Human Stool Metabolome Differs upon 24 h Blood Pressure Levels and Blood Pressure Dipping Status: A Prospective Longitudinal Study
Abstract
1. Introduction
2. Results
2.1. Clinical Characteristics of the Three Cohorts
2.2. Anaerobic Culture of Fecal Bacteria
2.3. GM Characterization by 16S Amplicon Sequencing
2.4. Untargeted Metabolomics: Multivariate Analyses of the Entire Stool Metabolome
2.5. Metabolomics: Univariate Analyses of the Relative Quantification of the Three Main SCFA Levels
3. Discussion
4. Materials and Methods
- -
- Do you eat white or whole wheat bread, rice, and pasta? (White/Whole wheat/Both)
- -
- Do you eat yogurt? (Yes/Never)
- -
- Do you follow a vegetarian diet? (Yes/No)
- -
- Do you eat fruits and vegetables daily? (Yes/No)
- -
- What kind of fats do you eat? (Butter/Vegetable oil/Both)
- -
- Do you consume sugar or sweeteners? (Sugar/Sweetener/Both)
- -
- Do you use salt for cooking? (Yes/Never).
Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, T.; Santisteban, M.M.; Rodriguez, V.; Vermali, R.; Ahmari, N.; Carvajal, J.M.; Zadeh, M.; Gong, M.; Qi, Y.; Zubcevic, J.; et al. Gut Dysbiosis Is Linked to Hypertension. Hypertension 2015, 65, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Gu, Y.; Li, X.; Yang, W.; Jia, L.; Chen, C.; Han, X.; Huang, Y.; Zhao, L.; Li, P.; et al. Alterations of the Gut Microbiome in Hypertension. Front. Cell. Infect. Microbiol. 2017, 7, 381. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, F.; Wang, Y.; Chen, J.; Tao, J.; Tian, G.; Wu, S.; Liu, W.; Cui, Q.; Geng, B.; et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Goel, R.; Kumar, A.; Qi, Y.; Lobaton, G.; Hosaka, K.; Mohammed, M.; Handberg, E.M.; Richards, E.M.; Pepine, C.J.; et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin. Sci. 2018, 132, 701–718. [Google Scholar] [CrossRef] [PubMed]
- Meijers, B.; Jouret, F.; Evenepoel, P. Linking gut microbiota to cardiovascular disease and hypertension: Lessons from chronic kidney disease. Pharmacol. Res. 2018, 133, 101–107. [Google Scholar] [CrossRef]
- Butel, M.-J. Probiotics, gut microbiota and health. Méd. Mal. Infect. 2014, 44, 1–8. [Google Scholar] [CrossRef]
- Alonso, V.R.; Guarner, F. Linking the gut microbiota to human health. Br. J. Nutr. 2013, 109, S21–S26. [Google Scholar] [CrossRef]
- Raizada, M.K.; Joe, B.; Bryan, N.S.; Chang, E.B.; Dewhirst, F.E.; Borisy, G.G.; Galis, Z.S.; Henderson, W.; Jose, P.A.; Ketchum, C.J.; et al. Report of the National Heart, Lung, and Blood Institute Working Group on the Role of Microbiota in Blood Pressure Regulation. Hypertension 2017, 70, 479–485. [Google Scholar] [CrossRef]
- Van Hul, M.; Geurts, L.; Plovier, H.; Druart, C.; Everard, A.; Ståhlman, M.; Rhimi, M.; Chira, K.; Teissedre, P.-L.; Delzenne, N.M.; et al. Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. Am. J. Physiol. Metab. 2018, 314, E334–E352. [Google Scholar] [CrossRef]
- Duparc, T.; Plovier, H.; Marrachelli, V.G.; Van Hul, M.; Essaghir, A.; Ståhlman, M.; Matamoros, S.; Geurts, L.; Pardo-Tendero, M.M.; Druart, C.; et al. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Gut 2016, 66, 620–632. [Google Scholar] [CrossRef]
- Genest, J. Progress in Hypertension Research. Hypertension 2001, 38, E13–E18. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Krzesinski, J.-M.; Saint-Remy, A. Essential hypertension, a complex trait. Rev. Med. Liege 2012, 67, 279–285. [Google Scholar]
- Davidson, M.B.; Hix, J.K.; Vidt, D.G.; Brotman, D.J. Association of Impaired Diurnal Blood Pressure Variation with a Subsequent Decline in Glomerular Filtration Rate. Arch. Intern. Med. 2006, 166, 846–852. [Google Scholar] [CrossRef]
- Zweiker, R.; Eber, B.; Schumacher, M.; Toplak, H.; Klein, W. “Non-dipping” related to cardiovascular events in essential hypertensive patients. Acta Med. Austriaca 1994, 21, 86–89. [Google Scholar]
- Bartolomaeus, H.; Markó, L.; Wilck, N.; Luft, F.C.; Forslund, S.K.; Muller, M.N. Precarious Symbiosis Between Host and Microbiome in Cardiovascular Health. Hypertension 2019, 73, 926–935. [Google Scholar] [CrossRef]
- Miyamoto, J.; Kasubuchi, M.; Nakajima, A.; Irie, J.; Itoh, H.; Kimura, I. The role of short-chain fatty acid on blood pressure regulation. Curr. Opin. Nephrol. Hypertens. 2016, 25, 379–383. [Google Scholar] [CrossRef] [PubMed]
- De La Cuesta-Zuluaga, J.; Mueller, N.T.; Álvarez-Quintero, R.; Velásquez-Mejía, E.P.; Sierra, J.A.; Corrales-Agudelo, V.; Carmona, J.A.; Abad, J.M.; Escobar, J.S. Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients 2018, 11, 51. [Google Scholar] [CrossRef]
- Pluznick, J.L. Microbial Short-Chain Fatty Acids and Blood Pressure Regulation. Curr. Hypertens. Rep. 2017, 19, 25. [Google Scholar] [CrossRef]
- Bugaut, M. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp. Biochem. Physiol. Part B Comp. Biochem. 1987, 86, 439–472. [Google Scholar] [CrossRef]
- Pluznick, J.L. Gut microbiota in renal physiology: Focus on short-chain fatty acids and their receptors. Kidney Int. 2016, 90, 1191–1198. [Google Scholar] [CrossRef]
- Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; Reyes-Gavilán, C.G.D.L.; Salazar, N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front. Microbiol. 2016, 7, 185. [Google Scholar] [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
- Nilsson, N.E.; Kotarsky, K.; Owman, C.; Olde, B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 2003, 303, 1047–1052. [Google Scholar] [CrossRef]
- Brown, A.J.; Goldsworthy, S.M.; Barnes, A.A.; Eilert, M.M.; Tcheang, L.; Daniels, D.; Muir, A.I.; Wigglesworth, M.J.; Kinghorn, I.; Fraser, N.J.; et al. The Orphan G Protein-coupled Receptors GPR41 and GPR43 Are Activated by Propionate and Other Short Chain Carboxylic Acids. J. Biol. Chem. 2003, 278, 11312–11319. [Google Scholar] [CrossRef]
- Huart, J.; Leenders, J.; Taminiau, B.; Descy, J.; Saint-Remy, A.; Daube, G.; Krzesinski, J.-M.; Melin, P.; De Tullio, P.; Jouret, F. Gut Microbiota and Fecal Levels of Short-Chain Fatty Acids Differ Upon 24-Hour Blood Pressure Levels in Men. Hypertension 2019, 74, 1005–1013. [Google Scholar] [CrossRef]
- Sun, S.; Lulla, A.; Sioda, M.; Winglee, K.; Wu, M.C.; Jacobs, D.R.; Shikany, J.M.; Lloyd-Jones, D.M.; Launer, L.J.; Fodor, A.A.; et al. Gut Microbiota Composition and Blood Pressure. Hypertension 2019, 73, 998–1006. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. 1), 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- Verhaar, B.J.H.; Collard, D.; Prodan, A.; Levels, J.H.M.; Zwinderman, A.H.; Bäckhed, F.; Vogt, L.; Peters, M.J.L.; Muller, M.; Nieuwdorp, M.; et al. Associations between gut microbiota, faecal short-chain fatty acids, and blood pressure across ethnic groups: The HELIUS study. Eur. Hear. J. 2020, 41, 4259–4267. [Google Scholar] [CrossRef] [PubMed]
- Bier, A.; Braun, T.; Khasbab, R.; Di Segni, A.; Grossman, E.; Haberman, Y.; Leibowitz, A. A High Salt Diet Modulates the Gut Microbiota and Short Chain Fatty Acids Production in a Salt-Sensitive Hypertension Rat Model. Nutrients 2018, 10, 1154. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Mandal, J.; Cheng, X.; Galla, S.; Hindupur, A.; Saha, P.; Yeoh, B.S.; Mell, B.; Yeo, J.-Y.; Vijay-Kumar, M.; et al. Diurnal Timing Dependent Alterations in Gut Microbial Composition Are Synchronously Linked to Salt-Sensitive Hypertension and Renal Damage. Hypertension 2020, 76, 59–72. [Google Scholar] [CrossRef]
- Huart, J.; Cirillo, A.; Saint-Remy, A.; Krzesinski, J.-M.; de Tullio, P.; Jouret, F. The faecal abundance of short chain fatty acids is increased in men with a non-dipping blood pressure profile. Acta Cardiol. 2021, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Hasan, A.U.; Nishiyama, A.; Kobori, H. Altered Circadian Timing System-Mediated Non-Dipping Pattern of Blood Pressure and Associated Cardiovascular Disorders in Metabolic and Kidney Diseases. Int. J. Mol. Sci. 2018, 19, 400. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R. Regulation of circadian blood pressure: From mice to astronauts. Curr. Opin. Nephrol. Hypertens. 2010, 19, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Paschos, G.K.; FitzGerald, G.A. Circadian Clocks and Metabolism: Implications for Microbiome and Aging. Trends Genet. 2017, 33, 760–769. [Google Scholar] [CrossRef]
- Voigt, R.M.; Forsyth, C.B.; Green, S.J.; Mutlu, E.; Engen, P.; Vitaterna, M.H.; Turek, F.W.; Keshavarzian, A. Circadian Disorganization Alters Intestinal Microbiota. PLoS ONE 2014, 9, e97500. [Google Scholar] [CrossRef] [PubMed]
- Leone, V.; Gibbons, S.M.; Martinez, K.; Hutchison, A.L.; Huang, E.Y.; Cham, C.M.; Pierre, J.F.; Heneghan, A.F.; Nadimpalli, A.; Hubert, N.; et al. Effects of Diurnal Variation of Gut Microbes and High-Fat Feeding on Host Circadian Clock Function and Metabolism. Cell Host Microbe 2015, 17, 681–689. [Google Scholar] [CrossRef]
- Mukherji, A.; Kobiita, A.; Ye, T.; Chambon, P. Homeostasis in Intestinal Epithelium Is Orchestrated by the Circadian Clock and Microbiota Cues Transduced by TLRs. Cell 2013, 153, 812–827. [Google Scholar] [CrossRef]
- Thaiss, C.A.; Zeevi, D.; Levy, M.; Zilberman-Schapira, G.; Suez, J.; Tengeler, A.C.; Abramson, L.; Katz, M.N.; Korem, T.; Zmora, N.; et al. Transkingdom Control of Microbiota Diurnal Oscillations Promotes Metabolic Homeostasis. Cell 2014, 159, 514–529. [Google Scholar] [CrossRef]
- Pickering, T.G.; Kario, K. Nocturnal non-dipping: What does it augur? Curr. Opin. Nephrol. Hypertens. 2001, 10, 611–616. [Google Scholar] [CrossRef]
- Pioli, M.R.; Ritter, A.M.V.; De Faria, A.P.; Modolo, R. White coat syndrome and its variations: Differences and clinical impact. Integr. Blood Press. Control 2018, 11, 73–79. [Google Scholar] [CrossRef]
- Bo, Y.; Kwok, K.-O.; Chung, V.C.-H.; Yu, C.-P.; Tsoi, K.K.-F.; Wong, S.Y.-S.; Lee, E.K.-P. Short-term reproducibility of ambulatory blood pressure measurements: A systematic review and meta-analysis of 35 observational studies. J. Hypertens. 2020, 38, 2095–2109. [Google Scholar] [CrossRef]
- Haug, K.; Cochrane, K.; Nainala, V.C.; Williams, M.; Chang, J.; Jayaseelan, K.V.; O’Donovan, C. MetaboLights: A resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 2019, 48, D440–D444. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Böhm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart J. 2013, 34, 2159–2219. [Google Scholar]
- Fagard, R.H. Dipping pattern of nocturnal blood pressure in patients with hypertension. Expert Rev. Cardiovasc. Ther. 2009, 7, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Cardona, S.; Eck, A.; Cassellas, M.; Gallart, M.; Alastrue, C.; Dore, J.; Azpiroz, F.; Roca, J.; Guarner, F.; Manichanh, C. Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC Microbiol. 2012, 12, 158. [Google Scholar] [CrossRef]
- Rodriguez, C.; Taminiau, B.; Korsak, N.; Avesani, V.; Van Broeck, J.; Brach, P.; Delmée, M.; Daube, G. Longitudinal survey of Clostridium difficile presence and gut microbiota composition in a Belgian nursing home. BMC Microbiol. 2016, 16, 229. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME Improves Sensitivity and Speed of Chimera Detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Martin, A.P. Phylogenetic Approaches for Describing and Comparing the Diversity of Microbial Communities. Appl. Environ. Microbiol. 2002, 68, 3673–3682. [Google Scholar] [CrossRef] [PubMed]
2020 Male and Female Cohorts | Normotension | Hypertension | p Value |
---|---|---|---|
N | 19 | 7 | |
Age (years) | 49.2 ± 13.7 | 52.5 ± 10.5 | 0.469 |
Female (N) | 9 | 1 | |
BMI (kg/m2) | 23.3 ± 2.5 | 25 ± 2.9 | 0.132 |
Smokers (%, N) | 5% (1) | 14.3% (1) | 0.949 |
Alcohol (glass/week) | 3.7 ± 6 | 6 ± 7 | 0.193 |
Family HT (%, N) | 37% (7) | 57% (4) | 0.629 |
Diabetes (%, N) | 0 | 14.3% (1) | 0.595 |
CV history (%, N) | 16% (3) | 29% (2) | 0.862 |
GE history (%, N) | 36.8 (7) | 14.3 (1) | 0.531 |
24 h Systolic BP (mmHg) | 113 ± 7 | 127 ± 4 | 0.0005 |
24 h Diastolic BP (mmHg) | 70 ± 6 | 81 ± 4 | 0.0004 |
24 h Mean BP (mmHg) | 82 ± 6 | 98 ± 5 | 0.0005 |
Anti-HT treatment (%, N) | 0 | 28.6% (2) | ns |
Non-dippers (%, N) | 58% (11) | 57% (4) | 0.679 |
2020 Male and Female Cohorts | Dippers | Non-Dippers | p Value |
---|---|---|---|
N | 11 | 13 | |
Age (years) | 48.8 ± 11.4 | 51.9 ± 14.6 | 0.643 |
Female (N) | 3 | 6 | |
BMI (kg/m2) | 23.6 ± 2.5 | 23.5 ± 3 | 0.907 |
Smokers (%, N) | 9% (1) | 0 | ns |
Alcohol (glass/week) | 6 ± 8 | 3.4 ± 4.8 | 0.417 |
Family HT (%, N) | 63.6% (7) | 23% (3) | 0.111 |
Diabetes (%, N) | 0 | 0 | ns |
CV history (%, N) | 0 | 23% (3) | 0.278 |
GE history (%, N) | 36.4% (4) | 30.8% (4) | 0.884 |
24 h Systolic BP (mmHg) | 119 ± 9 | 114 ± 9 | 0.131 |
24 h Diastolic BP (mmHg) | 74 ± 7 | 71 ± 8 | 0.417 |
24 h Mean BP (mmHg) | 90 ± 8 | 87 ± 9 | 0.602 |
ND Systolic BP ratio | 0.85 ± 0.03 | 0.93 ± 0.03 | <0.0001 |
All Patients | 2015 Male Cohort | 2020 Male Cohort | p Value |
---|---|---|---|
N | 16 | 16 | |
Age (years) | 47.6 ± 12.2 | 52.3 ± 12.4 | 0.0004 |
BMI (kg/m2) | 23.8 ± 2.4 | 24.6 ± 2.6 | 0.214 |
Smokers (%, N) | 12.5 (2) | 6.2 (1) | ns |
Alcohol (glass/week) | 4.8 ± 3.5 | 6.4 ± 7 | 0.272 |
Family HT (%, N) | 50 (8) | 50 (8) | 0.479 |
Diabetes (%, N) | 0 | 6.2 (1) | ns |
CV history (%, N) | 12.5 (2) | 18.7 (3) | ns |
GE history (%, N) | 31.2 (5) | 31.2 (5) | ns |
Anti-HT treatment (%, N) | 6.2 (1) | 6.2 (1) | ns |
Non-dippers (%, N) | 31.2 (5) | 50 (8) | 0.449 |
Patients with Change in BP Status | 2015 Male Cohort | 2020 Male Cohort | p Value |
N | 6 | 6 | |
Age (years) | 42.6 ± 13.6 | 47.1 ± 13.2 | 0.027 |
BMI (kg/m2) | 22.6 ± 1.7 | 23.5 ± 1.7 | 0.345 |
Smokers (% N) | 33 (2) | 16.6 (1) | ns |
Alcohol (glass/week) | 4.7 ± 1.4 | 7.3 ± 7 | 0.345 |
Family HT (%, N) | 66 (4) | 66 (4) | ns |
Diabetes (%) | 0 | 0 | ns |
CV history (%) | 0 | 0 | ns |
GE history (%, N) | 16.6 (1) | 16.6 (1) | ns |
Anti-HT treatment (%) | 0 | 0 | ns |
Non-dippers (%, N) | 50 (3) | 33 (2) | ns |
(A) NT vs. HT | (B) Dippers vs. Non-Dippers | ||||
---|---|---|---|---|---|
X-Variable in ppm | VIP | Feature ID | X-Variable in ppm | VIP | Feature ID |
0.91 | 1.51 | Butyrate | 0.91 | 1.1 | Butyrate |
3.39 | 1.48 | matrix | 3.84 | 1.1 | matrix |
0.89 | 1.47 | Butyrate | 3.94 | 1.09 | matrix |
2.99 | 1.43 | matrix | 2.09 | 1.09 | matrix |
1.55 | 1.43 | Butyrate | 2.14 | 1.09 | Propionate |
2.14 | 1.39 | Propionate | 1.5 | 1.08 | Butyrate |
3.94 | 1.38 | matrix | 0.89 | 1.08 | Butyrate |
4.19 | 1.29 | matrix | 1.04 | 1.08 | Propionate |
0.54 | 1.25 | matrix | 2.04 | 1.08 | matrix |
0.64 | 1.24 | matrix | 1.06 | 1.08 | Propionate |
1.03 | 1.24 | Propionate | 1.93 | 1.06 | Acetate |
1.93 | 1.2 | Acetate | 1.74 | 1.06 | matrix |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huart, J.; Cirillo, A.; Taminiau, B.; Descy, J.; Saint-Remy, A.; Daube, G.; Krzesinski, J.-M.; Melin, P.; de Tullio, P.; Jouret, F. Human Stool Metabolome Differs upon 24 h Blood Pressure Levels and Blood Pressure Dipping Status: A Prospective Longitudinal Study. Metabolites 2021, 11, 282. https://doi.org/10.3390/metabo11050282
Huart J, Cirillo A, Taminiau B, Descy J, Saint-Remy A, Daube G, Krzesinski J-M, Melin P, de Tullio P, Jouret F. Human Stool Metabolome Differs upon 24 h Blood Pressure Levels and Blood Pressure Dipping Status: A Prospective Longitudinal Study. Metabolites. 2021; 11(5):282. https://doi.org/10.3390/metabo11050282
Chicago/Turabian StyleHuart, Justine, Arianna Cirillo, Bernard Taminiau, Julie Descy, Annie Saint-Remy, Georges Daube, Jean-Marie Krzesinski, Pierrette Melin, Pascal de Tullio, and François Jouret. 2021. "Human Stool Metabolome Differs upon 24 h Blood Pressure Levels and Blood Pressure Dipping Status: A Prospective Longitudinal Study" Metabolites 11, no. 5: 282. https://doi.org/10.3390/metabo11050282
APA StyleHuart, J., Cirillo, A., Taminiau, B., Descy, J., Saint-Remy, A., Daube, G., Krzesinski, J.-M., Melin, P., de Tullio, P., & Jouret, F. (2021). Human Stool Metabolome Differs upon 24 h Blood Pressure Levels and Blood Pressure Dipping Status: A Prospective Longitudinal Study. Metabolites, 11(5), 282. https://doi.org/10.3390/metabo11050282