Plasma Metabolomics to Evaluate Progression of Necrotising Enterocolitis in Preterm Pigs
Abstract
1. Introduction
2. Results
2.1. Clinical Observations and NEC Lesions
2.2. Plasma Metabolites
3. Discussion
4. Materials and Methods
4.1. Animal Procedure, NEC and Antibiotic Treatment
4.2. H-NMR Based Metabolomics
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Belkum, M.; Alvarez, L.M.; Neu, J. Preterm Neonatal Immunology at the Intestinal Interface. Cell. Mol. Life Sci. 2019, 77, 1209–1227. [Google Scholar] [CrossRef]
- Neu, J.; Walker, W.A. Necrotizing Enterocolitis. N. Engl. J. Med. 2011, 364, 255–264. [Google Scholar] [CrossRef]
- Shulhan, J.; Dicken, B.; Hartling, L.; Larsen, B.M. Current Knowledge of Necrotizing Enterocolitis in Preterm Infants and the Impact of Different Types of Enteral Nutrition Products. Adv. Nutr. 2017, 8, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Cantey, J.B.; Pyle, A.K.; Wozniak, P.S.; Hynan, L.S.; Sánchez, P.J. Early Antibiotic Exposure and Adverse Outcomes in Preterm, Very Low Birth Weight Infants. J. Pediatr. 2018, 203, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Eisenstein, R.S. Ironregulatoryproteins And Themolecularcontrol Ofmammalianironmetabolism. Annu. Rev. Nutr. 2000, 20, 627–662. [Google Scholar] [CrossRef] [PubMed]
- Grylack, L.J.; Scanlon, J.W. Oral Gentamicin Therapy in the Prevention of Neonatal Necrotizing Enterocolitis. Am. J. Dis. Child. 1978, 132, 1192–1194. [Google Scholar] [CrossRef]
- Schmölzer, G.; Urlesberger, B.; Haim, M.; Kutschera, J.; Pichler, G.; Ritschl, E.; Resch, B.; Reiterer, F.; Müller, W. Multi-Modal Approach to Prophylaxis of Necrotizing Enterocolitis: Clinical Report and Review of Literature. Pediatr. Surg. Int. 2006, 22, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shen, R.L.; Ayede, A.I.; Berrington, J.; Bloomfield, F.H.; Busari, O.O.; Cormack, B.E.; Embleton, N.D.; van Goudoever, J.B.; Greisen, G.; et al. Early Use of Antibiotics Is Associated with a Lower Incidence of Necrotizing Enterocolitis in Preterm, Very Low Birth Weight Infants: The NEOMUNE-NeoNutriNet Cohort Study. J. Pediatr. 2020, 227, 128–134.e2. [Google Scholar] [CrossRef]
- Bury, R.G.; Tudehope, D. Enteral Antibiotics for Preventing Necrotizing Enterocolitis in Low Birthweight or Preterm Infants. Cochrane Database Syst. Rev. 2001, 2001, CD000405. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, P.S.; Warner, B.B.; Zhou, Y.; Weinstock, G.M.; Sodergren, E.; Hall-Moore, C.M.; Stevens, H.J.; Bennett, W.E.; Shaikh, N.; Linneman, L.A.; et al. Patterned Progression of Bacterial Populations in the Premature Infant Gut. Proc. Natl. Acad. Sci. USA 2014, 111, 12522–12527. [Google Scholar] [CrossRef]
- Wang, Y.; Hoenig, J.D.; Malin, K.J.; Qamar, S.; Petrof, E.O.; Sun, J.; Antonopoulos, D.A.; Chang, E.B.; Claud, E.C. 16S rRNA Gene-Based Analysis of Fecal Microbiota from Preterm Infants with and Without Necrotizing Enterocolitis. ISME J. 2009, 3, 944–954. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, K.G.; Moss, R.L. Urine Biomarkers for Necrotizing Enterocolitis. Pediatr. Surg. Int. 2015, 31, 421–429. [Google Scholar] [CrossRef]
- Sinclair, T.J.; Ye, C.; Chen, Y.; Zhang, D.; Li, T.; Ling, X.B.; Cohen, H.J.; Shaw, G.M.; Stevenson, D.K.; Chace, D.; et al. Progressive Metabolic Dysfunction and Nutritional Variability Precedes Necrotizing Enterocolitis. Nutrients 2020, 12, 1275. [Google Scholar] [CrossRef]
- Becker, R.M.; Wu, G.; Galanko, J.A.; Chen, W.; Maynor, A.R.; Bose, C.L.; Rhoads, J. Reduced Serum Amino Acid Concentrations in Infants with Necrotizing Enterocolitis. J. Pediatr. 2000, 137, 785–793. [Google Scholar] [CrossRef]
- Jiang, P.; Trimigno, A.; Stanstrup, J.; Khakimov, B.; Viereck, N.; Engelsen, S.B.; Sangild, P.T.; Dragsted, L.O. Antibiotic Treatment Preventing Necrotising Enterocolitis Alters Urinary and Plasma Metabolomes in Preterm Pigs. J. Proteome Res. 2017, 16, 3547–3557. [Google Scholar] [CrossRef] [PubMed]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef]
- Valentine, C.J.; Fernandez, S.; Rogers, L.K.; Gulati, P.; Hayes, J.; Lore, P.; Puthoff, T.; Dumm, M.; Jones, A.; Collins, K.; et al. Early Amino-Acid Administration Improves Preterm Infant Weight. J. Perinatol. 2009, 29, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, K.G.; Kastenberg, Z.J.; Moss, R.L.; Enns, G.M.; Cowan, T.M.; Shaw, G.M.; Stevenson, D.K.; Sinclair, T.J.; Scharfe, C.; Ryckman, K.K.; et al. Acylcarnitine Profiles Reflect Metabolic Vulnerability for Necrotizing Enterocolitis in Newborns Born Premature. J. Pediatr. 2017, 181, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Birck, M.M.; Nguyen, D.N.; Cilieborg, M.S.; Kamal, S.S.; Nielsen, D.S.; Damborg, P.; Olsen, J.E.; Lauridsen, C.; Sangild, P.T.; Thymann, T. Enteral but Not Parenteral Antibiotics Enhance Gut Function and Prevent Necrotizing Enterocolitis in Formula-Fed Newborn Preterm Pigs. Am. J. Physiol. Liver Physiol. 2016, 310, G323–G333. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Fuglsang, E.; Jiang, P.; Birck, M.M.; Pan, X.; Kamal, S.B.S.; E Pors, S.; Gammelgaard, P.L.; Nielsen, D.S.; Thymann, T.; et al. Oral Antibiotics Increase Blood Neutrophil Maturation and Reduce Bacteremia and Necrotizing Enterocolitis in the Immediate Postnatal Period of Preterm Pigs. Innate Immun. 2015, 22, 51–62. [Google Scholar] [CrossRef]
- Jiang, Y.-N.; Muk, T.; Stensballe, A.; Nguyen, D.N.; Sangild, P.T.; Jiang, P.-P. Early Protein Markers of Necrotizing Enterocolitis in Plasma of Preterm Pigs Exposed to Antibiotics. Front. Immunol. 2020, 11, 565862. [Google Scholar] [CrossRef]
- Khakimov, B.; Mobaraki, N.; Trimigno, A.; Aru, V.; Engelsen, S.B. Signature Mapping (SigMa): An Efficient Approach for Processing Complex Human Urine 1H NMR Metabolomics Data. Anal. Chim. Acta 2020, 1108, 142–151. [Google Scholar] [CrossRef]
- Morrow, A.L.; Lagomarcino, A.J.; Schibler, K.R.; Taft, D.H.; Yu, Z.; Wang, B.; Altaye, M.; Wagner, M.; Gevers, D.; Ward, D.V.; et al. Early Microbial and Metabolomic Signatures Predict Later Onset of Necrotizing Enterocolitis in Preterm Infants. Microbiome 2013, 1, 13. [Google Scholar] [CrossRef]
- Zarling, E.J.; A Ruchim, M. Protein Origin of the Volatile Fatty Acids Isobutyrate and Isovalerate in Human Stool. J. Lab. Clin. Med. 1987, 109, 109. [Google Scholar]
- Waligora-Dupriet, A.-J.; Dugay, A.; Auzeil, N.; Huerre, M.; Butel, M.-J. Evidence for Clostridial Implication in Necrotizing Enterocolitis through Bacterial Fermentation in a Gnotobiotic Quail Model. Pediatr. Res. 2005, 58, 629–635. [Google Scholar] [CrossRef]
- Grabacka, M.; Pierzchalska, M.; Dean, M.; Reiss, K. Regulation of Ketone Body Metabolism and the Role of PPARα. Int. J. Mol. Sci. 2016, 17, 2093. [Google Scholar] [CrossRef]
- Khovidhunkit, W.; Kim, M.-S.; Memon, R.A.; Shigenaga, J.K.; Moser, A.H.; Feingold, K.R.; Grunfeld, C. Thematic Review Series: The Pathogenesis of Atherosclerosis. Effects of Infection and Inflammation on Lipid and Lipoprotein Metabolism Mechanisms and Consequences to the Host. J. Lipid Res. 2004, 45, 1169–1196. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Sangild, P.T. Intestinal Proteomics in Pig Models of Necrotising Enterocolitis, Short Bowel Syndrome and Intrauterine Growth Restriction. Proteom. Clin. Appl. 2014, 8, 700–714. [Google Scholar] [CrossRef]
- Alinaghi, M.; Jiang, P.-P.; Brunse, A.; Sangild, P.T.; Bertram, H.C. Rapid Cerebral Metabolic Shift During Neonatal Sepsis Is Attenuated by Enteral Colostrum Supplementation in Preterm Pigs. Metabolites 2019, 9, 13. [Google Scholar] [CrossRef]
- Mickiewicz, B.; Vogel, H.J.; Wong, H.R.; Winston, B.W. Metabolomics as a Novel Approach for Early Diagnosis of Pediatric Septic Shock and Its Mortality. Am. J. Respir. Crit. Care Med. 2013, 187, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Harbeson, D.; Francis, F.; Bao, W.; Amenyogbe, N.A.; Kollmann, T.R. Energy Demands of Early Life Drive a Disease Tolerant Phenotype and Dictate Outcome in Neonatal Bacterial Sepsis. Front. Immunol. 2018, 9, 1918. [Google Scholar] [CrossRef] [PubMed]
- Minambres, I.; Cuixart, G.; Gonçalves, A.; Corcoy, R. Effects of Inositol on Glucose homeostasis: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. 2019, 38, 1146–1152. [Google Scholar] [CrossRef] [PubMed]
- Wilcock, A.; Begley, P.; Stevens, A.; Whatmore, A.; Victor, S. The Metabolomics of Necrotising Enterocolitis in Preterm Babies: An Exploratory Study. J. Matern. Neonatal Med. 2016, 29, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Hall, N.; Peters, M.; Eaton, S.; Pierro, A. Hyperglycemia is Associated with Increased Morbidity and Mortality Rates in Neonates with Necrotizing Enterocolitis. J. Pediatr. Surg. 2004, 39, 898–901. [Google Scholar] [CrossRef]
- Bottino, M.; Cowett, R.M.; Sinclair, J.C. Interventions for Treatment of Neonatal Hyperglycemia in Very Low Birth Weight Infants. Cochrane Database Syst. Rev. 2011, CD007453. [Google Scholar] [CrossRef]
- Wang, Y.P.; Wei, J.Y.; Yang, J.J.; Gao, W.N.; Wu, J.Q.; Guo, C.J. Riboflavin Supplementation Improves Energy Metabolism in Mice Exposed to Acute Hypoxia. Physiol. Res. 2014, 63, 341–350. [Google Scholar] [CrossRef]
- Hackam, D.J.; Sodhi, C.P. Toll-Like Receptor–Mediated Intestinal Inflammatory Imbalance in the Pathogenesis of Necrotizing Enterocolitis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 229–238.e1. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Gong, D.; Nguyen, D.N.; Zhang, X.; Hu, Q.; Lu, H.; Fredholm, M.; Sangild, P.T.; Gao, F. Early Microbial Colonization Affects DNA Methylation of Genes Related to Intestinal Immunity and Metabolism in Preterm Pigs. DNA Res. 2018, 25, 287–296. [Google Scholar] [CrossRef]
- A Rossignol, D.; E Frye, R. Mitochondrial Dysfunction in Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. Mol. Psychiatry 2011, 17, 290–314. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Xu, K.; Liu, H.; Liu, G.; Bai, M.; Peng, C.; Li, T.; Yin, Y. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front. Cell. Infect. Microbiol. 2018, 8, 13. [Google Scholar] [CrossRef]
- Roager, H.M.; Licht, T.R. Microbial Tryptophan Catabolites in Health and Disease. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, Y.; Yin, L.; Zheng, W.; Fu, Y. Efficient Synthesis of d-Phenyllactic Acid by a Whole-Cell Biocatalyst Co-Expressing Glucose Dehydrogenase and a Novel D-Lactate Dehydrogenase from Lactobacillus Rossiae. 3 Biotech 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Beloborodov, N.V.; Khodakova, A.S.; Bairamov, I.T.; Olenin, A.Y. Microbial Origin of Phenylcarboxylic Acids in the Human Body. Biochemistry 2009, 74, 1350–1355. [Google Scholar] [CrossRef] [PubMed]
- Russell, W.R.; Duncan, S.H.; Scobbie, L.; Duncan, G.; Cantlay, L.; Calder, A.G.; Anderson, S.E.; Flint, H.J. Major Phenylpropanoid-Derived Metabolites in the Human Gut Can Arise from Microbial Fermentation of Protein. Mol. Nutr. Food Res. 2013, 57, 523–535. [Google Scholar] [CrossRef]
- Beloborodova, N.V.; Sarshor, Y.N.; Bedova, A.Y.; Chernevskaya, E.A.; Pautova, A.K. Involvement of Aromatic Metabolites in the Pathogenesis of Septic Shock. Shock 2018, 50, 273–279. [Google Scholar] [CrossRef]
- Centelles, S.M.; Hoefsloot, H.C.J.; Khakimov, B.; Ebrahimi, P.; Lind, M.V.; Kristensen, M.; De Roo, N.; Jacobs, D.M.; Van Duynhoven, J.; Cannet, C.; et al. Toward Reliable Lipoprotein Particle Predictions from NMR Spectra of Human Blood: An Interlaboratory Ring Test. Anal. Chem. 2017, 89, 8004–8012. [Google Scholar] [CrossRef] [PubMed]
- Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.G.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic Profiling, Metabolomic and Metabonomic Procedures for NMR Spectroscopy of Urine, Plasma, Serum and Tissue Extracts. Nat. Protoc. 2007, 2, 2692–2703. [Google Scholar] [CrossRef]
- Akoka, S.; Barantin, L.; Trierweiler, M. Concentration Measurement by Proton NMR Using the ERETIC Method. Anal. Chem. 1999, 71, 2554–2557. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- RStudio Team. RStudio Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2020. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models, R package version 3.1-152; 2020; Available online: https://CRAN.R-project.org/package=nlme (accessed on 20 February 2021).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Feise, R.J. Do Multiple Outcome Measures Require P-Value Adjustment? BMC Med. Res. Methodol. 2002, 2, 8. [Google Scholar] [CrossRef]
- Westfall, J.; Kenny, D.A.; Judd, C.M. Statistical Power and Optimal Design in Experiments in Which Samples of Participants Respond to Samples of Stimuli. J. Exp. Psychol. Gen. 2014, 143, 2020–2045. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar]
Metabolite | Molecular Formula | Chemical Shift (δ, ppm) | Multiplicity | Grouping | Abundance by NEC Severity (Mean ± SEM, mM) | Effect Size 1 | ||||
---|---|---|---|---|---|---|---|---|---|---|
No-NEC (n = 28) | Mild-NEC (n = 9) | Severe-NEC (n = 10) | Mild- NEC vs. No-NEC | Severe-NEC vs. No-NEC | Severe-NEC vs. Mild-NEC | |||||
Alanine | C3H7NO2 | 1.51 | d | Amino acid | 0.92 ± 0.05 | 0.93 ± 0.09 | 1.40 ± 0.42 | −0.16 | 0.85 # | 1.01 # |
Histidine | C6H9N3O2 | 7.08 | s | Amino acid | 0.16 ± 0.01 | 0.15 ± 0.01 | 0.21 ± 0.04 | −0.35 | 0.75 | 1.10 * |
Tyrosine 2 | C9H11NO3 | 3.93 | dd | Amino acid | 3.84 ± 0.17 | 3.84 ± 0.35 | 2.73 ± 0.45 | 0.15 | −1.07 * | −1.22 * |
Pyruvate | C3H4O3 | 2.39 | s | Energy metabolism | 0.13 ± 0.01 | 0.13 ± 0.02 | 0.20 ± 0.04 | −0.12 | 0.86 # | 0.99 # |
Creatine 2 | C4H9N3O2 | 3.05 | s | Energy metabolism | 0.24 ± 0.03 | 0.21 ± 0.02 | 0.15 ± 0.03 | 0.02 | −0.84 # | −0.85 |
3-Hydroxybutyric acid | C4H8O3 | 1.23 | d | Ketone | 0.05 ± 0.01 | 0.04 ± 0.01 | 0.01 ± 0.01 | −0.76 | −1.11 * | −0.35 |
Formic acid 2 | HCOOH | 8.48 | s | SCFA | 0.13 ± 0.04 | 0.10 ± 0.01 | 0.35 ± 0.14 | −0.37 | 0.73 | 1.10 * |
Isobutyric acid 2 | C4H7O2H | 1.10 | d | SCFA | 0.10 ± 0.00 | 0.10 ± 0.01 | 0.08 ± 0.01 | −0.17 | −1.10 * | −0.93 # |
Glucose 2 | C₆H₁₂O₆ | 5.26 | d | Carbohydrate metabolism | 4.64 ± 0.24 | 4.39 ± 0.52 | 3.67 ± 0.55 | −0.15 | −0.97 * | −0.82 |
Cholesterol | C27H46O | 0.68 | m | Lipid metabolism | 3.91 ± 0.13 | 4.00 ± 0.36 | 3.04 ± 0.44 | 0.09 | −1.01 * | −1.10 * |
myo-Inositol | C6H12O6 | 3.31 | d | Carbohydrate metabolism | 8.37 ± 0.72 | 8.93 ± 1.05 | 14.40 ± 1.93 | 0.12 | 1.24 ** | 1.11 ** |
Methanol | CH3OH | 3.38 | s | Carbohydrate metabolism | 0.10 ± 0.01 | 0.12 ± 0.01 | 0.14 ± 0.01 | 0.64 | 1.02 * | 0.38 |
Metabolite | Molecular Formula | Chemical Shift (δ, ppm) | Multiplicity | Grouping | Abundance by Antibiotic Treatment (Mean ± SEM, mM) | Effect Size 1 | ||||
---|---|---|---|---|---|---|---|---|---|---|
CON (n = 15) | PAR (n = 17) | ORA (n = 15) | PAR vs. CON | ORA vs. CON | ORA vs. PAR | |||||
Tryptophan | C11H12N2O2 | 7.21 | m | Amino acid | 0.29 ± 0.03 | 0.41 ± 0.07 | 0.53 ± 0.09 | 0.46 | 0.99 * | 0.54 |
Phenylalanine | C9H11NO2 | 7.35 | m | Amino acid | 0.19 ± 0.02 | 0.24 ± 0.02 | 0.22 ± 0.01 | 0.80 # | 0.64 | −0.16 |
3-Phenyllactic acid | C9H10O3 | 4.53 | dd | Amino acid derivative | 0.38 ± 0.04 | 1.32 ± 0.03 | 1.70 ± 0.06 | 1.66 ** | 2.33 ** | 0.68 ** |
3-Hydroxybutyric acid | C4H8O3 | 1.23 | d | Ketone | 0.04 ± 0.01 | 0.05 ± 0.02 | 0.03 ± 0.01 | 0.21 | −0.68 | −0.89 * |
Formic acid 2 | HCOOH | 8.48 | s | SCFA | 0.26 ± 0.11 | 0.18 ± 0.04 | 0.07 ± 0.01 | 0.44 | −0.50 | −0.94 * |
Ethanol | C2H5OH | 1.20 | t | Carbohydrate metabolism | 0.45 ± 0.05 | 0.57 ± 0.03 | 0.46 ± 0.03 | 0.76 * | −0.23 | −0.99 ** |
Citrate | C₆H₈O₇ | 2.55 | d | Carbohydrate metabolism | 0.41 ± 0.04 | 0.54 ± 0.06 | 0.46 ± 0.03 | 0.71 # | −0.15 | −0.86 # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.-N.; Ye, Y.-X.; Sangild, P.T.; Thymann, T.; Engelsen, S.B.; Khakimov, B.; Jiang, P.-P. Plasma Metabolomics to Evaluate Progression of Necrotising Enterocolitis in Preterm Pigs. Metabolites 2021, 11, 283. https://doi.org/10.3390/metabo11050283
Jiang Y-N, Ye Y-X, Sangild PT, Thymann T, Engelsen SB, Khakimov B, Jiang P-P. Plasma Metabolomics to Evaluate Progression of Necrotising Enterocolitis in Preterm Pigs. Metabolites. 2021; 11(5):283. https://doi.org/10.3390/metabo11050283
Chicago/Turabian StyleJiang, Yan-Nan, Yong-Xin Ye, Per Torp Sangild, Thomas Thymann, Søren Balling Engelsen, Bekzod Khakimov, and Ping-Ping Jiang. 2021. "Plasma Metabolomics to Evaluate Progression of Necrotising Enterocolitis in Preterm Pigs" Metabolites 11, no. 5: 283. https://doi.org/10.3390/metabo11050283
APA StyleJiang, Y.-N., Ye, Y.-X., Sangild, P. T., Thymann, T., Engelsen, S. B., Khakimov, B., & Jiang, P.-P. (2021). Plasma Metabolomics to Evaluate Progression of Necrotising Enterocolitis in Preterm Pigs. Metabolites, 11(5), 283. https://doi.org/10.3390/metabo11050283