Progression of Postprandial Blood Plasma Phospholipids Following Acute Intake of Different Dairy Matrices: A Randomized Crossover Trial
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Dairy Products
4.2. Test Participants and Study Design
4.3. Materials
4.4. Extraction of Plasma Lipids
4.5. Extraction of Dairy Lipids
4.6. Standards and Calibration Curves
4.7. Liquid Chromatography Tandem Mass Spectrometry
4.8. LC-MS Data Preprocessing
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Staveren, W.A.; de Groot, L.C. Evidence-based dietary guidance and the role of dairy products for appropriate nutrition in the elderly. J. Am. Coll. Nutr. 2011, 30 (Suppl. 1), 429–437. [Google Scholar] [CrossRef]
- Lovegrove, J.A. Dietary dilemmas over fats and cardiometabolic risk. Proc. Nutr. Soc. 2020, 79, 11–21. [Google Scholar] [CrossRef]
- Astrup, A.; Bertram, H.C.S.; Bonjour, J.-P.; de Groot, L.C.P.; de Oliveira Otto, M.C.; Feeney, E.L.; Garg, M.L.; Givens, I.; Kok, F.J.; Krauss, R.M.; et al. WHO draft guidelines on dietary saturated and trans fatty acids: Time for a new approach? BMJ 2019, 366, l4137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feeney, E.L.; Barron, R.; Dible, V.; Hamilton, Z.; Power, Y.; Tanner, L.; Flynn, C.; Bouchier, P.; Beresford, T.; Noronha, N.; et al. Dairy matrix effects: Response to consumption of dairy fat differs when eaten within the cheese matrix—A randomized controlled trial. Am. J. Clin. Nutr. 2018, 108, 667–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soerensen, K.V.; Thorning, T.K.; Astrup, A.; Kristensen, M.; Lorenzen, J.K. Effect of dairy calcium from cheese and milk on fecal fat excretion, blood lipids, and appetite in young men. Am. J. Clin. Nutr. 2014, 99, 984–991. [Google Scholar] [CrossRef] [Green Version]
- Hjerpsted, J.; Leedo, E.; Tholstrup, T. Cheese intake in large amounts lowers LDL-cholesterol concentrations compared with butter intake of equal fat content. Am. J. Clin. Nutr. 2011, 94, 1479–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorning, T.K.; Bertram, H.C.; Bonjour, J.-P.; De Groot, L.; Dupont, D.; Feeney, E.; Ipsen, R.; Lecerf, J.M.; Mackie, A.; McKinley, M.C.; et al. Whole dairy matrix or single nutrients in assessment of health effects: Current evidence and knowledge gaps. Am. J. Clin. Nutr. 2017, 105, 1033–1045. [Google Scholar] [CrossRef]
- Fardet, A.; Dupont, D.; Rioux, L.-E.; Turgeon, S.L. Influence of food structure on dairy protein, lipid and calcium bioavailability: A narrative review of evidence. Crit. Rev. Food Sci. Nutr. 2019, 59, 1987–2010. [Google Scholar] [CrossRef]
- Lorenzen, J.K.; Astrup, A. Dairy calcium intake modifies responsiveness of fat metabolism and blood lipids to a high-fat diet. Br. J. Nutr. 2011, 105, 1823–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzen, J.K.; Jensen, S.K.; Astrup, A. Milk minerals modify the effect of fat intake on serum lipid profile: Results from an animal and a human short-term study. Br. J. Nutr. 2014, 111, 1412–1420. [Google Scholar] [CrossRef] [Green Version]
- Ayala-Bribiesca, E.; Turgeon, S.L.; Britten, M. Effect of calcium on fatty acid bioaccessibility during in vitro digestion of Cheddar-type cheeses prepared with different milk fat fractions. J. Dairy Sci. 2017, 100, 2454–2470. [Google Scholar] [CrossRef]
- Ayala-Bribiesca, E.; Turgeon, S.L.; Pilon, G.; Marette, A.; Britten, M. Postprandial lipemia and fecal fat excretion in rats is affected by the calcium content and type of milk fat present in Cheddar-type cheeses. Food Res. Int. 2018, 107, 589–595. [Google Scholar] [CrossRef]
- Torcello-Gómez, A.; Boudard, C.; Mackie, A.R. Calcium Alters the Interfacial Organization of Hydrolyzed Lipids during Intestinal Digestion. Langmuir 2018, 34, 7536–7544. [Google Scholar] [CrossRef] [PubMed]
- Vors, C.L.; Joumard-Cubizolles, M.; Lecomte, E.; Combe, L.; Ouchchane, J.; Drai, K.; Raynal, F.; Joffre, L.; Meiller, M.; Le Barz, P.; et al. Milk polar lipids reduce lipid cardiovascular risk factors in overweight postmenopausal women: Towards a gut sphingomyelin-cholesterol interplay. Gut 2020, 69, 487–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noh, S.K.; Koo, S.I. Milk Sphingomyelin Is More Effective than Egg Sphingomyelin in Inhibiting Intestinal Absorption of Cholesterol and Fat in Rats. J. Nutr. 2004, 134, 2611–2616. [Google Scholar] [CrossRef] [PubMed]
- Wat, E.; Tandy, S.; Kapera, E.; Kamili, A.; Chung, R.W.; Brown, A.; Rowney, M.; Cohn, J.S. Dietary phospholipid-rich dairy milk extract reduces hepatomegaly, hepatic steatosis and hyperlipidemia in mice fed a high-fat diet. Atherosclerosis 2009, 205, 144–150. [Google Scholar] [CrossRef]
- Kamili, A.; Wat, E.; Chung, R.W.; Tandy, S.; Weir, J.M.; Meikle, P.J.; Cohn, J.S. Hepatic accumulation of intestinal cholesterol is decreased and fecal cholesterol excretion is increased in mice fed a high-fat diet supplemented with milk phospholipids. Nutr. Metab. 2010, 7, 90. [Google Scholar] [CrossRef] [Green Version]
- LeComte, M.; Bourlieu, C.; Fouilloux-Meugnier, E.; Penhoat, A.; Cheillan, D.; Pineau, G.; Loizon, E.; Trauchessec, M.; Claude, M.; Ménard, O.; et al. Milk Polar Lipids Affect In Vitro Digestive Lipolysis and Postprandial Lipid Metabolism in Mice. J. Nutr. 2015, 145, 1770–1777. [Google Scholar] [CrossRef] [Green Version]
- Lindahl, I.E.I.; Artegoitia, V.M.; Downey, E.; O’Mahony, J.A.; O’Shea, C.-A.; Ryan, C.A.; Kelly, A.L.; Bertram, H.C.; Sundekilde, U.K. Quantification of Human Milk Phospholipids: The Effect of Gestational and Lactational Age on Phospholipid Composition. Nutrients 2019, 11, 222. [Google Scholar] [CrossRef] [Green Version]
- Kjølbæk, L.; Schmidt, J.M.; Rouy, E.; Jensen, K.J.; Astrup, A.; Bertram, H.C.; Hammershøj, M.; Raben, A. Matrix structure of cheese products results in different postprandial lipid responses: A randomized, crossover trial. Am. J. Clin. Nutr. 2021. accepted for publication. [Google Scholar] [CrossRef]
- Schmidt, J.M.; Kjølbæk, L.; Jensen, K.J.; Rouy, E.; Bertram, H.C.; Larsen, T.; Raben, A.; Astrup, A.; Hammershøj, M. Influence of type of dairy matrix micro- and macrostructure on in vitro lipid digestion. Food Funct. 2020, 11, 4960–4972. [Google Scholar] [CrossRef]
- Drouin-Chartier, J.-P.; Tremblay, A.J.; Maltais-Giguère, J.; Charest, A.; Guinot, L.; Rioux, L.-E.; Labrie, S.; Britten, M.; Lamarche, B.; Turgeon, S.L.; et al. Differential impact of the cheese matrix on the postprandial lipid response: A randomized, crossover, controlled trial. Am. J. Clin. Nutr. 2017, 106, 1358–1365. [Google Scholar] [CrossRef] [Green Version]
- Anto, L.; Warykas, S.W.; Torres-Gonzalez, M.; Blesso, C.N. Milk Polar Lipids: Underappreciated Lipids with Emerging Health Benefits. Nutrients 2020, 12, 1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contarini, G.; Povolo, M. Phospholipids in Milk Fat: Composition, Biological and Technological Significance, and Analytical Strategies. Int. J. Mol. Sci. 2013, 14, 2808–2831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzei, J.C.; Zhou, H.; Brayfield, B.P.; Hontecillas, R.; Bassaganya-Riera, J.; Schmelz, E.M. Suppression of intestinal inflammation and inflammation-driven colon cancer in mice by dietary sphingomyelin: Importance of peroxisome proliferator-activated receptor γ expression. J. Nutr. Biochem. 2011, 22, 1160–1171. [Google Scholar] [CrossRef] [Green Version]
- Norris, G.H.; Jiang, C.; Ryan, J.; Porter, C.M.; Blesso, C.N. Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. J. Nutr. Biochem. 2016, 30, 93–101. [Google Scholar] [CrossRef]
- Averill, M.; Rubinow, K.B.; Cain, K.; Wimberger, J.; Babenko, I.; Becker, J.O.; Foster-Schubert, K.E.; Cummings, D.E.; Hoofnagle, A.N.; Vaisar, T. Postprandial remodeling of high-density lipoprotein following high saturated fat and high carbohydrate meals. J. Clin. Lipidol. 2020, 14, 66–76.e11. [Google Scholar] [CrossRef] [PubMed]
- Meikle, P.J.; Barlow, C.; Mellett, N.A.; Mundra, P.A.; Bonham, M.; Larsen, E.A.; Cameron-Smith, D.; Sinclair, A.J.; Nestel, P.J.; Wong, G. Postprandial Plasma Phospholipids in Men Are Influenced by the Source of Dietary Fat. J. Nutr. 2015, 145, 2012–2018. [Google Scholar] [CrossRef] [Green Version]
- Chatelaine, H.; Dey, P.; Mo, X.; Mah, E.; Bruno, R.S.; Kopec, R.E. Vitamin A and D Absorption in Adults with Metabolic Syndrome versus Healthy Controls: A Pilot Study Utilizing Targeted and Untargeted LC–MS Lipidomics. Mol. Nutr. Food Res. 2021, 65, e2000413. [Google Scholar] [CrossRef] [PubMed]
- Weiland, A.; Bub, A.; Barth, S.W.; Schrezenmeir, J.; Pfeuffer, M. Effects of dietary milk- and soya-phospholipids on lipid-parameters and other risk indicators for cardiovascular diseases in overweight or obese men—Two double-blind, randomised, controlled, clinical trials. J. Nutr. Sci. 2016, 5, e21. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.M. Intestinal lipid absorption and lipoprotein formation. Curr. Opin. Lipidol. 2014, 25, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Sanggaard, K.M.; Holst, J.J.; Rehfeld, J.F.; Sandström, B.; Raben, A.; Tholstrup, T. Different effects of whole milk and a fermented milk with the same fat and lactose content on gastric emptying and postprandial lipaemia, but not on glycaemic response and appetite. Br. J. Nutr. 2004, 92, 447–459. [Google Scholar] [CrossRef]
- Ehrlein, H.-J.; Pröve, J. Effect of viscosity of test meals on gastric emptying in dogs. Q. J. Exp. Physiol. 1982, 67, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Armand, M.; Pasquier, B.; André, M.; Borel, P.; Senft, M.; Peyrot, J.; Salducci, J.; Portugal, H.; Jaussan, V.; Lairon, D. Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am. J. Clin. Nutr. 1999, 70, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Jukkola, A.; Rojas, O.J. Milk fat globules and associated membranes: Colloidal properties and processing effects. Adv. Colloid Interface Sci. 2017, 245, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Liebisch, G.; Vizcaino, J.A.; Köfeler, H.; Trötzmüller, M.; Griffiths, W.; Schmitz, G.; Spener, F.; Wakelam, M. Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 2013, 54, 1523–1530. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate—A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
Time (min) | 0 | 30 | 60 | 90 | 120 | 180 | 240 | 300 | 360 | 420 | 480 | qmeal * time | qmeal | qtime |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LPE 16:0 | ||||||||||||||
Cheese | 0.018 | 0.018 | 0.015 | 0.015 | 0.017 | 0.016 | 0.017 | 0.014 | 0.017 | 0.015 | 0.014 | 0.79 | 0.29 | 0.11 |
Hom. Cheese | 0.026 | 0.021 | 0.019 | 0.018 | 0.017 | 0.021 | 0.018 | 0.024 | 0.018 | 0.021 | 0.019 | |||
MCI Drink | 0.017 | 0.020 | 0.023 | 0.019 | 0.017 | 0.018 | 0.016 | 0.019 | 0.015 | 0.018 | 0.016 | |||
MCI Gel | 0.015 | 0.019 | 0.016 | 0.017 | 0.018 | 0.014 | 0.014 | 0.016 | 0.016 | 0.015 | 0.014 | |||
LPE 18:2 | ||||||||||||||
Cheese | 0.335 | 0.412 | 0.303 | 0.295 | 0.317 | 0.309 | 0.296 | 0.281 | 0.314 | 0.286 | 0.332 | 0.69 | 0.001 * | 0.30 |
Hom. Cheese | 0.419 | 0.278 | 0.367 | 0.307 | 0.282 | 0.308 | 0.283 | 0.316 | 0.354 | 0.300 | 0.358 | |||
MCI Drink | 0.298 | 0.319 | 0.398 | 0.358 | 0.330 | 0.404 | 0.302 | 0.313 | 0.243 | 0.271 | 0.308 | |||
MCI Gel | 0.263 | 0.288 | 0.279 | 0.290 | 0.286 | 0.246 | 0.251 | 0.250 | 0.224 | 0.268 | 0.268 | |||
LPE 18:1 | ||||||||||||||
Cheese | 0.824 | 0.846 | 0.650 | 0.726 | 0.747 | 0.692 | 0.675 | 0.596 | 0.711 | 0.607 | 0.598 | 0.79 | <0.001 * | <0.001 * |
Hom. Cheese | 0.959 | 0.807 | 0.896 | 0.795 | 0.694 | 0.820 | 0.722 | 0.774 | 0.750 | 0.730 | 0.823 | |||
MCI Drink | 0.800 | 0.845 | 0.969 | 0.868 | 0.794 | 0.787 | 0.675 | 0.715 | 0.553 | 0.698 | 0.727 | |||
MCI Gel | 0.633 | 0.787 | 0.692 | 0.731 | 0.659 | 0.535 | 0.488 | 0.522 | 0.501 | 0.553 | 0.587 | |||
LPE 18:0 | ||||||||||||||
Cheese | 1.780 | 1.878 | 1.498 | 1.636 | 1.742 | 1.615 | 1.564 | 1.361 | 1.642 | 1.371 | 1.329 | 0.79 | 0.026 * | 0.001 * |
Hom. Cheese | 2.141 | 1.723 | 1.923 | 1.674 | 1.613 | 1.838 | 1.622 | 1.819 | 1.733 | 1.638 | 1.814 | |||
MCI Drink | 1.714 | 1.856 | 2.139 | 1.953 | 1.793 | 1.762 | 1.561 | 1.665 | 1.256 | 1.520 | 1.572 | |||
MCI Gel | 1.499 | 1.792 | 1.590 | 1.690 | 1.641 | 1.347 | 1.254 | 1.339 | 1.229 | 1.329 | 1.365 | |||
LPE 20:3 | ||||||||||||||
Cheese | 0.105 | 0.121 | 0.091 | 0.102 | 0.096 | 0.097 | 0.095 | 0.105 | 0.116 | 0.098 | 0.120 | 0.79 | 0.016 * | 0.010 * |
Hom. Cheese | 0.126 | 0.093 | 0.129 | 0.107 | 0.090 | 0.103 | 0.099 | 0.107 | 0.119 | 0.113 | 0.137 | |||
MCI Drink | 0.111 | 0.106 | 0.122 | 0.107 | 0.103 | 0.111 | 0.108 | 0.109 | 0.090 | 0.116 | 0.124 | |||
MCI Gel | 0.090 | 0.093 | 0.090 | 0.104 | 0.094 | 0.078 | 0.083 | 0.090 | 0.085 | 0.106 | 0.104 | |||
LPE 20:2 | ||||||||||||||
Cheese | 0.103 | 0.109 | 0.077 | 0.089 | 0.085 | 0.085 | 0.082 | 0.070 | 0.088 | 0.073 | 0.075 | 0.79 | <0.001 * | <0.001 * |
Hom. Cheese | 0.124 | 0.102 | 0.108 | 0.095 | 0.086 | 0.096 | 0.087 | 0.100 | 0.092 | 0.090 | 0.105 | |||
MCI Drink | 0.098 | 0.109 | 0.116 | 0.108 | 0.096 | 0.092 | 0.081 | 0.083 | 0.062 | 0.091 | 0.095 | |||
MCI Gel | 0.076 | 0.094 | 0.080 | 0.091 | 0.080 | 0.061 | 0.056 | 0.067 | 0.063 | 0.073 | 0.075 | |||
LPE 20:1 | ||||||||||||||
Cheese | 1.332 | 1.384 | 1.015 | 1.121 | 1.188 | 1.077 | 1.034 | 0.968 | 1.197 | 1.019 | 1.057 | 0.79 | 0.001 * | <0.001 * |
Hom. Cheese | 1.533 | 1.277 | 1.353 | 1.165 | 1.120 | 1.201 | 1.117 | 1.167 | 1.228 | 1.163 | 1.370 | |||
MCI Drink | 1.266 | 1.393 | 1.497 | 1.385 | 1.215 | 1.245 | 1.052 | 1.206 | 0.891 | 1.190 | 1.264 | |||
MCI Gel | 1.066 | 1.222 | 1.027 | 1.163 | 1.036 | 0.819 | 0.795 | 0.866 | 0.830 | 0.972 | 1.024 | |||
LPE 22:6 | ||||||||||||||
Cheese | 1.108 | 1.227 | 0.962 | 1.017 | 1.130 | 0.967 | 1.063 | 0.952 | 1.140 | 0.984 | 1.038 | 0.79 | 0.07 | 0.30 |
Hom. Cheese | 1.295 | 1.011 | 1.155 | 1.120 | 0.982 | 1.110 | 1.014 | 1.246 | 1.096 | 1.106 | 1.204 | |||
MCI Drink | 1.166 | 1.183 | 1.279 | 1.187 | 1.190 | 1.175 | 1.106 | 1.088 | 0.979 | 1.080 | 1.165 | |||
MCI Gel | 1.033 | 1.148 | 0.966 | 1.024 | 0.979 | 0.949 | 0.904 | 0.991 | 0.842 | 0.946 | 0.955 |
Time (min) | 0 | 30 | 60 | 90 | 120 | 180 | 240 | 300 | 360 | 420 | 480 | qmeal * time | qmeal | qtime |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LPC 16:3 | ||||||||||||||
Cheese | 99.428 | 112.408 | 87.591 | 94.724 | 102.710 | 88.845 | 98.695 | 86.458 | 99.880 | 91.332 | 92.618 | 0.79 | 0.026 * | 0.17 |
Hom. Cheese | 111.998 | 90.966 | 106.467 | 97.927 | 89.453 | 100.357 | 89.250 | 111.806 | 97.412 | 93.725 | 107.311 | |||
MCI Drink | 99.916 | 104.535 | 109.441 | 104.144 | 104.554 | 99.942 | 96.144 | 94.973 | 82.139 | 91.793 | 97.931 | |||
MCI Gel | 91.769 | 103.383 | 83.215 | 88.737 | 89.650 | 82.000 | 75.879 | 84.615 | 74.239 | 79.843 | 86.073 | |||
LPC 18:4 | ||||||||||||||
Cheese | 0.192 | 0.265 | 0.172 | 0.185 | 0.196 | 0.186 | 0.269 | 0.175 | 0.240 | 0.285 | 0.207 | 0.69 | 0.56 | 0.031 * |
Hom. Cheese | 0.240 | 0.150 | 0.133 | 0.202 | 0.244 | 0.223 | 0.194 | 0.294 | 0.211 | 0.247 | 0.295 | |||
MCI Drink | 0.225 | 0.238 | 0.222 | 0.222 | 0.229 | 0.155 | 0.254 | 0.198 | 0.178 | 0.245 | 0.265 | |||
MCI Gel | 0.185 | 0.242 | 0.141 | 0.166 | 0.164 | 0.186 | 0.168 | 0.253 | 0.206 | 0.200 | 0.223 | |||
LPC 18:1 | ||||||||||||||
Cheese | 37.100 | 40.785 | 31.934 | 32.954 | 34.604 | 31.160 | 35.798 | 32.833 | 40.197 | 37.388 | 39.552 | 0.79 | 0.038 * | 0.005 * |
Hom. Cheese | 43.961 | 32.096 | 39.357 | 34.708 | 33.136 | 36.201 | 33.256 | 39.231 | 39.143 | 39.298 | 46.104 | |||
MCI Drink | 37.529 | 38.037 | 40.413 | 38.786 | 37.626 | 38.473 | 35.659 | 37.146 | 32.123 | 40.174 | 42.776 | |||
MCI Gel | 32.524 | 35.282 | 30.447 | 33.027 | 31.176 | 29.543 | 27.902 | 32.784 | 29.748 | 35.714 | 36.609 | |||
LPC 18:0 | ||||||||||||||
Cheese | 42.735 | 47.521 | 36.862 | 39.382 | 43.097 | 37.804 | 41.202 | 37.245 | 43.150 | 38.534 | 40.294 | 0.79 | 0.045 * | 0.30 |
Hom. Cheese | 50.650 | 39.148 | 45.818 | 41.800 | 38.243 | 44.158 | 39.142 | 46.650 | 42.214 | 43.289 | 46.385 | |||
MCI Drink | 45.162 | 45.427 | 49.535 | 46.238 | 45.999 | 47.192 | 42.386 | 43.521 | 37.251 | 41.634 | 44.870 | |||
MCI Gel | 39.870 | 43.515 | 37.074 | 39.537 | 39.408 | 36.150 | 35.096 | 37.522 | 32.041 | 36.311 | 37.531 | |||
LPC 20:0 | ||||||||||||||
Cheese | 0.436 | 0.388 | 0.489 | 0.560 | 0.883 | 0.606 | 0.670 | 0.632 | 0.751 | 0.602 | 0.762 | 0.91 | 0.80 | 0.049 * |
Hom. Cheese | 0.516 | 0.426 | 0.544 | 0.572 | 0.576 | 0.760 | 0.732 | 0.583 | 0.679 | 0.763 | 0.655 | |||
MCI Drink | 0.442 | 0.418 | 0.550 | 0.463 | 0.569 | 0.897 | 0.502 | 0.722 | 0.588 | 0.671 | 0.633 | |||
MCI Gel | 0.371 | 0.399 | 0.664 | 0.677 | 0.622 | 0.508 | 0.543 | 0.556 | 0.653 | 0.507 | 0.562 | |||
LPC 22:0 | ||||||||||||||
Cheese | 0.00014 | 0.00008 | 0.00007 | 0.00007 | 0.00008 | 0.00007 | 0.00006 | 0.00007 | 0.00013 | 0.00008 | 0.00010 | 0.83 | 0.45 | 0.48 |
Hom. Cheese | 0.00008 | 0.00008 | 0.00007 | 0.00004 | 0.00005 | 0.00009 | 0.00006 | 0.00007 | 0.00009 | 0.00008 | 0.00011 | |||
MCI Drink | 0.00007 | 0.00006 | 0.00009 | 0.00006 | 0.00009 | 0.00009 | 0.00007 | 0.00006 | 0.00008 | 0.00006 | 0.00009 | |||
MCI Gel | 0.00005 | 0.00004 | 0.00007 | 0.00011 | 0.00007 | 0.00007 | 0.00008 | 0.00008 | 0.00007 | 0.00005 | 0.00006 | |||
LPC 24:0 | ||||||||||||||
Cheese | 0.586 | 0.539 | 0.647 | 0.713 | 0.932 | 0.613 | 0.501 | 0.958 | 0.636 | 0.636 | 0.772 | 0.89 | 0.76 | 0.48 |
Hom. Cheese | 0.851 | 0.627 | 0.898 | 0.964 | 0.504 | 0.666 | 0.553 | 0.571 | 0.625 | 0.626 | 0.808 | |||
MCI Drink | 0.793 | 0.561 | 0.730 | 0.695 | 0.883 | 0.803 | 0.729 | 0.832 | 0.753 | 0.683 | 0.824 | |||
MCI Gel | 0.561 | 0.533 | 0.838 | 0.701 | 0.592 | 0.556 | 0.719 | 0.411 | 0.582 | 0.626 | 0.533 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thøgersen, R.; Lindahl, I.E.I.; Khakimov, B.; Kjølbæk, L.; Juhl Jensen, K.; Astrup, A.; Hammershøj, M.; Raben, A.; Bertram, H.C. Progression of Postprandial Blood Plasma Phospholipids Following Acute Intake of Different Dairy Matrices: A Randomized Crossover Trial. Metabolites 2021, 11, 454. https://doi.org/10.3390/metabo11070454
Thøgersen R, Lindahl IEI, Khakimov B, Kjølbæk L, Juhl Jensen K, Astrup A, Hammershøj M, Raben A, Bertram HC. Progression of Postprandial Blood Plasma Phospholipids Following Acute Intake of Different Dairy Matrices: A Randomized Crossover Trial. Metabolites. 2021; 11(7):454. https://doi.org/10.3390/metabo11070454
Chicago/Turabian StyleThøgersen, Rebekka, Ida Emilie I. Lindahl, Bekzod Khakimov, Louise Kjølbæk, Klaus Juhl Jensen, Arne Astrup, Marianne Hammershøj, Anne Raben, and Hanne Christine Bertram. 2021. "Progression of Postprandial Blood Plasma Phospholipids Following Acute Intake of Different Dairy Matrices: A Randomized Crossover Trial" Metabolites 11, no. 7: 454. https://doi.org/10.3390/metabo11070454
APA StyleThøgersen, R., Lindahl, I. E. I., Khakimov, B., Kjølbæk, L., Juhl Jensen, K., Astrup, A., Hammershøj, M., Raben, A., & Bertram, H. C. (2021). Progression of Postprandial Blood Plasma Phospholipids Following Acute Intake of Different Dairy Matrices: A Randomized Crossover Trial. Metabolites, 11(7), 454. https://doi.org/10.3390/metabo11070454