Defining the Relative Role of Insulin Clearance in Early Dysglycemia in Relation to Insulin Sensitivity and Insulin Secretion: The Microbiome and Insulin Longitudinal Evaluation Study (MILES)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Participants
4.2. Phenotyping Insulin Homeostasis
4.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention. National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States, 2020; US Department of Health and Human Services: Atlanta, GA, USA, 2020. [Google Scholar]
- Mittelman, S.D.; Van Citters, G.W.; Kim, S.P.; Davis, D.A.; Dea, M.K.; Hamilton-Wessler, M.; Bergman, R.N. Longitudinal compensation for fat-induced insulin resistance includes reduced insulin clearance and enhanced beta-cell response. Diabetes 2000, 49, 2116–2125. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.P.; Ellmerer, M.; Kirkman, E.L.; Bergman, R.N. β-Cell “rest” accompanies reduced first-pass hepatic insulin extraction in the insulin-resistant, fat-fed canine model. Am. J. Physiol. Metab. 2007, 292, E1581–E1589. [Google Scholar] [CrossRef]
- Gastaldelli, A.; Ferrannini, E.; Miyazaki, Y.; Matsuda, M.; DeFronzo, R.A. Beta-cell dysfunction and glucose intolerance: Results from the San Antonio metabolism (SAM) study. Diabetologia 2004, 47, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Goodarzi, M.O.; Palmer, N.D.; Cui, J.; Guo, X.; Chen, Y.-D.I.; Taylor, K.D.; Raffel, L.J.; Wagenknecht, L.E.; Buchanan, T.A.; Hsueh, W.A.; et al. Classification of type 2 diabetes genetic variants and a novel genetic risk score association with insulin clearance. J. Clin. Endocrinol. Metab. 2020, 105, 1251–1260. [Google Scholar] [CrossRef]
- Ferrannini, E.; Wahren, J.; Faber, O.K.; Felig, P.; Binder, C.; DeFronzo, R.A. Splanchnic and renal metabolism of insulin in human subjects: A dose-response study. Am. J. Physiol. Metab. 1983, 244, E517–E527. [Google Scholar] [CrossRef] [PubMed]
- Haffner, S.M.; Stern, M.P.; Watanabe, R.M.; Bergman, R.N. Relationship of insulin clearance and secretion to insulin sensitivity in non-diabetic Mexican Americans. Eur. J. Clin. Investig. 1992, 22, 147–153. [Google Scholar] [CrossRef]
- JJones, C.N.O.; Abbasi, F.; Carantoni, M.; Polonsky, K.S.; Reaven, G.M. Roles of insulin resistance and obesity in regulation of plasma insulin concentrations. Am. J. Physiol. Metab. 2000, 278, E501–E508. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Haffner, S.M.; Wagenknecht, L.E.; Lorenzo, C.; Norris, J.M.; Bergman, R.N.; Stefanovski, D.; Anderson, A.M.; Rotter, J.I.; Goodarzi, M.O.; et al. Insulin Clearance and the Incidence of Type 2 Diabetes in Hispanics and African Americans. Diabetes Care 2012, 36, 901–907. [Google Scholar] [CrossRef] [Green Version]
- Galderisi, A.; Polidori, D.; Weiss, R.; Giannini, C.; Pierpont, B.; Trico’, D.; Caprio, S. Lower insulin clearance parallels a reduced insulin sensitivity in obese youths and is associated with a decline in beta-cell function over time. Diabetes 2019, 68, 2074–2084. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, K.; Komada, H.; Uda, S.; Kubota, H.; Iwaki, T.; Fukuzawa, H.; Komori, Y.; Fujii, M.; Toyoshima, Y.; Sakaguchi, K.; et al. Glucose homeostatic law: Insulin clearance predicts the progression of glucose intolerance in humans. PLoS ONE 2015, 10, e0143880. [Google Scholar] [CrossRef] [Green Version]
- Gastaldelli, A.; Ghani, M.A.; DeFronzo, R.A. Adaptation of insulin clearance to metabolic demand is a key determinant of glucose tolerance. Diabetes 2021, 70, 377–385. [Google Scholar] [CrossRef]
- Shah, M.H.; Piaggi, P.; Looker, H.C.; Paddock, E.; Krakoff, J.; Chang, D.C. Lower insulin clearance is associated with increased risk of type 2 diabetes in Native Americans. Diabetologia 2021, 64, 914–922. [Google Scholar] [CrossRef]
- Stefanovski, D.; Richey, J.M.; Woolcott, O.; Lottati, M.; Zheng, D.; Harrison, L.N.; Ionut, V.; Kim, S.P.; Hsu, I.; Bergman, R.N. Consistency of the disposition index in the face of diet induced insulin resistance: Potential role of FFA. PLoS ONE 2011, 6, e18134. [Google Scholar] [CrossRef]
- Ader, M.; Stefanovski, D.; Kim, S.P.; Richey, J.M.; Ionut, V.; Catalano, K.J.; Hücking, K.; Ellmerer, M.; Van Citters, G.; Hsu, I.R.; et al. Hepatic insulin clearance is the primary determinant of insulin sensitivity in the normal dog. Obesity 2013, 22, 1238–1245. [Google Scholar] [CrossRef] [Green Version]
- Al-Share, Q.Y.; DeAngelis, A.M.; Lester, S.G.; Bowman, T.A.; Ramakrishnan, S.K.; Abdallah, S.L.; Russo, L.; Patel, P.R.; Kaw, M.K.; Raphael, C.K.; et al. Forced hepatic overexpression of CEACAM1 curtails diet-induced insulin resistance. Diabetes 2015, 64, 2780–2790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semnani-Azad, Z.; Johnston, L.W.; Lee, C.; Retnakaran, R.; Connelly, P.W.; Harris, S.B.; Zinman, B.; Hanley, A.J. Determinants of longitudinal change in insulin clearance: The Prospective Metabolism and Islet Cell Evaluation cohort. BMJ Open Diabetes Res. Care 2019, 7, e000825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, R.N.; Piccinini, F.; Kabir, M.; Kolka, C.M.; Ader, M. Hypothesis: Role of reduced hepatic insulin clearance in the pathogenesis of type 2 diabetes. Diabetes 2019, 68, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Watada, H.; Tamura, Y. Impaired insulin clearance as a cause rather than a consequence of insulin resistance. J. Diabetes Investig. 2017, 8, 723–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, E.T.; Bertoni, A.G.; Crago, O.L.; Hoffman, K.L.; Wood, A.C.; Arzumanyan, Z.; Lam, L.K.; Roll, K.; Sandow, K.; Wu, M.; et al. Rationale, design and baseline characteristics of the Microbiome and Insulin Longitudinal Evaluation Study (MILES). Diabetes Obes. Metab. 2020, 22, 1976–1984. [Google Scholar] [CrossRef]
- Ratheiser, K.; Reitgruber, W.; Komjati, M.; Bratusch-Marrain, P.; Vierhapper, H.; Waldhäusl, W.K. Quantitative and qualitative differences in basal and glucose- and arginine-stimulated insulin secretion in healthy subjects and different stages of NIDDM. Acta Diabetol. 1990, 27, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Hanley, A.J.; University of Toronto, Toronto, ON, Canada. Personal communication, 2021.
- Ladwa, M.; Bello, O.; Hakim, O.; Shojaee-Moradie, F.; Boselli, L.; Charles-Edwards, G.; Stadler, M.; Peacock, J.L.; Umpleby, A.M.; Amiel, S.A.; et al. Insulin clearance as the major player in the hyperinsulinaemia of black African men without diabetes. Diabetes Obes. Metab. 2020, 22, 1808–1817. [Google Scholar] [CrossRef]
- Goedecke, J.H.; Olsson, T. Pathogenesis of type 2 diabetes risk in black Africans: A South African perspective. J. Intern. Med. 2020, 288, 284–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fosam, A.; Sikder, S.; Abel, B.S.; Tella, S.H.; Walter, M.F.; Mari, A.; Muniyappa, R. Reduced insulin clearance and insulin-degrading enzyme activity contribute to hyperinsulinemia in African Americans. J. Clin. Endocrinol. Metab. 2020, 105, e1835–e1846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poy, M.N.; Yang, Y.; Rezaei, K.; Fernström, M.A.; Lee, A.D.; Kido, Y.; Erickson, S.K.; Najjar, S.M. CEACAM1 regulates insulin clearance in liver. Nat. Genet. 2002, 30, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Abbasi, F.; Chu, J.W.; McLaughlin, T.L.; Lamendola, C.; Polonsky, K.S.; Reaven, G.M. Rosiglitazone reduces glucose-stimulated insulin secretion rate and increases insulin clearance in nondiabetic, insulin-resistant individuals. Diabetes 2005, 54, 2447–2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuominen, J.A.; Ebeling, P.; Koivisto, V.A. Exercise increases insulin clearance in healthy man and insulin-dependent diabetes mellitus patients. Clin. Physiol. 1997, 17, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Reaven, G.M. Insulin clearance: An underappreciated modulator of plasma insulin concentration. J. Investig. Med. 2016, 64, 1162–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.-H.; Jung, C.-H.; Reaven, G.M.; Kim, S.H. Adapting to insulin resistance in obesity: Role of insulin secretion and clearance. Diabetologia 2018, 61, 681–687. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Liu, A.; Ariel, D.; Abbasi, F.; Lamendola, C.; Grove, K.; Tomasso, V.; Ochoa, H.; Reaven, G. Effect of salsalate on insulin action, secretion, and clearance in nondiabetic, insulin-resistant individuals: A randomized, placebo-controlled study. Diabetes Care 2014, 37, 1944–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polidori, D.C.; Bergman, R.N.; Chung, S.T.; Sumner, A.E. Hepatic and extrahepatic insulin clearance are differentially regulated: Results from a novel model-based analysis of intravenous glucose tolerance data. Diabetes 2016, 65, 1556–1564. [Google Scholar] [CrossRef] [Green Version]
- Bizzotto, R.; Jennison, C.; Jones, A.G.; Kurbasic, A.; Tura, A.; Kennedy, G.; Bell, J.D.; Thomas, E.L.; Frost, G.; Eriksen, R.; et al. Processes underlying glycemic deterioration in type 2 diabetes: An IMI DIRECT study. Diabetes Care 2021, 44, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Ahlqvist, E.; Storm, P.; Käräjämäki, A.; Martinell, M.; Dorkhan, M.; Carlsson, A.; Vikman, P.; Prasad, R.B.; Aly, D.M.; Almgren, P.; et al. Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018, 6, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Udler, M.S.; Kim, J.; Von Grotthuss, M.; Bonàs-Guarch, S.; Cole, J.B.; Chiou, J.; Boehnke, M.; Laakso, M.; Atzmon, G.; Glaser, B.; et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Med. 2018, 15, e1002654. [Google Scholar] [CrossRef] [Green Version]
- Narayan, K.M.V.; Kanaya, A.M. Why are South Asians prone to type 2 diabetes? A hypothesis based on underexplored pathways. Diabetologia 2020, 63, 1103–1109. [Google Scholar] [CrossRef]
- Tabák, A.G.; Jokela, M.; Akbaraly, T.N.; Brunner, E.J.; Kivimäki, M.; Witte, D.R. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: An analysis from the Whitehall II study. Lancet 2009, 373, 2215–2221. [Google Scholar] [CrossRef] [Green Version]
- Bergman, R.N.; Ader, M.; Huecking, K.; Van Citters, G. Accurate assessment of beta-cell function: The hyperbolic correction. Diabetes 2002, 51, S212–S220. [Google Scholar] [CrossRef] [Green Version]
- Defronzo, R.A.; Tripathy, D.; Schwenke, D.C.; Banerji, M.; Bray, G.A.; Buchanan, T.A.; Clement, S.C.; Henry, R.R.; Kitabchi, A.E.; Mudaliar, S.; et al. Prediction of diabetes based on baseline metabolic characteristics in individuals at high risk. Diabetes Care 2013, 36, 3607–3612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzo, C.; Wagenknecht, L.E.; Rewers, M.J.; Karter, A.J.; Bergman, R.N.; Hanley, A.J.; Haffner, S.M. Disposition index, glucose effectiveness, and conversion to type 2 diabetes: The Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care 2010, 33, 2098–2103. [Google Scholar] [CrossRef] [Green Version]
- Stančáková, A.; Javorský, M.; Kuulasmaa, T.; Haffner, S.M.; Kuusisto, J.; Laakso, M. Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6,414 Finnish men. Diabetes 2009, 58, 1212–1221. [Google Scholar] [CrossRef] [Green Version]
- Herzberg-Schäfer, S.A.; Staiger, H.; Heni, M.; Ketterer, C.; Guthoff, M.; Kantartzis, K.; Machicao, F.; Stefan, N.; Häring, H.-U.; Fritsche, A. Evaluation of fasting state-/oral glucose tolerance test-derived measures of insulin release for the detection of genetically impaired beta-cell function. PLoS ONE 2010, 5, e14194. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, M.; DeFronzo, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef]
- Rudovich, N.; Pivovarova, O.; Fisher, E.; Fischer-Rosinsky, A.; Spranger, J.; Möhlig, M.; Schulze, M.B.; Boeing, H.; Pfeiffer, A.F.H. Polymorphisms within insulin-degrading enzyme (IDE) gene determine insulin metabolism and risk of type 2 diabetes. J. Mol. Med. 2009, 87, 1145–1151. [Google Scholar] [CrossRef]
- Polonsky, K.S.; Rubenstein, A.H. C-peptide as a measure of the secretion and hepatic extraction of insulin. Pitfalls and limitations. Diabetes 1984, 33, 486–494. [Google Scholar] [CrossRef]
- Piccinini, F.; Bergman, R.N. The measurement of insulin clearance. Diabetes Care 2020, 43, 2296–2302. [Google Scholar] [CrossRef] [PubMed]
- Utzschneider, K.M.; Kahn, S.E.; Polidori, D.C. Hepatic insulin extraction in NAFLD is related to insulin resistance rather than liver fat content. J. Clin. Endocrinol. Metab. 2019, 104, 1855–1865. [Google Scholar] [CrossRef] [Green Version]
- DeFronzo, R.A.; Matsuda, M. Reduced time points to calculate the composite index. Diabetes Care 2010, 33, e93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, J.L.; Yévenes, I.; Cataldo, L.R.; Morales, M.; Galgani, J.A.; Arancibia, C.; Vega, J.C.; Olmos, P.; Flores, M.; Valderas, J.P.; et al. Development and assessment of the disposition index based on the oral glucose tolerance test in subjects with different glycaemic status. J. Physiol. Biochem. 2015, 72, 121–131. [Google Scholar] [CrossRef]
- Beasley, T.M.; Erickson, S.; Allison, D.B. Rank-based inverse normal transformations are increasingly used, but are they merited? Behav. Genet. 2009, 39, 580–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blom, G. Statistical Estimates and Transformed Beta-Variables; Wiley: New York, NY, USA, 1958. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Hanley, J.A. The robustness of the “binormal” assumptions used in fitting ROC curves. Med Decis. Mak. 1988, 8, 197–203. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
Normal Glucose Tolerance (n = 189) | Prediabetes (n = 136) | Diabetes (n = 28) | p-Value † | |
---|---|---|---|---|
Age | 58.0 (13.0) * | 61.0 (15.0) | 65.0 (12.3) | 0.0024 |
Sex (% male) | 32.2% * | 45.6% | 50% | 0.013 |
Race (% African American) | 34.4% | 40.4% | 32.1% | 0.47 |
BMI (kg/m2) | 26.0 (7.2) * | 28.8 (7.7) | 31.7 (7.0) | <0.0001 |
Waist-to-hip ratio | 0.90 (0.10) * | 0.95 (0.12) ** | 1.01 (0.085) *** | <0.0001 |
Systolic blood pressure (mmHg) | 117.5 (25.8) | 120.8 (24.4) | 122.5 (15.3) | 0.20 |
Diastolic blood pressure (mmHg) | 71.5 (14.8) | 72.0 (12.4) | 73.5 (16.3) | 0.55 |
Fasting glucose (mmol/L) | 5.16 (0.39) * | 5.77 (0.50) ** | 6.22 (1.25) *** | <0.0001 |
Fasting insulin (pmol/L) | 43.2 (33.6) * | 70.2 (56.4) | 98.4 (63.6) | <0.0001 |
Glucose at 120 min (mmol/L) | 5.61 (1.83) * | 7.44 (2.71) ** | 12.07 (1.97) *** | <0.0001 |
Fasting C-peptide (nmol/L) | 0.58 (0.29) * | 0.84 (0.46) ** | 1.05 (0.62) *** | <0.0001 |
Insulin sensitivity (ISI) | 5.57 (4.59) * | 3.08 (2.32) ** | 2.05 (1.12) *** | <0.0001 |
Insulin secretion (AUC-Ins30/AUC-Glu30) | 0.35 (0.29) | 0.38 (0.39) | 0.23 (0.27) * | 0.0037 |
Disposition index (DI30) | 1.93 (1.10) * | 1.10 (0.67) ** | 0.59 (0.24) *** | <0.0001 |
Insulin clearance (AUC-Cpep/AUC-Ins) ‡ | 0.11 (0.054) | 0.093 (0.045) | 0.10 (0.024) | <0.0001 |
Normal Glucose Tolerance (n = 189) | Dysglycemia (n = 164) | p-Value | |
---|---|---|---|
Insulin sensitivity | 5.57 (4.59) | 2.67 (2.23) | <0.0001 |
Insulin secretion | 0.35 (0.29) | 0.36 (0.34) | 0.44 |
Disposition index | 1.93 (1.10) | 1.01 (0.68) | <0.0001 |
Insulin clearance | 0.11 (0.054) | 0.095 (0.043) | <0.0001 |
Base Model | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|---|---|---|
Age | 0.045 *** (0.013) | 0.019 (0.015) | 0.044 *** (0.013) | 0.042 *** (0.013) | 0.002 (0.017) | −0.012 (0.018) | −0.007 (0.017) |
Sex (male) | 0.611 *** (0.231) | 0.218 (0.271) | 0.649 *** (0.234) | 0.542 *** (0.235) | 0.635 ** (0.289) | 0.341 (0.306) | 0.546 * (0.298) |
BMI | 0.500 *** (0.125) | −0.276 * (0.162) | 0.557 *** (0.135) | 0.377 *** (0.134) | 0.127 (0.157) | −0.410 ** (0.197) | −0.146 (0.177) |
Race (African American) | 0.039 (0.248) | −0.181 (0.268) | 0.106 (0.254) | −0.187 (0.265) | 0.808 ** (0.327) | 0.504 (0.361) | 0.377 (0.349) |
Insulin sensitivity | −1.657 *** (0.212) | −3.413 *** (0.403) | |||||
Insulin secretion | −0.158 (0.128) | −1.925 *** (0.304) | |||||
Insulin clearance | −0.359 *** (0.139) | 0.129 (0.299) | −0.696 *** (0.182) | ||||
Disposition index | −2.066 *** (0.235) | −2.226 *** (0.254) | |||||
AUROC | 0.678 (0.625–0.734) | 0.816 (0.772–0.863) | 0.684 (0.631–0.739) | 0.691 (0.635–0.745) | 0.871 (0.833–0.90) | 0.894 (0.860–0.925) | 0.884 (0.849–0.918) |
AIC | 461.100 | 375.940 | 461.583 | 456.234 | 324.260 | 302.540 | 310.432 |
Base Model | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|---|---|---|
Base model | - | −5.23 | −0.78 | −0.80 | −6.58 | −7.39 | −7.15 |
Model 1: base + insulin sensitivity | 1.67 × 10−7 | - | 4.59 | 5.97 | −1.85 | −4.23 | −2.94 |
Model 2: base + insulin secretion | 0.44 | 4.52 × 10−6 | - | −0.30 | −6.82 | −7.20 | −7.13 |
Model 3: base + insulin clearance | 0.42 | 2.41 × 10−9 | 0.76 | - | −5.94 | −7.35 | −7.05 |
Model 4: base + disposition index | 4.62 × 10−11 | 0.065 | 9.20 × 10−12 | 2.78 × 10−9 | - | −2.00 | −1.71 |
Model 5: base + insulin sensitivity, secretion, clearance | 1.44 × 10−13 | 2.35 × 10−5 | 6.26 × 10−13 | 2.02 × 10−13 | 0.046 | - | 1.35 |
Model 6: base + insulin clearance, disposition index | 9.02 × 10−13 | 0.003 | 1.01 × 10−12 | 1.79 × 10−12 | 0.087 | 0.18 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wood, A.C.; Jensen, E.T.; Bertoni, A.G.; Ramesh, G.; Rich, S.S.; Rotter, J.I.; Chen, Y.-D.I.; Goodarzi, M.O. Defining the Relative Role of Insulin Clearance in Early Dysglycemia in Relation to Insulin Sensitivity and Insulin Secretion: The Microbiome and Insulin Longitudinal Evaluation Study (MILES). Metabolites 2021, 11, 420. https://doi.org/10.3390/metabo11070420
Wood AC, Jensen ET, Bertoni AG, Ramesh G, Rich SS, Rotter JI, Chen Y-DI, Goodarzi MO. Defining the Relative Role of Insulin Clearance in Early Dysglycemia in Relation to Insulin Sensitivity and Insulin Secretion: The Microbiome and Insulin Longitudinal Evaluation Study (MILES). Metabolites. 2021; 11(7):420. https://doi.org/10.3390/metabo11070420
Chicago/Turabian StyleWood, Alexis C., Elizabeth T. Jensen, Alain G. Bertoni, Gautam Ramesh, Stephen S. Rich, Jerome I. Rotter, Yii-Der I. Chen, and Mark O. Goodarzi. 2021. "Defining the Relative Role of Insulin Clearance in Early Dysglycemia in Relation to Insulin Sensitivity and Insulin Secretion: The Microbiome and Insulin Longitudinal Evaluation Study (MILES)" Metabolites 11, no. 7: 420. https://doi.org/10.3390/metabo11070420
APA StyleWood, A. C., Jensen, E. T., Bertoni, A. G., Ramesh, G., Rich, S. S., Rotter, J. I., Chen, Y. -D. I., & Goodarzi, M. O. (2021). Defining the Relative Role of Insulin Clearance in Early Dysglycemia in Relation to Insulin Sensitivity and Insulin Secretion: The Microbiome and Insulin Longitudinal Evaluation Study (MILES). Metabolites, 11(7), 420. https://doi.org/10.3390/metabo11070420