Plasma Metabolomics to Evaluate Progression of Necrotising Enterocolitis in Preterm Pigs
Abstract
:1. Introduction
2. Results
2.1. Clinical Observations and NEC Lesions
2.2. Plasma Metabolites
3. Discussion
4. Materials and Methods
4.1. Animal Procedure, NEC and Antibiotic Treatment
4.2. H-NMR Based Metabolomics
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Belkum, M.; Alvarez, L.M.; Neu, J. Preterm Neonatal Immunology at the Intestinal Interface. Cell. Mol. Life Sci. 2019, 77, 1209–1227. [Google Scholar] [CrossRef]
- Neu, J.; Walker, W.A. Necrotizing Enterocolitis. N. Engl. J. Med. 2011, 364, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Shulhan, J.; Dicken, B.; Hartling, L.; Larsen, B.M. Current Knowledge of Necrotizing Enterocolitis in Preterm Infants and the Impact of Different Types of Enteral Nutrition Products. Adv. Nutr. 2017, 8, 80–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantey, J.B.; Pyle, A.K.; Wozniak, P.S.; Hynan, L.S.; Sánchez, P.J. Early Antibiotic Exposure and Adverse Outcomes in Preterm, Very Low Birth Weight Infants. J. Pediatr. 2018, 203, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Eisenstein, R.S. Ironregulatoryproteins And Themolecularcontrol Ofmammalianironmetabolism. Annu. Rev. Nutr. 2000, 20, 627–662. [Google Scholar] [CrossRef] [PubMed]
- Grylack, L.J.; Scanlon, J.W. Oral Gentamicin Therapy in the Prevention of Neonatal Necrotizing Enterocolitis. Am. J. Dis. Child. 1978, 132, 1192–1194. [Google Scholar] [CrossRef]
- Schmölzer, G.; Urlesberger, B.; Haim, M.; Kutschera, J.; Pichler, G.; Ritschl, E.; Resch, B.; Reiterer, F.; Müller, W. Multi-Modal Approach to Prophylaxis of Necrotizing Enterocolitis: Clinical Report and Review of Literature. Pediatr. Surg. Int. 2006, 22, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shen, R.L.; Ayede, A.I.; Berrington, J.; Bloomfield, F.H.; Busari, O.O.; Cormack, B.E.; Embleton, N.D.; van Goudoever, J.B.; Greisen, G.; et al. Early Use of Antibiotics Is Associated with a Lower Incidence of Necrotizing Enterocolitis in Preterm, Very Low Birth Weight Infants: The NEOMUNE-NeoNutriNet Cohort Study. J. Pediatr. 2020, 227, 128–134.e2. [Google Scholar] [CrossRef]
- Bury, R.G.; Tudehope, D. Enteral Antibiotics for Preventing Necrotizing Enterocolitis in Low Birthweight or Preterm Infants. Cochrane Database Syst. Rev. 2001, 2001, CD000405. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, P.S.; Warner, B.B.; Zhou, Y.; Weinstock, G.M.; Sodergren, E.; Hall-Moore, C.M.; Stevens, H.J.; Bennett, W.E.; Shaikh, N.; Linneman, L.A.; et al. Patterned Progression of Bacterial Populations in the Premature Infant Gut. Proc. Natl. Acad. Sci. USA 2014, 111, 12522–12527. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hoenig, J.D.; Malin, K.J.; Qamar, S.; Petrof, E.O.; Sun, J.; Antonopoulos, D.A.; Chang, E.B.; Claud, E.C. 16S rRNA Gene-Based Analysis of Fecal Microbiota from Preterm Infants with and Without Necrotizing Enterocolitis. ISME J. 2009, 3, 944–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sylvester, K.G.; Moss, R.L. Urine Biomarkers for Necrotizing Enterocolitis. Pediatr. Surg. Int. 2015, 31, 421–429. [Google Scholar] [CrossRef]
- Sinclair, T.J.; Ye, C.; Chen, Y.; Zhang, D.; Li, T.; Ling, X.B.; Cohen, H.J.; Shaw, G.M.; Stevenson, D.K.; Chace, D.; et al. Progressive Metabolic Dysfunction and Nutritional Variability Precedes Necrotizing Enterocolitis. Nutrients 2020, 12, 1275. [Google Scholar] [CrossRef]
- Becker, R.M.; Wu, G.; Galanko, J.A.; Chen, W.; Maynor, A.R.; Bose, C.L.; Rhoads, J. Reduced Serum Amino Acid Concentrations in Infants with Necrotizing Enterocolitis. J. Pediatr. 2000, 137, 785–793. [Google Scholar] [CrossRef]
- Jiang, P.; Trimigno, A.; Stanstrup, J.; Khakimov, B.; Viereck, N.; Engelsen, S.B.; Sangild, P.T.; Dragsted, L.O. Antibiotic Treatment Preventing Necrotising Enterocolitis Alters Urinary and Plasma Metabolomes in Preterm Pigs. J. Proteome Res. 2017, 16, 3547–3557. [Google Scholar] [CrossRef] [PubMed]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Valentine, C.J.; Fernandez, S.; Rogers, L.K.; Gulati, P.; Hayes, J.; Lore, P.; Puthoff, T.; Dumm, M.; Jones, A.; Collins, K.; et al. Early Amino-Acid Administration Improves Preterm Infant Weight. J. Perinatol. 2009, 29, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, K.G.; Kastenberg, Z.J.; Moss, R.L.; Enns, G.M.; Cowan, T.M.; Shaw, G.M.; Stevenson, D.K.; Sinclair, T.J.; Scharfe, C.; Ryckman, K.K.; et al. Acylcarnitine Profiles Reflect Metabolic Vulnerability for Necrotizing Enterocolitis in Newborns Born Premature. J. Pediatr. 2017, 181, 80–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birck, M.M.; Nguyen, D.N.; Cilieborg, M.S.; Kamal, S.S.; Nielsen, D.S.; Damborg, P.; Olsen, J.E.; Lauridsen, C.; Sangild, P.T.; Thymann, T. Enteral but Not Parenteral Antibiotics Enhance Gut Function and Prevent Necrotizing Enterocolitis in Formula-Fed Newborn Preterm Pigs. Am. J. Physiol. Liver Physiol. 2016, 310, G323–G333. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.N.; Fuglsang, E.; Jiang, P.; Birck, M.M.; Pan, X.; Kamal, S.B.S.; E Pors, S.; Gammelgaard, P.L.; Nielsen, D.S.; Thymann, T.; et al. Oral Antibiotics Increase Blood Neutrophil Maturation and Reduce Bacteremia and Necrotizing Enterocolitis in the Immediate Postnatal Period of Preterm Pigs. Innate Immun. 2015, 22, 51–62. [Google Scholar] [CrossRef]
- Jiang, Y.-N.; Muk, T.; Stensballe, A.; Nguyen, D.N.; Sangild, P.T.; Jiang, P.-P. Early Protein Markers of Necrotizing Enterocolitis in Plasma of Preterm Pigs Exposed to Antibiotics. Front. Immunol. 2020, 11, 565862. [Google Scholar] [CrossRef]
- Khakimov, B.; Mobaraki, N.; Trimigno, A.; Aru, V.; Engelsen, S.B. Signature Mapping (SigMa): An Efficient Approach for Processing Complex Human Urine 1H NMR Metabolomics Data. Anal. Chim. Acta 2020, 1108, 142–151. [Google Scholar] [CrossRef]
- Morrow, A.L.; Lagomarcino, A.J.; Schibler, K.R.; Taft, D.H.; Yu, Z.; Wang, B.; Altaye, M.; Wagner, M.; Gevers, D.; Ward, D.V.; et al. Early Microbial and Metabolomic Signatures Predict Later Onset of Necrotizing Enterocolitis in Preterm Infants. Microbiome 2013, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Zarling, E.J.; A Ruchim, M. Protein Origin of the Volatile Fatty Acids Isobutyrate and Isovalerate in Human Stool. J. Lab. Clin. Med. 1987, 109, 109. [Google Scholar]
- Waligora-Dupriet, A.-J.; Dugay, A.; Auzeil, N.; Huerre, M.; Butel, M.-J. Evidence for Clostridial Implication in Necrotizing Enterocolitis through Bacterial Fermentation in a Gnotobiotic Quail Model. Pediatr. Res. 2005, 58, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Grabacka, M.; Pierzchalska, M.; Dean, M.; Reiss, K. Regulation of Ketone Body Metabolism and the Role of PPARα. Int. J. Mol. Sci. 2016, 17, 2093. [Google Scholar] [CrossRef] [Green Version]
- Khovidhunkit, W.; Kim, M.-S.; Memon, R.A.; Shigenaga, J.K.; Moser, A.H.; Feingold, K.R.; Grunfeld, C. Thematic Review Series: The Pathogenesis of Atherosclerosis. Effects of Infection and Inflammation on Lipid and Lipoprotein Metabolism Mechanisms and Consequences to the Host. J. Lipid Res. 2004, 45, 1169–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, P.; Sangild, P.T. Intestinal Proteomics in Pig Models of Necrotising Enterocolitis, Short Bowel Syndrome and Intrauterine Growth Restriction. Proteom. Clin. Appl. 2014, 8, 700–714. [Google Scholar] [CrossRef]
- Alinaghi, M.; Jiang, P.-P.; Brunse, A.; Sangild, P.T.; Bertram, H.C. Rapid Cerebral Metabolic Shift During Neonatal Sepsis Is Attenuated by Enteral Colostrum Supplementation in Preterm Pigs. Metabolites 2019, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Mickiewicz, B.; Vogel, H.J.; Wong, H.R.; Winston, B.W. Metabolomics as a Novel Approach for Early Diagnosis of Pediatric Septic Shock and Its Mortality. Am. J. Respir. Crit. Care Med. 2013, 187, 967–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harbeson, D.; Francis, F.; Bao, W.; Amenyogbe, N.A.; Kollmann, T.R. Energy Demands of Early Life Drive a Disease Tolerant Phenotype and Dictate Outcome in Neonatal Bacterial Sepsis. Front. Immunol. 2018, 9, 1918. [Google Scholar] [CrossRef] [PubMed]
- Minambres, I.; Cuixart, G.; Gonçalves, A.; Corcoy, R. Effects of Inositol on Glucose homeostasis: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. 2019, 38, 1146–1152. [Google Scholar] [CrossRef] [PubMed]
- Wilcock, A.; Begley, P.; Stevens, A.; Whatmore, A.; Victor, S. The Metabolomics of Necrotising Enterocolitis in Preterm Babies: An Exploratory Study. J. Matern. Neonatal Med. 2016, 29, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Hall, N.; Peters, M.; Eaton, S.; Pierro, A. Hyperglycemia is Associated with Increased Morbidity and Mortality Rates in Neonates with Necrotizing Enterocolitis. J. Pediatr. Surg. 2004, 39, 898–901. [Google Scholar] [CrossRef]
- Bottino, M.; Cowett, R.M.; Sinclair, J.C. Interventions for Treatment of Neonatal Hyperglycemia in Very Low Birth Weight Infants. Cochrane Database Syst. Rev. 2011, CD007453. [Google Scholar] [CrossRef]
- Wang, Y.P.; Wei, J.Y.; Yang, J.J.; Gao, W.N.; Wu, J.Q.; Guo, C.J. Riboflavin Supplementation Improves Energy Metabolism in Mice Exposed to Acute Hypoxia. Physiol. Res. 2014, 63, 341–350. [Google Scholar] [CrossRef]
- Hackam, D.J.; Sodhi, C.P. Toll-Like Receptor–Mediated Intestinal Inflammatory Imbalance in the Pathogenesis of Necrotizing Enterocolitis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 229–238.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.; Gong, D.; Nguyen, D.N.; Zhang, X.; Hu, Q.; Lu, H.; Fredholm, M.; Sangild, P.T.; Gao, F. Early Microbial Colonization Affects DNA Methylation of Genes Related to Intestinal Immunity and Metabolism in Preterm Pigs. DNA Res. 2018, 25, 287–296. [Google Scholar] [CrossRef] [Green Version]
- A Rossignol, D.; E Frye, R. Mitochondrial Dysfunction in Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. Mol. Psychiatry 2011, 17, 290–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Xu, K.; Liu, H.; Liu, G.; Bai, M.; Peng, C.; Li, T.; Yin, Y. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front. Cell. Infect. Microbiol. 2018, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Roager, H.M.; Licht, T.R. Microbial Tryptophan Catabolites in Health and Disease. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Zhang, Y.; Yin, L.; Zheng, W.; Fu, Y. Efficient Synthesis of d-Phenyllactic Acid by a Whole-Cell Biocatalyst Co-Expressing Glucose Dehydrogenase and a Novel D-Lactate Dehydrogenase from Lactobacillus Rossiae. 3 Biotech 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Beloborodov, N.V.; Khodakova, A.S.; Bairamov, I.T.; Olenin, A.Y. Microbial Origin of Phenylcarboxylic Acids in the Human Body. Biochemistry 2009, 74, 1350–1355. [Google Scholar] [CrossRef] [PubMed]
- Russell, W.R.; Duncan, S.H.; Scobbie, L.; Duncan, G.; Cantlay, L.; Calder, A.G.; Anderson, S.E.; Flint, H.J. Major Phenylpropanoid-Derived Metabolites in the Human Gut Can Arise from Microbial Fermentation of Protein. Mol. Nutr. Food Res. 2013, 57, 523–535. [Google Scholar] [CrossRef]
- Beloborodova, N.V.; Sarshor, Y.N.; Bedova, A.Y.; Chernevskaya, E.A.; Pautova, A.K. Involvement of Aromatic Metabolites in the Pathogenesis of Septic Shock. Shock 2018, 50, 273–279. [Google Scholar] [CrossRef]
- Centelles, S.M.; Hoefsloot, H.C.J.; Khakimov, B.; Ebrahimi, P.; Lind, M.V.; Kristensen, M.; De Roo, N.; Jacobs, D.M.; Van Duynhoven, J.; Cannet, C.; et al. Toward Reliable Lipoprotein Particle Predictions from NMR Spectra of Human Blood: An Interlaboratory Ring Test. Anal. Chem. 2017, 89, 8004–8012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.G.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic Profiling, Metabolomic and Metabonomic Procedures for NMR Spectroscopy of Urine, Plasma, Serum and Tissue Extracts. Nat. Protoc. 2007, 2, 2692–2703. [Google Scholar] [CrossRef]
- Akoka, S.; Barantin, L.; Trierweiler, M. Concentration Measurement by Proton NMR Using the ERETIC Method. Anal. Chem. 1999, 71, 2554–2557. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- RStudio Team. RStudio Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2020. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models, R package version 3.1-152; 2020; Available online: https://CRAN.R-project.org/package=nlme (accessed on 20 February 2021).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [Green Version]
- Feise, R.J. Do Multiple Outcome Measures Require P-Value Adjustment? BMC Med. Res. Methodol. 2002, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Westfall, J.; Kenny, D.A.; Judd, C.M. Statistical Power and Optimal Design in Experiments in Which Samples of Participants Respond to Samples of Stimuli. J. Exp. Psychol. Gen. 2014, 143, 2020–2045. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar]
Metabolite | Molecular Formula | Chemical Shift (δ, ppm) | Multiplicity | Grouping | Abundance by NEC Severity (Mean ± SEM, mM) | Effect Size 1 | ||||
---|---|---|---|---|---|---|---|---|---|---|
No-NEC (n = 28) | Mild-NEC (n = 9) | Severe-NEC (n = 10) | Mild- NEC vs. No-NEC | Severe-NEC vs. No-NEC | Severe-NEC vs. Mild-NEC | |||||
Alanine | C3H7NO2 | 1.51 | d | Amino acid | 0.92 ± 0.05 | 0.93 ± 0.09 | 1.40 ± 0.42 | −0.16 | 0.85 # | 1.01 # |
Histidine | C6H9N3O2 | 7.08 | s | Amino acid | 0.16 ± 0.01 | 0.15 ± 0.01 | 0.21 ± 0.04 | −0.35 | 0.75 | 1.10 * |
Tyrosine 2 | C9H11NO3 | 3.93 | dd | Amino acid | 3.84 ± 0.17 | 3.84 ± 0.35 | 2.73 ± 0.45 | 0.15 | −1.07 * | −1.22 * |
Pyruvate | C3H4O3 | 2.39 | s | Energy metabolism | 0.13 ± 0.01 | 0.13 ± 0.02 | 0.20 ± 0.04 | −0.12 | 0.86 # | 0.99 # |
Creatine 2 | C4H9N3O2 | 3.05 | s | Energy metabolism | 0.24 ± 0.03 | 0.21 ± 0.02 | 0.15 ± 0.03 | 0.02 | −0.84 # | −0.85 |
3-Hydroxybutyric acid | C4H8O3 | 1.23 | d | Ketone | 0.05 ± 0.01 | 0.04 ± 0.01 | 0.01 ± 0.01 | −0.76 | −1.11 * | −0.35 |
Formic acid 2 | HCOOH | 8.48 | s | SCFA | 0.13 ± 0.04 | 0.10 ± 0.01 | 0.35 ± 0.14 | −0.37 | 0.73 | 1.10 * |
Isobutyric acid 2 | C4H7O2H | 1.10 | d | SCFA | 0.10 ± 0.00 | 0.10 ± 0.01 | 0.08 ± 0.01 | −0.17 | −1.10 * | −0.93 # |
Glucose 2 | C₆H₁₂O₆ | 5.26 | d | Carbohydrate metabolism | 4.64 ± 0.24 | 4.39 ± 0.52 | 3.67 ± 0.55 | −0.15 | −0.97 * | −0.82 |
Cholesterol | C27H46O | 0.68 | m | Lipid metabolism | 3.91 ± 0.13 | 4.00 ± 0.36 | 3.04 ± 0.44 | 0.09 | −1.01 * | −1.10 * |
myo-Inositol | C6H12O6 | 3.31 | d | Carbohydrate metabolism | 8.37 ± 0.72 | 8.93 ± 1.05 | 14.40 ± 1.93 | 0.12 | 1.24 ** | 1.11 ** |
Methanol | CH3OH | 3.38 | s | Carbohydrate metabolism | 0.10 ± 0.01 | 0.12 ± 0.01 | 0.14 ± 0.01 | 0.64 | 1.02 * | 0.38 |
Metabolite | Molecular Formula | Chemical Shift (δ, ppm) | Multiplicity | Grouping | Abundance by Antibiotic Treatment (Mean ± SEM, mM) | Effect Size 1 | ||||
---|---|---|---|---|---|---|---|---|---|---|
CON (n = 15) | PAR (n = 17) | ORA (n = 15) | PAR vs. CON | ORA vs. CON | ORA vs. PAR | |||||
Tryptophan | C11H12N2O2 | 7.21 | m | Amino acid | 0.29 ± 0.03 | 0.41 ± 0.07 | 0.53 ± 0.09 | 0.46 | 0.99 * | 0.54 |
Phenylalanine | C9H11NO2 | 7.35 | m | Amino acid | 0.19 ± 0.02 | 0.24 ± 0.02 | 0.22 ± 0.01 | 0.80 # | 0.64 | −0.16 |
3-Phenyllactic acid | C9H10O3 | 4.53 | dd | Amino acid derivative | 0.38 ± 0.04 | 1.32 ± 0.03 | 1.70 ± 0.06 | 1.66 ** | 2.33 ** | 0.68 ** |
3-Hydroxybutyric acid | C4H8O3 | 1.23 | d | Ketone | 0.04 ± 0.01 | 0.05 ± 0.02 | 0.03 ± 0.01 | 0.21 | −0.68 | −0.89 * |
Formic acid 2 | HCOOH | 8.48 | s | SCFA | 0.26 ± 0.11 | 0.18 ± 0.04 | 0.07 ± 0.01 | 0.44 | −0.50 | −0.94 * |
Ethanol | C2H5OH | 1.20 | t | Carbohydrate metabolism | 0.45 ± 0.05 | 0.57 ± 0.03 | 0.46 ± 0.03 | 0.76 * | −0.23 | −0.99 ** |
Citrate | C₆H₈O₇ | 2.55 | d | Carbohydrate metabolism | 0.41 ± 0.04 | 0.54 ± 0.06 | 0.46 ± 0.03 | 0.71 # | −0.15 | −0.86 # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.-N.; Ye, Y.-X.; Sangild, P.T.; Thymann, T.; Engelsen, S.B.; Khakimov, B.; Jiang, P.-P. Plasma Metabolomics to Evaluate Progression of Necrotising Enterocolitis in Preterm Pigs. Metabolites 2021, 11, 283. https://doi.org/10.3390/metabo11050283
Jiang Y-N, Ye Y-X, Sangild PT, Thymann T, Engelsen SB, Khakimov B, Jiang P-P. Plasma Metabolomics to Evaluate Progression of Necrotising Enterocolitis in Preterm Pigs. Metabolites. 2021; 11(5):283. https://doi.org/10.3390/metabo11050283
Chicago/Turabian StyleJiang, Yan-Nan, Yong-Xin Ye, Per Torp Sangild, Thomas Thymann, Søren Balling Engelsen, Bekzod Khakimov, and Ping-Ping Jiang. 2021. "Plasma Metabolomics to Evaluate Progression of Necrotising Enterocolitis in Preterm Pigs" Metabolites 11, no. 5: 283. https://doi.org/10.3390/metabo11050283
APA StyleJiang, Y. -N., Ye, Y. -X., Sangild, P. T., Thymann, T., Engelsen, S. B., Khakimov, B., & Jiang, P. -P. (2021). Plasma Metabolomics to Evaluate Progression of Necrotising Enterocolitis in Preterm Pigs. Metabolites, 11(5), 283. https://doi.org/10.3390/metabo11050283