu, Y.; Wu, Q.; Wang, X.; Liu, J.; Deng, Y.; Xia, J.; Chen, B.; et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 2018, 24, 1919–1929. [Google Scholar] [CrossRef]
- Mooranian, A.; Negrulj, R.; Mathavan, S.; Martinez, J.; Sciarretta, J.; Chen-Tan, N.; Mukkur, T.; Mikov, M.; Lalic-Popovic, M.; Stojancevic, M.; et al. Stability and release kinetics of an advanced gliclazide-cholic acid formulation: The use of artificial-cell microencapsulation in slow release targeted oral delivery of antidiabetics. J. Pharm. Innov. 2014, 9, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, A.; Taliento, A.; Zusi, C.; Baselli, G.; Prati, D.; Granata, S.; Zaza, G.; Colecchia, A.; Maffeis, C.; Byrne, C.D.; et al. PNPLA3 I148M gene variant and chronic kidney disease in type 2 diabetic patients with NAFLD: Clinical and experimental findings. Liver Int. 2020, 40, 1130–1141. [Google Scholar] [CrossRef]
- National Cholesterol Education Program (US). Expert Panel on Detection; Treatment of High Blood Cholesterol in Adults. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [Google Scholar]
- Grundy, S.M.; Brewer, H.B., Jr.; Cleeman, J.I.; Smith, S.C., Jr.; Lenfant, C.; American Heart, A.; National Heart, L.; Blood, I. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004, 109, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Danese, E.; Negrini, D.; Pucci, M.; De Nitto, S.; Ambrogi, D.; Donzelli, S.; Lievens, P.M.; Salvagno, G.L.; Lippi, G. Bile acids quantification by liquid chromatography-tandem mass spectrometry: Method validation, reference range, and interference study. Diagnostics 2020, 10, 462. [Google Scholar] [CrossRef] [PubMed]
- Negrini, D.; Zecchin, P.; Ruzzenente, A.; Bagante, F.; De Nitto, S.; Gelati, M.; Salvagno, G.L.; Danese, E.; Lippi, G. Machine learning model comparison in the screening of cholangiocarcinoma using plasma bile acids profiles. Diagnostics 2020, 10, 551. [Google Scholar] [CrossRef] [PubMed]
- Succop, P.A.; Clark, S.; Chen, M.; Galke, W. Imputation of data values that are less than a detection limit. J. Occup. Environ. Hyg. 2004, 1, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Goeman, J.J.; Solari, A. Multiple hypothesis testing in genomics. Stat. Med. 2014, 33, 1946–1978. [Google Scholar] [CrossRef] [PubMed]
Without T2DM (n = 102) | With T2DM (n = 224) | p-Values | |
---|---|---|---|
Age (years) | 51 ± 10 | 69 ± 10 | <0.001 |
Male sex (%) | 21.6 | 53.6 | <0.001 |
Current smokers (%) | 14.0 | 15.0 | 0.813 |
BMI (kg/m2) | 26.9 ± 4.1 | 28.7 ± 4.7 | <0.001 |
Waist circumference (cm) | 98 ± 13 | 101 ± 13 | 0.028 |
Systolic blood pressure (mmHg) | 132 ± 12 | 134 ± 18 | 0.250 |
Diastolic blood pressure (mmHg) | 82 ± 8 | 76 ± 10 | <0.001 |
Fasting glucose (mg/dL) | 92 ± 12 | 128 ± 29 | <0.001 |
HbA1c (%) * | not measured | 7.0 ± 0.8 | NA |
Total cholesterol (mmol/L) | 5.0 ± 0.8 | 4.0 ± 0.9 | <0.001 |
LDL-cholesterol (mmol/L) | 3.2 ± 0.7 | 2.0 ± 0.8 | <0.001 |
HDL-cholesterol (mmol/L) | 1.4 ± 0.4 | 1.4 ± 0.4 | 0.928 |
Triglycerides (mmol/L) | 1.0 (0.8–1.5) | 1.2 (0.9–1.7) | <0.001 |
ALT (IU/L) | 27 (17–39) | 13 (10–17) | <0.001 |
GGT (IU/L) | 25 (18–48) | 19 (14–29) | <0.001 |
CRP (mg/L) | 1.0 (1.0–2.2) | 1.2 (0.6–2.9) | 0.059 |
Creatinine (umol/L) | 77 ± 13 | 79 ± 30 | 0.423 |
eGFRCKD-EPI (mL/min/1.73 m2) | 80 (71–96) | 81 (67–93) | 0.161 |
Hypertension (%) | 63.7 | 82.0 | <0.001 |
Dyslipidemia (%) | 46.1 | 83.5 | <0.001 |
Prior IHD (%) | 0 | 16.6 | <0.001 |
Prior VHD (%) | 0 | 20.1 | <0.001 |
Permanent AF (%) | 0 | 3.6 | 0.034 |
Diabetic retinopathy (any degree) (%) | NA | 14.0 | NA |
Beta-blocker users (%) | 14.7 | 33.9 | <0.001 |
Ca-channel antagonist users (%) | 39.2 | 23.5 | 0.003 |
Diuretic users (%) | 11.8 | 33.9 | <0.001 |
ACE inhibitors/ARB users (%) | 46.1 | 64.6 | 0.001 |
Anti-platelet users (%) | 0 | 50.2 | <0.001 |
Statin users (%) | 10.8 | 79.3 | <0.001 |
Metformin users (%) * | NA | 78.6 | NA |
Sulphonylurea users (%) * | NA | 28.6 | NA |
Pioglitazone users (%) * | NA | 8.5 | NA |
GLP-1 receptor agonist users (%) * | NA | 18.3 | NA |
SGLT-2 inhibitor users (%) * | NA | 9.8 | NA |
DPP-4 inhibitor users (%) * | NA | 23.7 | NA |
Without T2DM (n = 102) | With T2DM (n = 224) | p-Values | |
---|---|---|---|
Individual BAs | |||
TUDCA (ng/mL) | 3.5 (3.5–3.5) | 3.5 (3.5–3.5) | 0.582 |
GUDCA (ng/mL) | 32.1 (13.7–57.7) | 22.8 (11.4–56.8) | 0.143 |
GCA (ng/mL) | 40.4 (25.6–77.1) | 45.6 (23.7–83.8) | 0.688 |
TCDCA (ng/mL) | 13.7 (7.9–30.9) | 41.6 (21.8–71.3) | <0.001 * |
TDCA (ng/mL) | 3.5 (3.5–10.4) | 12.8 (3.5–31.0) | <0.001 * |
UDCA (ng/mL) | 11.5 (3.5–27.4) | 7.7 (3.5–26.2) | 0.564 |
CA (ng/mL) | 19.7 (8.6–72.4) | 7.6 (3.5–26.2) | <0.001 * |
GCDCA (ng/mL) | 109.1 (58.6–191.4) | 253.2 (132.4–492.5) | <0.001 * |
HDCA (ng/mL) | 3.5 (3.5–3.5) | 3.7 (3.5–5.5) | <0.001 * |
GDCA (ng/mL) | 31.3 (17.3–75.8) | 97.4 (54.4–189.9) | <0.001 * |
CDCA (ng/mL) | 51.7 (23.4–131.7) | 48.7 (14.7–135.1) | 0.297 |
GLCA (ng/mL) | 3.5 (3.5–3.5) | 3.7 (3.5–6.5) | <0.001 * |
DCA (ng/mL) | 93.1 (38.2–171.7) | 127.7 (66.4–245.6) | 0.002 * |
TCA (ng/mL) | 17.7 (10.8–32.1) | 7.0 (5.0–15.8) | <0.001 * |
Total BAs | |||
Total BAs (ng/mL) | 575.2 (361.0–1072.3) | 930.2 (557.2–1457.8) | <0.001 |
Total primary BAs (ng/mL) | 318.8 (168.8–731.4) | 466.3 (268.8–965.5) | 0.002 |
Total secondary BAs (ng/mL) | 213.9 (124.9–388.3) | 339.3 (204.6–605.1) | <0.001 |
Without T2DM and without Use of Statins (n = 91) (Group A) | Without T2DM and with Use of Statins (n = 11) (Group B) | With T2DM and without Use of Statins (n = 46) (Group C) | With T2DM and with Use of Statins (n = 178) (Group D) | p-Values for Trend | p-Values for Trend * | p-Values for A vs. B | p-Values for A vs. C | p-Values for A vs. D | p-Values for B vs. C | p-Values for B vs. D | p-Values for C vs. D | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Individual BAs | ||||||||||||
TUDCA (ng/mL) | 3.5 (3.5–3.5) | 3.5 (3.5–3.5) | 3.5 (3.5–3.5) | 3.5 (3.5–3.5) | 0.471 | 0.351 | 0.263 | 0.001 | 0.231 | 0.009 | 0.365 | <0.001 |
GUDCA (ng/mL) | 32.4 (12.8–57.1) | 20.2 (14.9–102.4) | 49.9 (15.4–83.1) | 21.6 (10.2–49.4) | 0.010 | 0.006 | 0.447 | 0.097 | 0.018 | 0.283 | 0.156 | 0.001 |
GCA (ng/mL) | 43.1 (24.9–78.8) | 31.5 (27.5–42.8) | 66.4 (45.2–140.5) | 38.7 (22.1–71.9) | <0.001 | <0.001 | 0.123 | 0.002 | 0.172 | 0.004 | 0.213 | <0.001 |
TCDCA (ng/mL) | 15.1 (7.9–31.4) | 8.8 (6.4–11.9) | 46.4 (26.0–90.8) | 21.6 (39.9–70.8) | <0.001 | <0.001 | 0.069 | <0.001 | <0.001 | <0.001 | <0.001 | 0.109 |
TDCA (ng/mL) | 3.5 (3.5–10.7) | 3.5 (3.5–9.2) | 17.1 (3.5–41.6) | 12.5 (3.5–28.1) | <0.001 | 0.002 | 0.212 | <0.001 | <0.001 | 0.002 | 0.004 | 0.177 |
UDCA (ng/mL) | 10.9 (3.5–26.7) | 14.1 (3.5–27.9) | 12.3 (3.5–46.7) | 7.2 (3.5–23.8) | 0.289 | 0.343 | 0.423 | 0.161 | 0.160 | 0.363 | 0.273 | 0.033 |
CA (ng/mL) | 19.6 (8.0–71.3) | 36.3 (17.1–106.9) | 28.4 (6.4–127.8) | 7.2 (3.5–33.9) | <0.001 | <0.001 | 0.170 | 0.376 | <0.001 | 0.141 | 0.002 | 0.001 |
GCDCA (ng/mL) | 111.4 (56.3–200.8) | 95.7 (61.1–168.3) | 411.5 (211.6–752.2) | 222.2 (120.2–387.2) | <0.001 | <0.001 | 0.171 | <0.001 | <0.001 | <0.001 | 0.002 | <0.001 |
HDCA (ng/mL) | 3.5 (3.5–3.5) | 3.5 (3.5–3.5) | 3.5 (3.5–5.3) | 3.5 (3.5–5.5) | 0.001 | 0.007 | 0.500 | <0.001 | <0.001 | 0.017 | 0.004 | 0.272 |
GDCA (ng/mL) | 31.7 (17.8–78.7) | 23.6 (15.0–72.3) | 153.9 (73.8–305.8) | 91.4 (53.3–160.6) | <0.001 | <0.001 | 0.330 | <0.001 | <0.001 | <0.001 | 0.001 | 0.015 |
CDCA (ng/mL) | 49.8 (23.5–140.1) | 54.6 (22.9–110.5) | 82.9 (29.3–243.1) | 42.7 (13.2–112.0) | 0.049 | 0.046 | 0.384 | 0.126 | 0.043 | 0.184 | 0.339 | 0.005 |
GLCA (ng/mL) | 3.5 (3.5–3.5) | 3.5 (3.5–3.5) | 3.5 (3.5–9.4) | 3.5 (3.5–5.8) | 0.008 | 0.039 | 0.172 | 0.001 | <0.001 | 0.005 | 0.008 | 0.260 |
DCA (ng/mL) | 99.5 (45.0–172.1) | 49.8 (22.1–141.4) | 163.8 (82.3–303.7) | 124.8 (64.2–243.6) | 0.011 | 0.076 | 0.200 | 0.005 | 0.009 | 0.015 | 0.032 | 0.171 |
TCA (ng/mL) | 18.6 (11.1–35.1) | 11.5 (8.9–17.0) | 8.5 (5.8–16.8) | 7.0 (5.0–14.8) | <0.001 | <0.001 | 0.089 | <0.001 | <0.001 | 0.143 | 0.029 | 0.081 |
Total BAs | ||||||||||||
Total BAs (ng/mL) | 573.7 (361.3–1106.5) | 576.6 (343.0–842.6) | 1374.8 (836.0–2655.6) | 786.6 (517.5–1262.5) | <0.001 | <0.001 | 0.269 | <0.001 | 0.004 | <0.001 | 0.042 | <0.001 |
Total primary BAs (ng/mL) | 327.0 (182.1–737.1) | 320.5 (157.8–518.4) | 918.2 (386.8–1555.7) | 429.0 (249.6–781.3) | <0.001 | <0.001 | 0.271 | <0.001 | 0.047 | <0.001 | 0.093 | <0.001 |
Total secondary BAs (ng/mL) | 231.6 (125.7–391.6) | 201.5 (90.3–215.4) | 515.1 (272.9–859.9) | 320.7 (194.2–539.3) | <0.001 | <0.001 | 0.228 | <0.001 | <0.001 | <0.001 | 0.014 | 0.003 |
Linear Regression Analyses | Standardized β Coefficient(s) | p-Values |
---|---|---|
Log Total Primary BAs | ||
Adjusted model 1 | ||
T2DM status | ||
Patients without T2DM (n = 102) | Reference | Reference |
Patients with T2DM not treated with metformin (n = 48) | 0.357 | <0.0001 |
Patients with T2DM treated with metformin (n = 176) | 0.279 | 0.005 |
Age (years) | 0.054 | 0.451 |
Sex (men vs. women) | 0.139 | 0.015 |
BMI (kg/m2) | 0.037 | 0.514 |
Serum ALT (IU/L) | 0.039 | 0.512 |
Statin use (yes vs. no) | −0.293 | <0.0001 |
Log Total Secondary BAs | ||
Adjusted model 1 | ||
T2DM status | ||
Patients without T2DM (n = 102) | Reference | Reference |
Patients with T2DM not treated with metformin (n = 48) | 0.269 | 0.001 |
Patients with T2DM treated with metformin (n = 176) | 0.508 | <0.0001 |
Age (years) | −0.054 | 0.458 |
Sex (men vs. women) | 0.023 | 0.689 |
BMI (kg/m2) | −0.039 | 0.482 |
Serum ALT (IU/L) | 0.017 | 0.775 |
Statin use (yes vs. no) | −0.229 | 0.001 |
Linear Regression Analyses | Standardized β Coefficient(s) | p-Values |
---|---|---|
Log TCDCA | ||
Adjusted model 1 | ||
T2DM status | ||
Patients without T2DM (n = 102) | Reference | Reference |
Patients with T2DM not treated with metformin (n = 48) | 0.539 | <0.0001 * |
Patients with T2DM treated with metformin (n = 176) | 0.490 | <0.0001 * |
Age (years) | 0.033 | 0.618 |
Sex (men vs. women) | 0.132 | 0.013 |
BMI (kg/m2) | 0.018 | 0.722 |
Serum ALT (IU/L) | 0.085 | 0.123 |
Statin use (yes vs. no) | −0.149 | 0.021 |
Log TDCA | ||
Adjusted model 1 | ||
T2DM status | ||
Patients without T2DM (n = 102) | Reference | Reference |
Patients with T2DM not treated with metformin (n = 48) | 0.428 | <0.0001 * |
Patients with T2DM treated with metformin (n = 176) | 0.449 | <0.0001 * |
Age (years) | −0.044 | 0.545 |
Sex (men vs. women) | 0.018 | 0.751 |
BMI (kg/m2) | −0.060 | 0.291 |
Serum ALT (IU/L) | 0.037 | 0.535 |
Statin use (yes vs. no) | −0.126 | 0.076 |
Log CA | ||
Adjusted model 1 | ||
T2DM status | ||
Patients without T2DM (n = 102) | Reference | Reference |
Patients with T2DM not treated with metformin (n = 48) | 0.044 | 0.602 |
Patients with T2DM treated with metformin (n = 176) | −0.250 | 0.013 |
Age (years) | 0.117 | 0.121 |
Sex (men vs. women) | 0.010 | 0.869 |
BMI (kg/m2) | 0.093 | 0.109 |
Serum ALT (IU/L) | −0.020 | 0.752 |
Statin use (yes vs. no) | −0.151 | 0.039 |
Log GCDCA | ||
Adjusted model 1 | ||
T2DM status | ||
Patients without T2DM (n = 102) | Reference | Reference |
Patients with T2DM not treated with metformin (n = 48) | 0.432 | <0.0001 * |
Patients with T2DM not treated with metformin (n = 176) | 0.50 | <0.0001 * |
Age (years) | 0.046 | 0.510 |
Sex (men vs. women) | 0.149 | 0.006 |
BMI (kg/m2) | 0.016 | 0.771 |
Serum ALT (IU/L) | 0.052 | 0.365 |
Statin use (yes vs. no) | −0.294 | <0.001 |
Log HDCA | ||
Adjusted model 1 | ||
T2DM status | ||
Patients without T2DM (n = 102) | Reference | Reference |
Patients with T2DM not treated with metformin (n = 48) | 0.018 | 0.821 |
Patients with T2DM treated with metformin (n = 176) | 0.316 | 0.001 * |
Age (years) | 0.149 | 0.034 |
Sex (men vs. women) | −0.117 | 0.037 |
BMI (kg/m2) | −0.067 | 0.230 |
Serum ALT (IU/L) | −0.041 | 0.488 |
Statin use (yes vs. no) | 0.012 | 0.859 |
Log GDCA | ||
Adjusted model 1 | ||
T2DM status | ||
Patients without T2DM (n = 102) | Reference | Reference |
Patients with T2DM not treated with metformin (n = 48) | 0.356 | <0.0001 * |
Patients with T2DM treated with metformin (n = 176) | 0.600 | <0.0001 * |
Age (years) | −0.067 | 0.343 |
Sex (men vs. women) | 0.051 | 0.354 |
BMI (kg/m2) | −0.078 | 0.150 |
Serum ALT (IU/L) | 0.003 | 0.961 |
Statin use (yes vs. no) | −0.172 | 0.011 |
Log GLCA | ||
Adjusted model 1 | ||
T2DM status | ||
Patients without T2DM (n = 102) | Reference | Reference |
Patients with T2DM not treated with metformin (n = 48) | 0.135 | 0.109 |
Patients with T2DM treated with metformin (n = 176) | 0.329 | 0.001 * |
Age (years) | 0.058 | 0.433 |
Sex (men vs. women) | −0.109 | 0.061 |
BMI (kg/m2) | 0.019 | 0.733 |
Serum ALT (IU/L) | 0.027 | 0.655 |
Statin use (yes vs. no) | −0.099 | 0.169 |
Log DCA | ||
Adjusted model 1 | ||
T2DM status | ||
Patients without T2DM (n = 102) | Reference | Reference |
Patients with T2DM not treated with metformin (n = 48) | 0.020 | 0.810 |
Patients with T2DM treated with metformin (n = 176) | 0.315 | 0.002 * |
Age (years) | −0.077 | 0.313 |
Sex (men vs. women) | −0.058 | 0.330 |
BMI (kg/m2) | −0.003 | 0.961 |
Serum ALT (IU/L) | −0.063 | 0.313 |
Statin use (yes vs. no) | −0.071 | 0.332 |
Log TCA | ||
Adjusted model 1 | ||
T2DM status | ||
Patients without T2DM (n = 102) | Reference | Reference |
Patients with T2DM not treated with metformin (n = 48) | 0.043 | 0.577 |
Patients with T2DM treated with metformin (n = 176) | −0.309 | 0.001 * |
Age (years) | −0.021 | 0.762 |
Sex (men vs. women) | 0.108 | 0.044 |
BMI (kg/m2) | −0.008 | 0.868 |
Serum ALT (IU/L) | 0.134 | 0.017 |
Statin use (yes vs. no) | −0.160 | 0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantovani, A.; Dalbeni, A.; Peserico, D.; Cattazzo, F.; Bevilacqua, M.; Salvagno, G.L.; Lippi, G.; Targher, G.; Danese, E.; Fava, C. Plasma Bile Acid Profile in Patients with and without Type 2 Diabetes. Metabolites 2021, 11, 453. https://doi.org/10.3390/metabo11070453
Mantovani A, Dalbeni A, Peserico D, Cattazzo F, Bevilacqua M, Salvagno GL, Lippi G, Targher G, Danese E, Fava C. Plasma Bile Acid Profile in Patients with and without Type 2 Diabetes. Metabolites. 2021; 11(7):453. https://doi.org/10.3390/metabo11070453
Chicago/Turabian StyleMantovani, Alessandro, Andrea Dalbeni, Denise Peserico, Filippo Cattazzo, Michele Bevilacqua, Gian Luca Salvagno, Giuseppe Lippi, Giovanni Targher, Elisa Danese, and Cristiano Fava. 2021. "Plasma Bile Acid Profile in Patients with and without Type 2 Diabetes" Metabolites 11, no. 7: 453. https://doi.org/10.3390/metabo11070453
APA StyleMantovani, A., Dalbeni, A., Peserico, D., Cattazzo, F., Bevilacqua, M., Salvagno, G. L., Lippi, G., Targher, G., Danese, E., & Fava, C. (2021). Plasma Bile Acid Profile in Patients with and without Type 2 Diabetes. Metabolites, 11(7), 453. https://doi.org/10.3390/metabo11070453