Glioblastoma Metabolomics—In Vitro Studies
Abstract
:1. Introduction
2. Sample Preparation for In Vitro Studies
3. Metabolomics of GBM In Vitro
4. Importance of GBM Microenvironment Reconstruction for In Vitro Metabolomics
5. In Vitro-In Vivo Extrapolation of Oncometabolites
6. Pharmaco-Metabolomics as a Tool for Glioma Drug Testing In Vitro
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007, 114, 547, Erratum in 2007, 114, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrom, Q.T.; Patil, N.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro-Oncology 2020, 22, iv1–iv96. [Google Scholar] [CrossRef] [PubMed]
- Cavazos, D.A.; Brenner, A.J. Hypoxia in astrocytic tumors and implications for therapy. Neurobiol. Dis. 2016, 85, 227–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papale, M.; Buccarelli, M.; Mollinari, C.; Russo, M.A.; Pallini, R.; Ricci-Vitiani, L.; Tafani, M. Hypoxia, Inflammation and Necrosis as Determinants of Glioblastoma Cancer Stem Cells Progression. Int. J. Mol. Sci. 2020, 21, 2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, C.; Costa, A.; Osorio, L.; Lago, R.C.; Linhares, P.; Carvalho, B.; Caeiro, C. Current Standards of Care in Glioblastoma Therapy. Glioblastoma, Codon Publications, Brisbane, Australia 2017, chapter 11. 197–241. [Google Scholar] [CrossRef] [Green Version]
- Kaina, B. Temozolomide in Glioblastoma Therapy: Role of Apoptosis, Senescence and Autophagy. Comment on Strobel et al., Temozolomide and Other Alkylating Agents in Glioblastoma Therapy. Biomedicines 2019, 7, 69, Erratum in 2019, 7, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wick, W.; Platten, M.; Weller, M. New (alternative) temozolomide regimens for the treatment of glioma. Neuro-Oncology 2009, 11, 69–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, X.; Pan, M.H.; Wang, L.; Li, W.; Jiang, C.F.; He, J.; Abouzid, K.; Liu, L.Z.; Shi, Z.M.; Jiang, B.H. Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis. Cell Death Dis. 2018, 9, 1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.X.; Ge, X.; Shi, Z.M.; Yu, C.; Lu, C.F.; Wei, Y.T.; Zeng, A.L.; Wang, X.F.; Yan, W.; Zhang, J.X.; et al. Extracellular vesicles derived from hypoxic glioma stem-like cells confer temozolomide resistance on glioblastoma by delivering miR-30b-3p. Theranostics 2021, 11, 1763–1779. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Lee, D.; Lee, N.P.; Pu, J.K.S.; Wong, S.T.S.; Lui, W.M.; Fung, C.F.; Leung, G.K.K. Hyperoxia resensitizes chemoresistant human glioblastoma cells to temozolomide. J. Neuro-Oncol. 2012, 109, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Keunen, O.; Johansson, M.; Oudin, A.; Sanzey, M.; Rahim, S.A.A.; Fack, F.; Thorsen, F.; Taxt, T.; Bartos, M.; Jirik, R.; et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc. Natl. Acad. Sci. USA 2011, 108, 3749–3754. [Google Scholar] [CrossRef] [Green Version]
- Sathornsumetee, S.; Cao, Y.; Marcello, J.E.; Ii, J.E.H.; McLendon, R.E.; Desjardins, A.; Friedman, H.S.; Dewhirst, M.W.; Vredenburgh, J.J.; Rich, J.N. Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J. Clin. Oncol. 2008, 26, 271–278. [Google Scholar] [CrossRef]
- Liau, B.B.; Sievers, C.; Donohue, L.K.; Gillespie, S.M.; Flavahan, W.A.; Miller, T.E.; Venteicher, A.S.; Hebert, C.H.; Carey, C.D.; Rodig, S.J.; et al. Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance. Cell Stem Cell 2017, 20, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Colwell, N.; Larion, M.; Giles, A.J.; Seldomridge, A.N.; Sizdahkhani, S.; Gilbert, M.R.; Park, D.M. Hypoxia in the glioblastoma microenvironment: Shaping the phenotype of cancer stem-like cells. Neuro-Oncology 2017, 19, 887–896. [Google Scholar] [CrossRef]
- Jing, X.; Yang, F.; Shao, C.; Wei, K.; Xie, M.; Shen, H.; Shu, Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 2019, 18, 157. [Google Scholar] [CrossRef] [Green Version]
- Ullmann, P.; Nurmik, M.; Begaj, R.; Haan, S.; Letellier, E. Hypoxia- and MicroRNA-Induced Metabolic Reprogramming of Tumor-Initiating Cells. Cells 2019, 8, 528. [Google Scholar] [CrossRef] [Green Version]
- Eales, K.L.; Hollinshead, K.E.R.; Tennant, D.A. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis 2016, 5, e190. [Google Scholar] [CrossRef] [Green Version]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The human metabolome database. Nucleic Acids Res. 2007, 35, D521–D526. [Google Scholar] [CrossRef]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, C.W. Metabolomics: What’s happening downstream of DNA. Environ. Health Perspect. 2004, 112, A410–A415. [Google Scholar] [CrossRef] [Green Version]
- Hickman, J.A.; Graeser, R.; de Hoogt, R.; Vidic, S.; Brito, C.; Gutekunst, M.; van der Kuip, H.; Consortium, I.P. Three-dimensional models of cancer for pharmacology and cancer cell biology: Capturing tumor complexity in vitro/ex vivo. Biotechnol. J. 2014, 9, 1115–1128. [Google Scholar] [CrossRef]
- Musah-Eroje, A.; Watson, S. A novel 3D in vitro model of glioblastoma reveals resistance to temozolomide which was potentiated by hypoxia. J. Neuro-Oncol. 2019, 142, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Cuperlovic-Culf, M.; Barnett, D.A.; Culf, A.S.; Chute, I. Cell culture metabolomics: Applications and future directions. Drug Discov. Today 2010, 15, 610–621. [Google Scholar] [CrossRef]
- Tardito, S.; Oudin, A.; Ahmed, S.U.; Fack, F.; Keunen, O.; Zhene, L.; Miletic, H.; Sakariassent, P.O.; Weinstock, A.; Wagner, A.; et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 2015, 17, 1556–1568. [Google Scholar] [CrossRef] [Green Version]
- McBrayer, S.K.; Mayers, J.R.; DiNatale, G.J.; Shi, D.D.; Khanal, J.; Chakraborty, A.A.; Sarosiek, K.A.; Briggs, K.J.; Robbins, A.K.; Sewastianik, T.; et al. Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell 2018, 175, 101–116. [Google Scholar] [CrossRef] [Green Version]
- Palanichamy, K.; Thirumoorthy, K.; Kanji, S.; Gordon, N.; Singh, R.; Jacob, J.R.; Sebastian, N.; Litzenberg, K.T.; Patel, D.; Bassett, E.; et al. Methionine and Kynurenine Activate Oncogenic Kinases in Glioblastoma, and Methionine Deprivation Compromises Proliferation. Clin. Cancer Res. 2016, 22, 3513–3523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moren, L.; Perryman, R.; Crook, T.; Langer, J.K.; Oneill, K.; Syed, N.; Antti, H. Metabolomic profiling identifies distinct phenotypes for ASS1 positive and negative GBM. BMC Cancer 2018, 18, 268, Erratum in 2018, 18, 167. [Google Scholar] [CrossRef] [Green Version]
- Cuperlovic-Culf, M.; Ferguson, D.; Culf, A.; Morin, P., Jr.; Touaibia, M. H-1 NMR Metabolomics Analysis of Glioblastoma Subtypes CORRELATION BETWEEN METABOLOMICS AND GENE EXPRESSION CHARACTERISTICS. J. Biol. Chem. 2012, 287, 20164–20175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Alessandro, G.; Quaglio, D.; Monaco, L.; Lauro, C.; Ghirga, F.; Ingallina, C.; De Martino, M.; Fucile, S.; Porzia, A.; Di Castro, M.A.; et al. H-1-NMR metabolomics reveals the Glabrescione B exacerbation of glycolytic metabolism beside the cell growth inhibitory effect in glioma. Cell Commun. Signal. 2019, 17, 108. [Google Scholar] [CrossRef] [Green Version]
- Oizel, K.; Chauvin, C.; Oliver, L.; Gratas, C.; Geraldo, F.; Jarry, U.; Scotet, E.; Rabe, M.; Alves-Guerra, M.C.; Teusan, R.; et al. Efficient Mitochondrial Glutamine Targeting Prevails Over Glioblastoma Metabolic Plasticity. Clin. Cancer Res. 2017, 23, 6292–6304. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo-Garcia, J.L.; Viswanath, P.; Eriksson, P.; Chaumeil, M.M.; Pieper, R.O.; Phillips, J.J.; Ronen, S.M. Metabolic Reprogramming in Mutant IDH1 Glioma Cells. PLoS ONE 2015, 10, e0118781. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.; Gu, J.; Huang, C.; Liu, D.; Huang, H.; Huang, Z.; Lin, Z.; Yang, W.; Liu, K.; Lin, D.; et al. Malignancy-associated metabolic profiling of human glioma cell lines using H-1 NMR spectroscopy. Mol. Cancer 2014, 13, 197. [Google Scholar] [CrossRef] [Green Version]
- Kahlert, U.D.; Cheng, M.L.; Koch, K.; Marchionni, L.; Fan, X.; Raabe, E.H.; Maciaczyk, J.; Glunde, K.; Eberhart, C.G. Alterations in cellular metabolome after pharmacological inhibition of Notch in glioblastoma cells. Int. J. Cancer 2016, 138, 1246–1255. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Wang, X.; Wang, N.; Li, F.F.; You, Y.L.; Wang, S.Q. The effect of polysaccharides from Cibotium barometz on enhancing temozolomide-induced glutathione exhausted in human glioblastoma U87 cells, as revealed by H-1 NMR metabolomics analysis. Int. J. Biol. Macromol. 2020, 156, 471–484. [Google Scholar] [CrossRef]
- Guidoni, L.; Ricci-Vitiani, L.; Rosi, A.; Palma, A.; Grande, S.; Luciani, A.M.; Pelacchi, F.; di Martino, S.; Colosimo, C.; Biffoni, M.; et al. H-1 NMR detects different metabolic profiles in glioblastoma stem-like cells. NMR Biomed. 2014, 27, 129–145. [Google Scholar] [CrossRef]
- Kahlert, U.D.; Koch, K.; Suwala, A.K.; Hartmann, R.; Cheng, M.; Maciaczyk, D.; Willbold, D.; Eberhart, C.G.; Glunde, K.; Maciaczyk, J. The effect of neurosphere culture conditions on the cellular metabolism of glioma cells. Folia Neuropathol. 2015, 53, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Larion, M.; Dowdy, T.; Ruiz-Rodado, V.; Meyer, M.W.; Song, H.; Zhang, W.; Davis, D.; Gilbert, M.R.; Lita, A. Detection of Metabolic Changes Induced via Drug Treatments in Live Cancer Cells and Tissue Using Raman Imaging Microscopy. Biosensors 2018, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, R.K.; Azrad, A.; Degani, H.; Salomon, Y. Simultaneous extraction of cellular lipids and water-soluble metabolites: Evaluation by NMR spectroscopy. Magn. Reson. Med. 1996, 35, 194–200. [Google Scholar] [CrossRef]
- Ward, C.S.; Venkatesh, H.S.; Chaumeil, M.M.; Brandes, A.H.; VanCriekinge, M.; Dafni, H.; Sukumar, S.; Nelson, S.J.; Vigneron, D.B.; Kurhanewicz, J.; et al. Noninvasive Detection of Target Modulation following Phosphatidylinositol 3-Kinase Inhibition Using Hyperpolarized C-13 Magnetic Resonance Spectroscopy. Cancer Res. 2010, 70, 1296–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Hu, P.; Zang, Q.; Yue, X.; Zhou, Z.; Xu, X.; Xu, J.; Li, S.; Chen, Y.; Qiang, B.; et al. LC-MS-based metabolomics reveals metabolic signatures related to glioma stem-like cell self-renewal and differentiation. RSC Adv. 2017, 7, 24221–24232. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.Q.; Wu, Z.R.; Bohl, C.E.; Yang, J.; Miller, D.D.; Dalton, J.T. Characterization of the in vitro metabolism of selective androgen receptor modulator using human, rat, and dog liver enzyme preparations. Drug Metab. Dispos. 2006, 34, 243–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirbahai, L.; Wilson, M.; Shaw, C.S.; McConville, C.; Malcomson, R.D.G.; Griffin, J.L.; Kauppinen, R.A.; Peet, A.C. H-1 magnetic resonance spectroscopy metabolites as biomarkers for cell cycle arrest and cell death in rat glioma cells. Int. J. Biochem. Cell Biol. 2011, 43, 990–1001. [Google Scholar] [CrossRef]
- Izquierdo-Garcia, J.L.; Viswanath, P.; Eriksson, P.; Cai, L.; Radoul, M.; Chaumeil, M.M.; Blough, M.; Luchman, H.A.; Weiss, S.; Cairncross, J.G.; et al. IDH1 Mutation Induces Reprogramming of Pyruvate Metabolism. Cancer Res. 2015, 75, 2999–3009. [Google Scholar] [CrossRef] [Green Version]
- Juerchott, K.; Guo, K.-T.; Catchpole, G.; Feher, K.; Willmitzer, L.; Schichor, C.; Selbig, J. Comparison of metabolite profiles in U87 glioma cells and mesenchymal stem cells. Biosystems 2011, 105, 130–139. [Google Scholar] [CrossRef]
- St-Coeur, P.D.; Poitras, J.J.; Cuperlovic-Culf, M.; Touaibia, M.; Morin, P. Investigating a signature of temozolomide resistance in GBM cell lines using metabolomics. J. Neuro-Oncol. 2015, 125, 91–102. [Google Scholar] [CrossRef]
- Mesti, T.; Savarin, P.; Triba, M.N.; Le Moyec, L.; Ocvirk, J.; Banissi, C.; Carpentier, A.F. Metabolic Impact of Anti-Angiogenic Agents on U87 Glioma Cells. PLoS ONE 2014, 9, e0099198. [Google Scholar] [CrossRef] [Green Version]
- Poore, B.; Yuan, M.; Arnold, A.; Price, A.; Alt, J.; Rubens, J.A.; Slusher, B.S.; Eberhart, C.G.; Raabe, E.H. Inhibition of mTORC1 in pediatric low-grade glioma depletes glutathione and therapeutically synergizes with carboplatin. Neuro-Oncology 2019, 21, 252–263. [Google Scholar] [CrossRef]
- Sterin, M.; Ringel, I.; Lecht, S.; Lelkes, P.I.; Lazarovici, P. 31P Magnetic Resonance Spectroscopy of Endothelial Cells Grown in Three-Dimensional Matrigel Construct as an Enabling Platform Technology: I. The Effect of Glial Cells and Valproic Acid on Phosphometabolite Levels. Endothel. J. Endothel. Cell Res. 2008, 15, 288–298. [Google Scholar] [CrossRef]
- Antal, O.; Peter, M.; Hackler, L.; Man, I.; Szebeni, G.; Ayaydin, F.; Hideghety, K.; Vigh, L.; Kitajka, K.; Balogh, G.; et al. Lipidomic analysis reveals a radiosensitizing role of gamma-linolenic acid in glioma cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2015, 1851, 1271–1282. [Google Scholar] [CrossRef] [Green Version]
- Blandin, A.-F.; Durand, A.; Litzler, M.; Tripp, A.; Guerin, E.; Ruhland, E.; Obrecht, A.; Keime, C.; Fuchs, Q.; Reita, D.; et al. Hypoxic Environment and Paired Hierarchical 3D and 2D Models of Pediatric H3.3-Mutated Gliomas Recreate the Patient Tumor Complexity. Cancers 2019, 11, 1875. [Google Scholar] [CrossRef] [Green Version]
- Mathews, T.P.; Hill, S.; Rose, K.L.; Ivanova, P.T.; Lindsley, C.W.; Brown, H.A. Human Phospholipase D Activity Transiently Regulates Pyrimidine Biosynthesis in Malignant Gliomas. ACS Chem. Biol. 2015, 10, 1258–1268. [Google Scholar] [CrossRef]
- Koch, K.; Hartmann, R.; Tsiampali, J.; Uhlmann, C.; Nickel, A.C.; He, X.L.; Kamp, M.A.; Sabel, M.; Barker, R.A.; Steiger, H.J.; et al. A comparative pharmaco-metabolomic study of glutaminase inhibitors in glioma stem-like cells confirms biological effectiveness but reveals differences in target-specificity. Cell Death Discov. 2020, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Cuperlovic-Culf, M.; Khieu, N.H.; Surendra, A.; Hewitt, M.; Charlebois, C.; Sandhu, J.K. Analysis and Simulation of Glioblastoma Cell Lines-Derived Extracellular Vesicles Metabolome. Metabolites 2020, 10, 88. [Google Scholar] [CrossRef]
- Heiland, D.H.; Gaebelein, A.; Boerries, M.; Woerner, J.; Pompe, N.; Franco, P.; Heynckes, S.; Bartholomae, M.; Hailin, D.O.; Carro, M.S.; et al. Microenvironment-Derived Regulation of HIF Signaling Drives Transcriptional Heterogeneity in Glioblastoma Multiforme. Mol. Cancer Res. 2018, 16, 655–668. [Google Scholar] [CrossRef] [Green Version]
- Kucharzewska, P.; Christianson, H.C.; Belting, M. Global Profiling of Metabolic Adaptation to Hypoxic Stress in Human Glioblastoma Cells. PLoS ONE 2015, 10, e0116740. [Google Scholar] [CrossRef]
- Zanin, H.; Hollanda, L.M.; Ceragioli, H.J.; Ferreira, M.S.; Machado, D.; Lancellotti, M.; Catharino, R.R.; Baranauskas, V.; Lobo, A.O. Carbon nanoparticles for gene transfection in eukaryotic cell lines. Mater. Sci. Eng. C-Mater. Biol. Appl. 2014, 39, 359–370. [Google Scholar] [CrossRef]
- Peixoto, J.; Janaki-Raman, S.; Schlicker, L.; Schmitz, W.; Walz, S.; Herold-Mende, C.; Soares, P.; Schulze, A.; Lima, J. Integrated Metabolomics and Transcriptomics Analysis of Monolayer and Neurospheres from Glioblastoma Cells. Cancers 2021, 13, 1327. [Google Scholar] [CrossRef]
- Park, J.H.; Pyun, W.Y.; Park, H.W. Cancer Metabolism: Phenotype, Signaling and Therapeutic Targets. Cells 2020, 9, 2308. [Google Scholar] [CrossRef]
- Pandey, R.; Caflisch, L.; Lodi, A.; Brenner, A.J.; Tiziani, S. Metabolomic signature of brain cancer. Mol. Carcinog. 2017, 56, 2355–2371. [Google Scholar] [CrossRef]
- Yu, D.; Xuan, Q.H.; Zhang, C.Q.; Hu, C.X.; Li, Y.L.; Zhao, X.J.; Liu, S.S.; Ren, F.F.; Zhang, Y.; Zhou, L.N.; et al. Metabolic Alterations Related to Glioma Grading Based on Metabolomics and Lipidomics Analyses. Metabolites 2020, 10, 478. [Google Scholar] [CrossRef]
- Heiden, M.G.V.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [Green Version]
- Maus, A.; Peters, G.J. Glutamate and alpha-ketoglutarate: Key players in glioma metabolism. Amino Acids 2017, 49, 1143, Erratum in 2017, 49, 21. [Google Scholar] [CrossRef] [Green Version]
- Chung, W.J.; Lyons, S.A.; Nelson, G.M.; Hamza, H.; Gladson, C.L.; Gillespie, G.Y.; Sontheimer, H. Inhibition of cystine uptake disrupts the growth of primary brain tumors. J. Neurosci. 2005, 25, 7101–7110. [Google Scholar] [CrossRef]
- Lee, J.E.; Jeun, S.S.; Kim, S.H.; Yoo, C.Y.; Baek, H.-M.; Yang, S.H. Metabolic profiling of human gliomas assessed with NMR. J. Clin. Neurosci. 2019, 68, 275–280. [Google Scholar] [CrossRef]
- Imamura, Y.; Mukohara, T.; Shimono, Y.; Funakoshi, Y.; Chayahara, N.; Toyoda, M.; Kiyota, N.; Takao, S.; Kono, S.; Nakatsura, T.; et al. Comparison of 2D-and 3D-culture models as drug-testing platforms in breast cancer. Oncol. Rep. 2015, 33, 1837–1843. [Google Scholar] [CrossRef] [Green Version]
- Denkert, C.; Budczies, J.; Kind, T.; Weichert, W.; Tablack, P.; Sehouli, J.; Niesporek, S.; Koensgen, D.; Dietel, M.; Fiehn, O. Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res. 2006, 66, 10795–10804. [Google Scholar] [CrossRef] [Green Version]
- Righi, V.; Roda, J.M.; Paz, J.; Mucci, A.; Tugnoli, V.; Rodriguez-Tarduchy, G.; Barrios, L.; Schenetti, L.; Cerdan, S.; Garcia-Martin, M.L. H-1 HR-MAS and genomic analysis of human tumor biopsies discriminate between high and low grade astrocytomas. NMR Biomed. 2009, 22, 629–637. [Google Scholar] [CrossRef]
- Qi, S.; Yu, L.; Gui, S.; Ding, Y.; Han, H.; Zhang, X.; Wu, L.; Yao, F. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci. 2012, 103, 269–273. [Google Scholar] [CrossRef]
- McKnight, T.R.; Smith, K.J.; Chu, P.W.; Chiu, K.S.; Cloyd, C.P.; Chang, S.M.; Phillips, J.J.; Berger, M.S. Choline Metabolism, Proliferation, and Angiogenesis in Nonenhancing Grades 2 and 3 Astrocytoma. J. Magn. Reson. Imaging 2011, 33, 808–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kallenberg, K.; Bock, H.C.; Helms, G.; Jung, K.; Wrede, A.; Buhk, J.-H.; Giese, A.; Frahm, J.; Strik, H.; Dechent, P.; et al. Untreated Glioblastoma Multiforme: Increased Myo-inositol and Glutamine Levels in the Contralateral Cerebral Hemisphere at Proton MR Spectroscopy. Radiology 2009, 253, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, D.I.; Louie, S.M.; Mulvihill, M.M.; Kohnz, R.A.; Li, D.S.; Chan, L.G.; Sorrentino, A.; Bandyopadhyay, S.; Cozzo, A.; Ohiri, A.; et al. Inositol Phosphate Recycling Regulates Glycolytic and Lipid Metabolism That Drives Cancer Aggressiveness. ACS Chem. Biol. 2014, 9, 1340–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrecht, J.; Sidoryk-Wegrzynowicz, M.; Zielinska, M.; Aschner, M. Roles of glutamine in neurotransmission. Neuron Glia Biol. 2010, 6, 263–276. [Google Scholar] [CrossRef]
- Seyfried, T.N.; Kiebish, M.A.; Marsh, J.; Shelton, L.M.; Huysentruyt, L.C.; Mukherjee, P. Metabolic management of brain cancer. Biochim. Biophys. Acta-Bioenerg. 2011, 1807, 577–594. [Google Scholar] [CrossRef] [Green Version]
- Aquilano, K.; Baldelli, S.; Ciriolo, M.R. Glutathione: New roles in redox signaling for an old antioxidant. Front. Pharmacol. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Giustarini, D.; Galvagni, F.; Tesei, A.; Farolfi, A.; Zanoni, M.; Pignatta, S.; Milzani, A.; Marone, I.M.; Dalle-Donne, I.; Nassini, R.; et al. Glutathione, glutathione disulfide, and S-glutathionylated proteins in cell cultures. Free Radic. Biol. Med. 2015, 89, 972–981. [Google Scholar] [CrossRef]
- Herzog, K.; Ijlst, L.; van Cruchten, A.G.; van Roermund, C.W.T.; Kulik, W.; Wanders, R.J.A.; Waterham, H.R. An UPLC-MS/MS Assay to Measure Glutathione as Marker for Oxidative Stress in Cultured Cells. Metabolites 2019, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- MetaboAnalyst 5.0. Available online: https://www.metaboanalyst.ca (accessed on 18 April 2021).
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 2021, 49, D545–D551. [Google Scholar] [CrossRef]
- Lee, J.; Kotliarova, S.; Kotliarov, Y.; Li, A.G.; Su, Q.; Donin, N.M.; Pastorino, S.; Purow, B.W.; Christopher, N.; Zhang, W.; et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006, 9, 391–403. [Google Scholar] [CrossRef] [Green Version]
- Hasselbach, L.A.; Irtenkauf, S.M.; Lemke, N.W.; Nelson, K.K.; Berezovsky, A.D.; Carlton, E.T.; Transou, A.D.; Mikkelsen, T.; de Carvalho, A.C. Optimization of High Grade Glioma Cell Culture from Surgical Specimens for Use in Clinically Relevant Animal Models and 3D Immunochemistry. JoVE-J. Vis. Exp. 2014, 83, e51088. [Google Scholar] [CrossRef] [Green Version]
- An, Z.X.; Ganji, S.K.; Tiwari, V.; Pinho, M.C.; Patel, T.; Barnett, S.; Pan, E.; Mickey, B.E.; Maher, E.A.; Choi, C.H. Detection of 2-hydroxyglutarate in brain tumors by triple-refocusing MR spectroscopy at 3T in vivo. Magn. Reson. Med. 2017, 78, 40–48. [Google Scholar] [CrossRef]
- Sciacovelli, M.; Frezza, C. Oncometabolites: Unconventional triggers of oncogenic signalling cascades. Free Radic. Biol. Med. 2016, 100, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Soga, T.; Pollard, P.J. Oncometabolites: Linking altered metabolism with cancer. J. Clin. Investig. 2013, 123, 3652–3658. [Google Scholar] [CrossRef] [Green Version]
- Zand, B.; Previs, R.A.; Zacharias, N.M.; Rupaimoole, R.; Mitamura, T.; Nagaraja, A.S.; Guindani, M.; Dalton, H.J.; Yang, L.F.; Baddour, J.; et al. Role of Increased n-acetylaspartate Levels in Cancer. JNCI-J. Natl. Cancer Inst. 2016, 108, djv426. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, C.M.; Pirro, V.; Keating, M.F.; Hattab, E.M.; Cooks, R.G.; Cohen-Gadol, A.A. Intraoperative assessment of isocitrate dehydrogenase mutation status in human gliomas using desorption electrospray ionization-mass spectrometry. J. Neurosurg. 2020, 132, 180–187. [Google Scholar] [CrossRef]
- Jarmusch, A.K.; Pirro, V.; Baird, Z.; Hattab, E.M.; Cohen-Gadol, A.A.; Cooks, R.G. Lipid and metabolite profiles of human brain tumors by desorption electrospray ionization-MS. Proc. Natl. Acad. Sci. USA 2016, 113, 1486–1491. [Google Scholar] [CrossRef] [Green Version]
- Brown, H.M.; Pu, F.; Dey, M.; Miller, J.; Shah, M.V.; Shapiro, S.A.; Ouyang, Z.; Cohen-Gadol, A.A.; Cooks, R.G. Intraoperative detection of isocitrate dehydrogenase mutations in human gliomas using a miniature mass spectrometer. Anal. Bioanal. Chem. 2019, 411, 7929–7933. [Google Scholar] [CrossRef]
- Pirro, V.; Llor, R.S.; Jarmusch, A.K.; Alfaro, C.M.; Cohen-Gadol, A.A.; Hattabd, E.M.; Cooks, R.G. Analysis of human gliomas by swab touch spray-mass spectrometry: Applications to intraoperative assessment of surgical margins and presence of oncometabolites. Analyst 2017, 142, 4058–4066. [Google Scholar] [CrossRef]
- Santagata, S.; Eberlin, L.S.; Norton, I.; Calligaris, D.; Feldman, D.R.; Ide, J.L.; Liu, X.H.; Wiley, J.S.; Vestal, M.L.; Ramkissoon, S.H.; et al. Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery. Proc. Natl. Acad. Sci. USA 2014, 111, 11121–11126. [Google Scholar] [CrossRef] [Green Version]
- Pu, F.; Alfaro, C.M.; Pirro, V.; Xie, Z.E.; Ouyang, Z.; Cooks, R.G. Rapid determination of isocitrate dehydrogenase mutation status of human gliomas by extraction nanoelectrospray using a miniature mass spectrometer. Anal. Bioanal. Chem. 2019, 411, 1503–1508. [Google Scholar] [CrossRef]
- Navis, A.C.; Niclou, S.P.; Fack, F.; Stieber, D.; van Lith, S.; Verrijp, K.; Wright, A.; Stauber, J.; Tops, B.; Otte-Holler, I.; et al. Increased mitochondrial activity in a novel IDH1-R132H mutant human oligodendroglioma xenograft model: In situ detection of 2-HG and alpha-KG. Acta Neuropathol. Commun. 2013, 1, 18. [Google Scholar] [CrossRef] [Green Version]
- Yannell, K.E.; Smith, K.; Alfaro, C.M.; Jarmusch, A.K.; Pirro, V.; Cooks, R.G. N-Acetylaspartate and 2-Hydroxyglutarate Assessed in Human Brain Tissue by Mass Spectrometry as Neuronal Markers of Oncogenesis. Clin. Chem. 2017, 63, 1766–1767. [Google Scholar] [CrossRef]
- Kononikhin, A.; Zhvansky, E.; Shurkhay, V.; Popov, I.; Bormotov, D.; Kostyukevich, Y.; Karchugina, S.; Indeykina, M.; Bugrova, A.; Starodubtseva, N.; et al. A novel direct spray-from-tissue ionization method for mass spectrometric analysis of human brain tumors. Anal. Bioanal. Chem. 2015, 407, 7797–7805. [Google Scholar] [CrossRef]
- Jarmusch, A.K.; Alfaro, C.M.; Pirro, V.; Hattab, E.M.; Cohen-Gadol, A.A.; Cooks, R.G. Differential Lipid Profiles of Normal Human Brain Matter and Gliomas by Positive and Negative Mode Desorption Electrospray Ionization—Mass Spectrometry Imaging. PLoS ONE 2016, 11, e016318. [Google Scholar] [CrossRef] [Green Version]
- Ferey, J.; Marguet, F.; Laquerriere, A.; Marret, S.; Schmitz-Afonso, I.; Bekri, S.; Afonso, C.; Tebani, A. A new optimization strategy for MALDI FTICR MS tissue analysis for untargeted metabolomics using experimental design and data modeling. Anal. Bioanal. Chem. 2019, 411, 3891–3903. [Google Scholar] [CrossRef]
- Eberlin, L.S.; Dill, A.L.; Golby, A.J.; Ligon, K.L.; Wiseman, J.M.; Cooks, R.G.; Agar, N.Y.R. Discrimination of Human Astrocytoma Subtypes by Lipid Analysis Using Desorption Electrospray Ionization Imaging Mass Spectrometry. Angew. Chem. -Int. Ed. 2010, 49, 5953–5956. [Google Scholar] [CrossRef]
- Eberlin, L.S.; Norton, I.; Dill, A.L.; Golby, A.J.; Ligon, K.L.; Santagata, S.; Cooks, R.G.; Agar, N.Y.R. Classifying Human Brain Tumors by Lipid Imaging with Mass Spectrometry. Cancer Res. 2012, 72, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Eberlin, L.S.; Norton, I.; Orringer, D.; Dunn, I.F.; Liu, X.H.; Ide, J.L.; Jarmusch, A.K.; Ligon, K.L.; Jolesz, F.A.; Golby, A.J.; et al. Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proc. Natl. Acad. Sci. USA 2013, 110, 1611–1616. [Google Scholar] [CrossRef] [Green Version]
Project Goal | Sample Prep | Instrumental Analysis | Cell Culture Model | Cell Source | Compounds Found | IVIVE | Refrence |
---|---|---|---|---|---|---|---|
Cells differentiation | Intracellular metabolome: PBS wash, MeOH addition, snap freeze in liquid nitrogen, thaw, vortex, centrifugation, supernatant collection, resuspension of cell pellet with water, combining of supernatant and pellet, centrifugation, supernatant transfer and evaporation, reconstitution in 80% MeOH | LC-MS/MS Q-Exactive Orbitrap (Thermo Scientific, Waltham, MA, USA ) ACQUITY UPLC CSH C18 column (2.1 mm x 100 mm, 1.7 mm, Waters); QTRAP 5500 (AB Sciex, Milford, MA, USA) Synergi Hydro-RP column (4.6 mm 250 mm, 4 mm, Phenomenex, Torrance, CA, USA) | 2D | U87MG U87MG GSCs | Kynurenie; L-Formylkynurenine; Stearoylcarnitine; Propionylcarnitine; Gamma-Glu–Leu; Acetylcarnitine; Carnitine; Tetradecanoylcarnitine; NAD; LPC (18:0); Pantothenic acid; LPE (18:0); Glutathione; Hypoxanthine Xanthosine; XMP; LPC (15:0); Oxidized glutathione;trans-2-Hexadecenoyl-carnitine; Spermidine; ADP; N-Oleoylethanolamine; LPC (14:0); trans-Cinnamic acid; LPC (20:1); Proline; Valine; 2-Hydroxycinnamic; Leucine; IMP; D-Glucose 6-phosphate; LPC (22:6); Pentanoylcarnitine; Palmitoylcarnitine; Oleoylcarnitine; Guanosine; Methionine sulfoxide; Guanine; Pyrrolidonecarboxylic acid; Creatine; GMP; UMP; N-Acetyl-D-glucosamine; Choline; Tryptophan; Indoleacrylic acid; Glycerophosphocholine; 5′-Methylthioadenosine; Phenylalanine; UDP-N-acetyl-glucosamine; Pantothenic acid; LPE (18:1); UDP-glucose; Tyrosine; N1-Acetylspermine; N1-Acetylspermidine | ND | [42] |
Biomarker discovery | Quenching: Ice-cold PBS wash, MeOH add, mechanical scraping chloroform and water add, vortex, orbital shake, centrifugation, transfer of polar phase (methanol:water) into separate vial, evaporation, reconstitution with deuterated water (with 1.5 M KH2PO4 and 0.1% TSP), vortex, centrifugation, supernatant analysis | 1H NMR Bruker Avance III600 MHz spectrometer, (Billerica, MA, USA) | 2D | CHG5 SHG44 U87 U118 U251 | Valine; Leucine; Isoleucine; Lysine; Glutamate; Glutamine; Glutathione; Threonine; Tyrosine; Phenylalanine; Taurine; Creatine; Lactate; Glycerophosphocholine; Myo-inositol; Formate; Acetate | ND | [34] |
Drug treatment | Extracellular metabolome: cell culture medium collection, centrifugation, store (−80 °C), addition of Na2HPO4:deuterated water and TMSP, pH adjustment with HCL Intracellular metabolome: Cell pellet ice-cold PBS wash ×4, trypsinization, centrifugation, reconstitution with buffer, sonication, centrifugation, freeze, deuterated water with H2O containing 10 mM TMSP add | 1H NMR Bruker 900-MHz spectrometer, (Billerica, MA, USA) | 2D | GL261 | Acetate; Acetoacetate; N-acetylaspartate; Alanine; L-alanyl-l-glutamine; arginine; l-asparagine; l-aspartic acid; cadaverine; citrate; creatine; choline; dimethylamine; ethanol; fumarate; formate; d-glucose; glucose-6 phosphate; glutamate; l-glutamine; glycine; l-sistidine; l-isoleucine; lactate; l-leucine; l-lysine; malate; l-methionine; methyloxovalerate; myo-inositol; niacinamide; Puryvate; Succinate; l-phenylalanine; Phosphocreatine; l-threonine; l-tyrosine; l-tryptophan; l-valine; | ND | [31] |
Biomarker discovery | Targeted intracellular metabolome: cold PBS wash, cold MeOH:water add, mechanical scraping, transfer into tube, chloroform add, sonication, centrifugation, lyophilization, dissolving with MeOH:water, derivatization with AccQTag kit (Waters, Milford, MA, USA) | Untargeted approach CE-MS Agilent 7100 coupled with 6224 TOF-LC/MS (Agilent Technologies, Santa Clara, CA, USA) Targeted approach Agilent 6460 Triple Quad LC/MS Agilent C18 Column (2.1 mm × 100 mm, 1.8 um (Agilent, Santa Clara, CA, USA) | 2D | U251 U87 | Cysteine; Hypotaurine; Taurine; Cystine; Cysteinesulfinic acid | Achieved—targeted compounds were found within glioma tissue derived from patients | [43] |
Biomarker discovery—ASS negative vs. ASS positive GBM | Extracellular metabolome: Frozen supernatant (−80 °C) thaw, MeOH:water (9:1) add, shake, centrifugation, supernatant transfer evaporation, storage (−80 °C), methoxyamine solution in pyridine add, trimethylsilylation, heptane with methyl stearate add Intracellular metabolome: Frozen cell pellet (−80 °C) thaw, MeOH:water (9:11) add, beads homogenization, centrifugation, supernatant transfer, evaporation, storage (−80 °C), methoxyamine solution in pyridine add, trimethylsilylation, heptane with methyl stearate add | GC-TOFMS Agilent 6980 GC (Agilent, Santa Clara, CA, USA) Pegasus III TOFMS (Leco Corp, St Joseph, MI, USA) DB5-MS Column (10 m x 0.18 mm x 0.18 μm, J&W Scientific, Folsom, CA, USA) 2D GC-TOFMS Pegasus 4D (Leco Corp, St Joseph, MI, USA) coupled with Agilent 6890 GC (Agilent Technologies, Palo Alto, GA, USA) Column BPX-50 (30 m x 0.25 mm x 0.25 μm, SGE) Column VF-1MS (1.5 m x 0.15 mm x 0.15 μm; J&W Scientific Inc, Folsom, CA, USA) | 2D | LN229 SNB19 GAMG U118 T98G U87 Normal Human Astrocytes (NHA) | Pyrophosphate; Erythrose-4-Phosphate; Glucaric Acid; 1,4 Lactone; Ribofuranose; Ribose; Ribose-5-Phosphate; Putrescine; Spermidine; Adenine; Hypoxanthine; Uracil; Uridine; Erythritol; Taurine; Tryptophan; Tyrosine; Arginine; Ammonia; Proline; Arginine; Asymetrical-N,N-Dimethylarginine; Citrulline; Ornthine; Citrulline; N-Acetylornithine; Ornithine; 2-Oxoisocaproic Acid; Isoleucine; Leucine; Valine; 1,2-Ethandimine; 1,3,5-Trioxepane; 1-Monostearoylglycerol; 2-Pyrrolidone-5-Carboxylic Acid; Aminomalonic Acid; Cadaverine; Cellotriose; Dihydroxyacetonephosphate; Elaidic Acid; Glucopyranos; N-Acetyl Glutamyl Phosphate; Nonanoic Acid; Phosphoric Acid; Pyrazine; Stearic Acid; Xylitol | ND | [29] |
Subtype determination | Intracellular metabolome: Cell harvest by scraping, PBS wash x2, centrifugation, incubation on ice, suspension in ice-cold acetonitrile (50%), incubation on ice, centrifugation, evaporation, dissolve in deuterium oxide | 1H NMR Bruker Avance III 400 MHz spectrometer, (Billerica, MA, USA) | 2D | LN229 VLN319 | Taurine; Glutamine; UDP; Glutamate; Choline; Citric acid; Phosphocholine; Aspartate; Glycerophosphocholine; Asparagine; Glycine; Methionine; myo-Inositol | ND | [30] |
HS683 LN405 | Valine; Glutamate; Leucine; Citric acid; Isoleucine; Aspartate; Alanine; Asparagine; Lactate; Methionine | ||||||
A172 U343 LN18 | GABA; Methionine; Proline; Citric acid; Glutamine; Aspartate; Glutamate; Asparagine; | ||||||
U373 BS149 | Succinic acid; Glycerol 3-phosphate; Serine; Glucose; Adenine; cis-Aconitic acid; Taurine; GABA; Lysine; Proline; Tyrosine | ||||||
Drug treatment | Intracellular metabolome: Ice-cold PBS wash, cell scraping, centrifugation, cold PBS wash, snap freeze in liquid N2, deuterated water add | 1 H NMR Varian 600MHz (14.1 T) spectrometer, (Oxford, UK) | 2D | BT4C (rat) | Acetate; Alanine; Aspartate; Choline; Creatine; Glutathione; Glutamate; Glutamine; Glycerophosphocholine; Glycine; Lactate; myo-Inositol; PC; Peth; Scyllo-Inositol; Succinate; Taurine; Hypotaurine; Guanosine | [44] | |
Culture conditions evaluation | Intracellular metabolome: PBS wash, cold MeOH add, cell scrapping, transfer into tube, chloroform add, vortex, water add, vortex, transfer of water:MeOH phase, Chelex-100 add, centrifugation, lyophilization, resolving in deuterated water based buffer with DSS and propionic-2,2,3,3,-d4 acid | 1 H NMR Bruker Avance 500 spectrometer, (Billerica, MA, USA) Bruker Avance III HD 600 spectrometer, (Billerica, MA, USA) | 2D and 3D | U87 | Adenine; myo-inositol; Glycine; PC; Glycerophosphocholine; Free choline; Total choline; Total creatine; Glutathione; Glutamine; Glutamate; N-acetylaspartylglutamate; Alanine; Lactate; Threonine; Valine/isoleucine; | ND | [38] |
Biomarker discovery—IDH1 wildtype | Live cells metabolomic: 1-13C-glucose and L-3-13C-glutamine or 2-13C-pyruvic acid add to cell culture medium intracellular metabolome: 1-13C-glucose or 3-13C-glutamine add to cell culture medium, cell trypsinization, centrifugation, cold MeOH addition, vortex, cold chloroform add, cold water add, transfer of MeOH:water phase, lyophilization, reconstitution with deuterated water with TSP | 13C-MRS500 MHz INOVA spectrometer (Agilent Technologies, Santa Clara, CA, USA) 1H MRS 13C-MRS spectra 500 MHz Avance spectrometer (Bruker BioSpin, (Billerica, MA, USA) ) | 2D and 3D | U87 NHA BT54 BT142 | Glutamate; 2-Hydroxyglutarate | ND | [45] |
Biomarker discovery | Intracellular metabolome: saline wash, cell scraping, transfer into tube, saline wash, centrifugation, cold MeOH:chloroform:water add, centrifugation, resuspension, sonication, centrifugation, supernatant transfer for derivatization and analysis | GC-TOF-MS Agilent 6890 (Waldbronn, Germany), LECO Pegasus 2 TOF (St Joseph, MI, USA) | 2D | U87 | Citric acid; Cis-aconitic acid; Succinate; Fumarate; Malate; Glucose-6-phosphate; Phosphoenolpyruvic acid; Pyruvate; Lactate; Isoleucine; Leucine; Lysine; Methionine; Phenylalanine; Threonine; Tryptophan; Valine; Cysteine; Tyrosine; Histidine; Alanine; Asparagine; Aspartate; Glutamate; Glutamine; Glycine; Proline; Serine; Ornithine; Hexadecanoic acid; Octadecanoic acid; Octodecenoic acid;Phosphatidyl-l-serine; Ethanolamine; Cholesterol; Glycerol; Glycerol-3-phosphate | ND | [46] |
Drug treatment | Cell scraping, PBS wash, centrifugation, pellet PBS wash, centrifugation, resuspension with ACN:water (1:1), ultracentrifugation, supernatant evaporation, dissolving in deuterated water | 1H NMR Bruker Avance III 400 MHz spectrometer, (Billerica, MA, USA) | 2D | A172, LN18, LN71, LN229, LN319, LN405, U373, U373R* | Phosphorylcholine; Glycerol-3-phosphate; Serine; Choline; Histidine; Succinate; Taurine; Tryptophan; Glycine; Glutathione—reduced; Citric acid; Glutamine; Phosphorylcholine; Leucine; Choline; Lysine; Isoleucine; Alanine; Proline; Glycerol-3-phosphate; Phosphorylcholine; Aconitate; Taurine; Tryptophan; Alanine; Threonine; Valine; Acetone; Aconitate; Adenine; Adenosine; Alanine; Arginine; Asparagine; Choline; Citric; Creatine; Ethanol; Glucose; Glutamate; Glutamine; Glutathione—oxidized; Glutathione—reduced; Glycerol-3-phosphate; Glycerophosphocholine; Glycine; Histidine; Isocitrate; Isoleucine; Lactate; Leucine; Lysine; Methionine; myo-Inositol; Oxoglutarate; Phenylalanine; Phosphorylcholine; Proline; Serine; Succinic Acid; Taurine; Threonine; Tryptophan; Valine | Most compounds were found in primary GBM tissue | [47] |
Drug treatment | Scrapping with cold PBS in deutered water, 2x wash, filling 50 µL inserts with cells, snap-freezing | HR-MAS Bruker 500 MHz spectrometer, (Billerica, MA, USA) | 2D | U87 | myo-Inositol; Glycerophosphocholine; Lipids; CH = CH; CH = CHCH2CH = CH | ND | [48] |
Drug treatment | Intracellular metabolome: PBS wash, cold MeOH:water (4:1), ultracentrifugation, transfer into vial | LC-MS Agilent 1290, Agilent 6520 TOF (Santa Clara, CA, USA) column: Waters Acquity UPLC BEH (bridged ethyl hybrid) Amide 1.7 μm 2.1 × 100 mm HILIC, (Milford, MA, USA) | 2D | Res259 Res186 BT66 JHH-NF1-PA1 | Glutamine; Glutamate; Glutathione | Achieved—similar pathways were found in vivo in patient derived xenograft in mice | [49] |
Drug treatment | Intracellular phosphometabolome: Cold saline wash, trypsinization, centrifugation, perchloric acid add, sonication, neutralization with KOH, ultracentrifugation, Chelex-100 add, filtration, pH adjustment, lyophilization, dissolving in deuterated water Intracellular phospholipidome: Cold saline wash, cell scrapping, transfer to tube prefilled with cold MeOH, chloroform add, shake, separation funnel filter, KCL wash, overnight separation, chloroform phase collection, evaporation, dissolving in chloroform, MeOH:EDTA add | 31P MRS Varian Inova500, (Oxford, UK) | 2D, 3D and cocultures | C6 | Phosphatidic acid; Cardiolipin; Plasmenyl phosphatidylethanolamine; phosphatidylethanolamine; Phosphatidylserine; Sphingomyelin; Phosphotidylinosine; Plasmenyl phosphatidylcholine; Phosphatidylcholine | ND | [50] |
Drug treatment | cell centrifugation, pellet resuspension in water, MeOH:chloroform with BHT add, periodical vortex, chloroform and KCL add, vortex, centrifugation, chloroform phase collection, evaporation, reconstitution in MeOH:chloroform (1:1) | LTQ-Orbitrap Elite instrument 538 (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a robotic 539 nanoflow ion source TriVersa NanoMate (Advion BioSciences, Ithaca, NY, USA quantification with GC-MS GCMS-QP2010, Shimadzu, (Japan), column: 10 m × 0.1 mm ID, 0.2 μm film thickness | 2D | U87 | Cholesteryl ester; Cardiolipin; Glucosylceramide; Lysophosphatidylcholine; Lysophosphatidylethanolamine; Phosphatidic acid; Phosphatidylcholine (diacyl); Phosphatidylcholine (alkyl–acyl); Phosphatidylethanolamine (diacyl); Phosphatidylethanolamine plasmalogen (alkenyl–acyl); Phosphatidylglycerol; Phosphatidylinositol; Phosphatidylserine; Sphingomyelin; Triacylglycerol | ND | [51] |
Biomarker discovery | Intracellular metabolome: Cell dissociation, PBS wash, centrifugation, freeze, upon analysis deuterated water add | NMR Bruker Avance III spectrometer (Bruker BioSpin, Billerica, MA, USA) | 2D, 3D and mixed 2D/3D | Primary glioblastoma | Acetate; Alanine; Choline; Creatine; GABA; beta-Glucose; Glutamate; Glutamine; Glycerophosphocholine; Glycine; lactate; myo-Inositol; N-Acetylaspartate; PC; Serine; Taurine; Valine | Achieved—some pathways altered in 3D and 2D/3D matched pathways in patient tumor relapse | [52] |
Drug treatment | Intracellular metabolome: PBS wash, cold MeOH add, cell scraping, transfer into tube, chloroform add, vortex, water add, vortex, separation of water:MeOH phase, Chelex-100 add, centrifugation, lyophilization, resolving in deuterated water with TSP | 1H NMR Bruker Avance 500 spectrometer, (Billerica, MA, USA) | 3D | Self-derived cell lines: GBM1 040922 GBM1016 GBM1417 commercial cell lines: LN229, U87 | Valine/Isoleucine; Threonine; Lactate; Alanine N-acetylaspartylglutamate; Glutamate; Glutamine; Glutathione; Total Creatine; Free Choline; PC; Glycerophosphocholine; Glycine; myo-Inositol | ND | [35] |
Drug treatment | Targeted intracellular metabolome: ice-cold PBS add, cell scraping centrifugation, pellet resuspension with MeOH:water (7:3), agitation, incubation in −20 °C, IS load, agitation, ultracentrifugation, supernatant collection, solvent evaporation, reconstitution with 2 mM ammonium acetate and 3 mM hexylamine solution. | LC-MS/MS MDS SCIEX 4000QTRAP hybrid triple quadrupole/ linear ion trap mass spectrometer (Applied Biosystems, Waltham, MA, USA ) Waters Acquity BEH C18 column (2.1 × 50 mm, 1.7 μ) (Milford, MA, USA) | 2D | U87MG | dATP; dCTP; TTP | ND | [53] |
Acquity HSS T3 column (2.1 Å~ 100 mm, 1.8 μm). | Carbamoyl aspartate; Orotic acid | ||||||
Biomarker discovery | PBS wash, centrifugation, pellet resuspension with deuterated water and TMSP, centrifugation | 1H NMR Advance spectrometer (Bruker, AG, Darmstadt, Germany) | T98G primary glioma cells and neural stem/progenitor cells | myo-Inositol; UDP-hex; N-Acetylaspartate; O-2A; Glycine; Aspartate; O-2A; Total Creatine; Glycine; Lip; Glutamine; GSH; Glutamate; GABA; GalNAc; | ND | [37] | |
Therapeutic targets/drug treatement | Intracellular metabolome: Cell harvest, PBS wash, ice-cold NaCL (0.9 mM) wash x2, suspension in ice-cold H2O, of ice-cold MeOH add, vortex, incubation, ice-cold chloroform add, vortex, incubation, ice-cold H2O add, vortex, incubation, centrifugation, water-methanol phase collection, Chelex-100 add, filtration, evaporation, freezing (−80 °C) lyophilization | 1H NMR Bruker AVANCE III HD 700 spectrometer 700 MHz (Billerica, MA, USA)) | 2D and 3D Tissue samples | JHH520 GBM1 23, 233, 268, 349 407 SF188 NCH644 | Alanine; Aspartate; Glutamine; Glutamate; Glycine; Glutathione; Lactate; Myo-inositol; PC; Succinate; Tricarboxylic acid; Total choline; Total creatin | ND | [54] |
Therapeutic targets assesement | Intracellular metabolome GC-MS HOG, NHA: ice-cold saline wash, culture plate snap freeze with liquid N2, cold MeOH:water (7:3) add, chloroform add, vortex, centrifugation, MeOH:water phase separation, evaporation GSC lines: cold saline addition, neurosphere transfer into tube, centrifugation, freeze of pellet with liquid N2, cold MeOH:water (7:3) add, chloroform add, vortex, centrifugation, MeOH:water phase separation, evaporation Derivatization with methoxyamine and N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide/1% tert-butyldimethylchlorosilane LC-MS/MS performed as for GC-MS with exception that MeOH:water (4:1) was used and dried extract were resuspended with water Extracellular metabolome medium collection, MeOH, Water (7:3) add, rest as above for GC-MS and LC-MS/MS | GC-MS using an Agilent 7890A (Santa Clara, CA, USA) 5500 QTRAP hybrid triple quadrupole mass spectrometer (AB/SCIEX, Framingham, MA, USA), Amide HILIC chromatography (Waters, Milford, MA, USA) | NHA HT1080 HOG IDH1 R132H mutant IDH2 R172K mutant HCT116 NCI-H82 HEK293T GSC lines: TS603, TS516, TS676, MGG152 BT054 BT260 | Glutamate; 2-Hydroxyglutarate; alpha-Ketoisocaproate; Valine; Leucine; Isoleucine; alpha-Keto-beta-methylvalerate | Achieved—increased BCAT activity in vitro and in vivo in xenograft mice | [27] | |
Drug treatment | Intracellular metabolomie: 3× freeze/thaw cycles of water based cell suspension, cold MeOH add, agitation, chloroform add, agitation, ultracentrifugation, collection of chloroform phase, evaporation, reconstitution with TMS:deuterated MeOH Intracellular lipidomice: Cold PBS wash, cell scraping on dry ice, freeze, sonication, centrifugation, pellets resuspend in water, centrifugation, pellet snap freeze on dry ice, storage (−80 °C), extraction: resuspension in water, probe sonication, bath sonication, MeOH:water spiked with IS add, vortex, ice bath incubation, cold chloroform add, incubation 1 h, ultracentrifugation, separation of MeOH;water and chloroform phases, ACN:W (1:1) add, centrifugation, evaporation, snap freezing with dry ice, −80°C storage, combining of both phases in MeOH:ACN:water buffer live cell culture imaging | 1H NMR Bruker Avance III 600 MHz spectrometer (Structural Biophysics Laboratory, NCI, Frederick, MD, USA) LC-TOF Q-TOF SYNAPT G2 Si (Waters Corporation, (Milford, MA, USA) Acquity UPLC CSH 1.7 m, 2.1 x 100 mm column (Waters Corp., Milford, MA, USA Raman spectroscopy DXR2xi Raman microscope (ThermoFisher Scientific, Madison, WI, USA) | 2D | HT1080 | Lipidomics: 1-O-eicosanoyl-Cer d18-1,16-0; 1-O-tricosanoyl-Cer d18-1,18-0; 5-methyldeoxycytidine; Acetylcysteine; Cholesteryl Ester—CE 31-0; Cer d45-1; Cer d50-2; Cer d51-1; PhytoCer t48-1; PhytoCer t53-1; Diacylglycerol: 46-5, 56-9, 57-0, 60-0, 61-1, 64-0, 64-1, 66-1, 67-0, P-36-3, P-39-0, P-43-0, P-44-4, P-48-0, P-48-4, P-49-0, P-50-0, 60-0, P-51-0 Dopamine; Dopamine quinone; pinephrine sulfate; GluCer d39-0; Glutaminyl-arginine; Glutaminylcysteine; Glyceraldehyde; Isovaleric acid amine; Isovalerylglutamic acid; LacPhytoCer t50-0; L-histidine; Methyldeoxycytidine; N2,N2-dimethylguanosine; N-acetyldopamine; N-succinyl-2-amino-6-ketopimelate;O-tricosanoyl-N-hexadecanoyl PA: 43-2, 49-4, 52-4, O-41-0; PC: 22-4, 21-0, 39-6, 40-3; PE: 40-2, 49-4; Phosphoglycolic acid; PI P-36-4; PS 43-2; Pyroglutamic acid; Pyrrolidonecarboxylic acid; Sn-glycero-3-phosphoethanolamine; S-Succinyldihydrolipoamide; Succinyl acetoacetate; TG 15-0,18-1,14-1 | Achieved—decrease in lipids observed via Raman imaging microscopy both in vitro and in vivo after dug treatement | [39] |
Biomarker discovery | Intracellular metabolome: Cell harvest, PBS wash, centrifugation, incubation on-ice, cold acetonitrile:water (1:1) resuspension, centrifugation, freeze drying, D2O add Extracellular metabolome: Medium supernatant filtration, storage (−80 °C), mixing with D2O Exosomal metabolome: ultracentrifugation, PBS wash, centrifugation, incubation on-ice, cold acetonitrile:water (1:1) resuspension, centrifugation, freeze drying, D2O add | 1H NMR Bruker 600 MHz spectrometer, (Billerica, MA, USA) | 2D | U118 LN-18 A172 NHA | Formate; Asparagine; Taurocholic acid; Glycerol; Malate; Niacinamide; Lactate; Acetone; 5-oxoproline; Citrate; Proline; Succinate; Ethanol; GSH; GABA; G6P; Isoleucine; Glucose; Taurocholate; Homoserine; Glycine; Carnitine; GSSG | ND | [55] |
Drug treatment | culture plates place on ice, cold PBS wash, cell scraping into PBS, transfer into tube, cold MeOH add, sonication, centrifugation, supernatant transfer evaporation, reconstitution in deuterated water with TMSP | 1H–NMR AVANCE III 600M NMR Bruker (Germany) | 2D | U87 | Leucine; Alanine; Creatine; Glutamate; Glycine; Lactate; myo-Inositol; Glycerophosphocholine; Isoleucine; Taurine; Glutathione; Lysine; NAD+; UDP–NAG | ND | [36] |
Biomarker discovery/Culture conditions evaluation | intracellular metabolome: cold MeOH add, water add, grinder homogenization, sonication, ultracentrifugation, lyophilization, resuspension with deuterated water | 1H-NMR Bruker Avance III HDX 600-MHz FT-NMR Spectrometer, Billerica, MA, USA) | primary | Alpha-ketoglutarate; Succinic acid; Glutathione; Fumarate; Dodecanoic acid; Caproic acid; N-Acetylserotonin; Stachyose; Glyceraldehyde; Serine; Fructose; Lysine; Arginine; Glucose-6-phosphate, Selenomethionine; Glycine; Choline; Guanidoacetic acid; Guaiacol; Oxoglutaric acid; Gamma-Aminobutyric acid | Achieved—similar spatial differences of the metabolic environment | [56] | |
drug treatment | extracellular amino acid profiling: medium transfer, sulfosalicylic acid add, buffer add, labeling with aTRAQ™(Sciex, Milford, MA, USA), incubation, evaporation, resuspension | C-MS/MS C18 Column Reverse Phase (5 µm, 4.6 mm × 150 mm) | 2D | primary U87-MG | Serine; Methionine; Glycine; Tyrosine; Aspartic acid; Isoleucine; Alanine; Leucine; Threonine; Norleucine; Glutamate; Phenylalanine; Histidine; Proline; Arginine; Methionine sulfoxide; Cystine; Lysine; Valine; Norvaline | ND | [32] |
Biomarker discovery/Culture conditions evaluation | extracellular metabolome: medium collection, ACN add, −80 °C store untill analysis, dilution intracellular metabolome: cold PBS wash, cold ACN add, −80 °C short incubation (3 min), cell scrapping, transfer into tube, cold water add, freeze/thaw lysis with vortex (3× times), ultracentrifugation, supernatant store at −80 °C | LC-QTOF 6520 Accurate Mass Q-TOF LC/MS (Agilent Technologies, Santa Clara, CA, USA) biomarker validation 6430 Triple Quad LC/MS (Agilent Technologies, Santa Clara, CA, USA), doczytac czy do metabo byl tez ten MS reverse-phase C18 stable bond column (2.1 mm × 50 mm × 1.8 µ) (Agilent Technologies, Santa Clara, CA, USA). | primary U118 U87 LN18 LN229 NHA | Kynurenine; Tryptophan; Methionine; 5′-methylthioadenosine; S-adenosylmethionine; S-adenosylhomocysteine | Achieved—methionine was found in ex vivo in fresh glioblastoma biopsy tissue | [28] | |
Therapeutic targets assessment | Intracellular metabolome: Ice-cold PBS wash, cell lysis with dry ice/methanol − 80°C, (80% methanol), scrapping, centrifugation, supernatant collection | UHPLC/MS Waters Acquity UHPLC (Waters Corporation, Milford, MA, USA) LTQ mass spectrometer (Thermo Fisher Scientific Inc. Madison, WI, USA) GC/MS Thermo-Finnigan Trace DSQ MS (Thermo Fisher Scientific, Inc. Madison, WI, USA) | 2D in hypoxia | U87 | Aldolase; Enolase 2; Glucose-6-phosphate isomerase; Hexokinase; Lactate dehydrogenase A; Pyruvate dehydrogenase kinase 3; Phosphofructokinase; Phosphofructo-2-kinase/fructose-2,6-biphosphatase; Phosphoglycerate mutase; Phosphoglycerate kinase 1; Pyruvate kinase isoenzyme type-M2 | ND | [57] |
Gln deprivation influence | Intracellular metabolome: Ice-cold PBS wash x3, H2O:MeOH:acetonitrile (2:5:3) add, centrifugation, supernatant collection Extracellular metabolome: Culture media dilution with H2O:MeOH:acetonitrile (2:5:3), centrifugation, supernatant collection | HPLC-MS ZIC-HILIC (SeQuant) with a guard column (Hichrom) Exactive Orbitrap mass spectrometer (Thermo Scientific, Madison, WI, USA) | 2D | MOG-G-VW LN-18 LN-229 SF-188 U-251 MG U-87 MG Primary rat astrocytes Primary human GBM: E2 R10 R24 | Glutamine; Leucine; Isoleucine; Serine; Valine; Alanine; Lysine; Cysteine S-S; Threonine; Arginine; Proline; Methionine; Asparagine; Ornithine; Taurine; Phenylalanine; Tyrosine; Citrulline; Histidine; Tryptophan; Aspartate; Glycine; Glutamate; Pyruvate; Lacate | ND | [26] |
Nanoparticles toxicity | intracellular metabolome: ACN:MeOH (1:1) with α-cyano-4-hydroxycinnamic add onto cells | MALDI-MS/MS MALDI LTQ-XL instrument (Thermo Scientific, Madison, WI, USA) | 2D | NG97 | 2-hydroxy-eicosanoic acid; Docosapentaenoic acid/octadecanoic acid (stearic acid); N-oleyl-alanine; N-stearoyl-alanine; | ND | [58] |
Stem-like cells metabolome evaluation | Intracellular metabolome 2D culture: Cold ammonium acetate wash, snap-freezing in liquid nitrogen, ice-cold MeOH:H2O (4:1) add, scrapping, mix, centrifugation, supernatant collection Intracellular metabolome 3D culture: Neurospheres collection, cold ammonium acetate wash, snap-freezing in liquid nitrogen, ice-cold MeOH:H2O (4:1) add, mix, centrifugation, supernatant collection | LC-MS DIONEXUltimate 3000 UPLC HILIC column (AcclaimMixed-Mode HILIC-1, 3 μm, 2.1 × 150 mm) Q Exactive mass spectrometer (QE-LC-MS(Thermo Scientific, Madison, WI, USA) | 2D and 3D | U87 NCH644—patient derived stem-like cells | Carbomyloaspartate; Citruline; Proline; Arginine; Aspartate; Ornithine | ND | [59] |
IDH1-mutant glioma metabolic reprogramming | intracellular metabolome: cell trypsinization, centrifugation, cold MeOH add, vortex, cold chloroform add, cold water add, separation of MeOH:water phase, lyophilization, reconstitution with deuterated water with TSP | 1H--MRS 600 MHz Bruker Avance spectrometer (Bruker Biospin, Rheinstetten, Germany) | 2D | U87 NHA with or without IDH1 mutation | Aspartate; Glutamate; Glutamine; Glutathione; Lactate; myo-Inositol; PC; Glycerophosphocholine; 2-Hydroxyglutarate; alfa-Butyrate; Creatine; Hydroxybutyrate; Valine | ND | [33] |
Sample Prep Technique | Instrumentation | Simplicity (Number of Steps) | Derivatization Step Included | Advantages | Disadvantages | Reference |
---|---|---|---|---|---|---|
dual-phase extraction | 1H NMR | complicated (10–19) | - | broad metabolome coverage: polar metabolites and lipids | time consuming, phase separation required, lyophilisation: additional lab equipment needed | [32,33,34,37,38,44,53] |
1H MRS | ||||||
LC-MS | [26,38,50] | |||||
GC-MS | + | [26] | ||||
liqiud-liquid extraction | 1H NMR | easy (1–11) | - | no sample prep required | low sensitivity | [29,30,35,36,43,46,47,51,54,55] |
LC-MS | + | quantification included | Can be consider, dirty’ for instrumentation: frequent maintenance needed | [31,42] | ||
- | High sensitivity, broad metabolome coverage | [25,27,41,48,52,56,58] | ||||
MALDI-MS | - | fast | low metabolite coverage | [57] | ||
GC-MS | + | High sensitivity, broad metabolome coverage | bead homogenization requires additional lab equipment [28] | [28,45] | ||
31P MRS | complicated (12) | - | broader metabolome coverage: phosphometabolites and phospholipids | lyophilisation: additional lab equipment needed | [49] | |
none (live imaging) | 13C-MRS | easy (1) | - | live imaging, possibility of time-course cell culture monitoring | targeted approach, low metabolite coverage | [44] |
Raman spectroscopy | easy (0) | - | possible application to tissue analysis suitable for imaging | direct annotation of individual compounds not possible | [38] | |
liquid-liquid extraction | 31P MRS | complicated (12) | - | broader metabolome coverage: phosphometabolites and phospholipids | lyophilisation: additional lab equipment needed | [49] |
Compound | In Vitro Model | In Vivo/Ex Vivo Investigation |
---|---|---|
NAA | Primary glioblastoma [52] T98G and primary [37] | [87,88,89,90] |
2HG | U87, NHA [45] U87, NHA, BT54, BT142 [45] | [88,89,90,91,92] |
Glu | U87 [46] A172, LN18, LN71, LN229, LN319, LN405, U373, U373R [47] Res 259, Res186, BT66, JHH-NF1-PA1 [49] Primary glioblastoma [52] U 87 [38] Self-derived cell lines: GBM1, 040922, GBM1016, GBM1417; commercial cell lines: LN229, U87 [35] T98G and primary [37] JHH520 GBM1, 23, 233, 268, 349, 407, SF188, NCH644 [54] U87 [36] Primary, U87-MG [32] MOG-G-VW, LN-18, LN-229, SF-188, U-251 MG, U-87 MG, Primary rat astrocytes, Primary human GBM: E2, R10, R24 [26] U87, NHA [33] U87, NHA, BT54, BT142 [45] CHG5, SHG44, U87, U118, U251 [34] LN229, VLN319m [30] BT4C (rat) [44] | [87,92,93,94] |
α-KG | Not found | [93,94] |
PC | BT4C (rat) [44] Primary glioblastoma [52] U87 [38] Self-derived cell lines: GBM1, 040922, GBM1016, GBM1417; commercial cell lines: LN229, U87 [35] HT1080 [39] | [87,95,96,97,98] |
Lactic acid | LN229, VLN319 [30] U118 LN-18 A172 NHA [55] U87 [46] A172, LN18, LN71, LN229, LN319, LN405, U373, U373R [47] Self-derived cell lines: GBM1, 040922, GBM1016, GBM1417; commercial cell lines: LN229, U87 [35] U87 [36] CHG5, SHG44, U87, U118, U251 [34] BT4C (rat) [44] | [88] |
Palmitic acid | U87 [46] | [88,99,100] |
Stearic acid | NG97 [58] LN229, SNB19, GAMG, U118, T98G, U87, NHA [58] | [88,100] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaroch, K.; Modrakowska, P.; Bojko, B. Glioblastoma Metabolomics—In Vitro Studies. Metabolites 2021, 11, 315. https://doi.org/10.3390/metabo11050315
Jaroch K, Modrakowska P, Bojko B. Glioblastoma Metabolomics—In Vitro Studies. Metabolites. 2021; 11(5):315. https://doi.org/10.3390/metabo11050315
Chicago/Turabian StyleJaroch, Karol, Paulina Modrakowska, and Barbara Bojko. 2021. "Glioblastoma Metabolomics—In Vitro Studies" Metabolites 11, no. 5: 315. https://doi.org/10.3390/metabo11050315
APA StyleJaroch, K., Modrakowska, P., & Bojko, B. (2021). Glioblastoma Metabolomics—In Vitro Studies. Metabolites, 11(5), 315. https://doi.org/10.3390/metabo11050315