Leafy Stems of Phagnalon saxatile subsp. saxatile from Algeriaas a Source of Chlorogenic Acids and Flavonoids with Antioxidant Activity: Characterization and Quantification Using UPLC-DAD-ESI-MSn
Abstract
:1. Introduction
2. Results
2.1. Extract Yields, Polyphenol Contents and Antioxidant Activities
2.2. Identification and Quantification of Phenolic Compounds Contained in the Polar Extracts of P. saxatile
- Phenolic compounds identified in methanolic and aqueous extracts of P. saxatile.
2.2.1. Esters of Hydroxycinnamic Acid (Chlorogenic Acids)
2.2.2. Flavonoids
2.2.3. Unknown Compound
- UPLC quantification of phenolic acid derivatives and flavonoids
3. Discussion
4. Materials and Methods
4.1. Plant Material and Extract Preparation
4.2. Determination of Total Polyphenol, Total Flavonoid, and Total Tannin Contents
4.3. Determination of Antioxidant Activities
4.4. LC-DAD-ESI-MSn Analysis
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abid, R.; Qaiser, M. Cypsela morphology of some genera in the tribe Gnaphalieae (Asteraceae) from Pakistan. Pak. J. Bot. 2008, 40, 473–485. [Google Scholar]
- Lentini, F.; Venza, F. Wild food plants of popular use in Sicily. J. Ethnobiol. Ethnomed. 2007, 3, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, J.; Yaniv, Z.; Dafni, A.; Palewitch, D. A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert, Israel. J. Ethnopharmacol. 1986, 16, 275–287. [Google Scholar] [CrossRef]
- Epifano, F.; Marcotullio, M.; Menghini, L. Constituents of Phagnalon sordidum. Chem. Nat. Compd. 2002, 38, 204–205. [Google Scholar] [CrossRef]
- Ali-Shtayeh, M.; Yaghmour, R.M.-R.; Faidi, Y.; Salem, K.; Al-Nuri, M. Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J. Ethnopharmacol. 1998, 60, 265–271. [Google Scholar] [CrossRef]
- Zdero, C.; Bohlmann, F.; Anderberg, A. Leysseral derivatives from Anisothrix integra and Phagnalon purpurescens. Phytochemistry 1991, 30, 3009–3011. [Google Scholar] [CrossRef]
- Góngora, L.; Máñez, S.; Giner, R.M.; del Carmen Recio, M.; Schinella, G.; Ríos, J.L. Inhibition of xanthine oxidase by phenolic conjugates of methylated quinic acid. Planta Med. 2003, 69, 396–401. [Google Scholar]
- Orhan, I.E.; Senol, F.S.; Demirci, B.; Ozturk, N.; Baser, K.H.C.; Sener, B. Phytochemical Characterization of Phagnalon graecum Boiss. by HPLC and GC-MS with its Enzyme Inhibitory and Antioxidant Activity Profiling by Spectrophotometric Methods. Food Anal. Methods 2013, 6, 1–9. [Google Scholar] [CrossRef]
- Conforti, F.; Rigano, D.; Formisano, C.; Bruno, M.; Loizzo, M.R.; Menichini, F.; Senatore, F. Metabolite profile and in vitro activities of Phagnalon saxatile (L.) Cass. relevant to treatment of Alzheimer’s disease. J. Enzym. Inhib. Med. Chem. 2010, 25, 97–104. [Google Scholar] [CrossRef]
- Cherchar, H.; Lehbili, M.; Berrehal, D.; Morjani, H.; Alabdul Magid, A.; Voutquenne-Nazabadioko, L.; Kabouche, A.; Kabouche, Z. A new 2-alkylhydroquinone glucoside from Phagnalon saxatile (L.) Cass. Nat. Prod. Res. 2018, 32, 1010–1016. [Google Scholar] [CrossRef]
- Haddouchi, F.; Chaouche, T.M.; Ksouri, R.; Medini, F.; Sekkal, F.Z.; Benmansour, A. Antioxidant activity profiling by spectrophotometric methods of aqueous methanolic extracts of Helichrysum stoechas subsp. rupestre and Phagnalon saxatile subsp. saxatile. Chin. J. Nat. Med. 2014, 12, 415–422. [Google Scholar]
- Rivas-Martínez, S.; Fernández-González, F.; Loidi, J.; Lousã, M.; Penas, A. Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobot. 2001, 14, 5–341. [Google Scholar]
- de Santayana, M.P.; Blanco, E.; Morales, R. Plants known as té in Spain: An ethno-pharmaco-botanical review. J. Ethnopharmacol. 2005, 98, 1–19. [Google Scholar] [CrossRef]
- Morris, M. Diet and Alzheimer’s disease: What the evidence shows. Medscape Gen. Med. 2004, 6, 48. [Google Scholar]
- Senatore, F.; Formisano, C.; Grassia, A.; Rigano, D.; Bellone, G.; Bruno, M. Chemical Composition of the Essential Oil of Phagnalon saxatile (L.) Cass. (Asteraceae) Growing Wild in Southern Italy. J. Essent. Oil Bear. Plants 2005, 8, 258–263. [Google Scholar] [CrossRef]
- Dolci, M.; Tira, S. Flavonoids of Gnaphalieae: Phagnalon species. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 1982, 116, 315–318. [Google Scholar]
- Hečimović, I.; Belščak-Cvitanović, A.; Horžić, D.; Komes, D. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chem. 2011, 129, 991–1000. [Google Scholar] [CrossRef]
- Kurata, R.; Adachi, M.; Yamakawa, O.; Yoshimoto, M. Growth suppression of human cancer cells by polyphenolics from sweetpotato (Ipomoea batatas L.) leaves. J. Agric. Food Chem. 2007, 55, 185–190. [Google Scholar] [CrossRef]
- Macheix, J.-J.; Fleuriet, A.; Jay-Allemand, C. Les Composés Phénoliques des Végétaux: Un Exemple de Métabolites Secondaires D’importance Économique; PPUR Presses Polytechniques: Lausanne, Switzerland, 2005. [Google Scholar]
- Albayrak, S.; Aksoy, A.; Sagdic, O.; Hamzaoglu, E. Compositions, antioxidant and antimicrobial activities of Helichrysum (Asteraceae) species collected from Turkey. Food Chem. 2010, 119, 114–122. [Google Scholar] [CrossRef]
- Lee, Y.-L.; Yang, J.-H.; Mau, J.-L. Antioxidant properties of water extracts from Monascus fermented soybeans. Food Chem. 2008, 106, 1128–1137. [Google Scholar] [CrossRef]
- Ferracane, R.; Pellegrini, N.; Visconti, A.; Graziani, G.; Chiavaro, E.; Miglio, C.; Fogliano, V. Effects of different cooking methods on antioxidant profile, antioxidant capacity, and physical characteristics of artichoke. J. Agric. Food Chem. 2008, 56, 8601–8608. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Salces, R.M.; Guillou, C.; Berrueta, L.A. Liquid chromatography coupled with ultraviolet absorbance detection, electrospray ionization, collision-induced dissociation and tandem mass spectrometry on a triple quadrupole for the on-line characterization of polyphenols and methylxanthines in green coffee beans. Rapid Commun. Mass Spectrom. 2009, 23, 363–383. [Google Scholar]
- Ferreres, F.; Llorach, R.; Gil-Izquierdo, A. Characterization of the interglycosidic linkage in di-, tri-, tetra-and pentaglycosylated flavonoids and differentiation of positional isomers by liquid chromatography/electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 2004, 39, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Sawada, Y.; Akiyama, K.; Sakata, A.; Kuwahara, A.; Otsuki, H.; Sakurai, T.; Saito, K.; Hirai, M.Y. Widely targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants. Plant Cell Physiol. 2009, 50, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rabaneda, F.; Jáuregui, O.; Casals, I.; Andrés-Lacueva, C.; Izquierdo-Pulido, M.; Lamuela-Raventós, R.M. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J. Mass Spectrom. 2003, 38, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass. Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Trabelsi, N.; Megdiche, W.; Ksouri, R.; Falleh, H.; Oueslati, S.; Soumaya, B.; Hajlaoui, H.; Abdelly, C. Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT-Food Sci. Technol. 2010, 43, 632–639. [Google Scholar] [CrossRef]
- Chaouche, T.M.; Haddouchi, F.; Atik-Bekara, F.; Ksouri, R.; Azzi, R.; Boucherit, Z.; Tefiani, C.; Larbat, R. Antioxidant, haemolytic activities and HPLC–DAD–ESI–MSn characterization of phenolic compounds from root bark of Juniperus oxycedrus subsp. oxycedrus. Ind. Crop. Prod. 2015, 64, 182–187. [Google Scholar] [CrossRef]
- Karker, M.; Falleh, H.; Msaada, K.; Smaoui, A.; Abdelly, C.; Legault, J.; Ksouri, R. Antioxidant, anti-inflammatory and anticancer activities of the medicinal halophyte Reaumuria vermiculata. EXCLI J. 2016, 15, 297–307. [Google Scholar]
- Arapitsas, P. Hydrolyzable tannin analysis in food. Food Chem. 2012, 135, 1708–1717. [Google Scholar] [CrossRef]
- Spínola, V.; Castilho, P.C. Evaluation of Asteraceae herbal extracts in the management of diabetes and obesity. Contribution of caffeoylquinic acids on the inhibition of digestive enzymes activity and formation of advanced glycation end-products (in vitro). Phytochemistry 2017, 143, 29–35. [Google Scholar] [CrossRef]
- Góngora, L.; Giner, R.M.; Máñez, S.; del Carmen Recio, M.; Schinella, G.; Rı́os, J.L. Effects of caffeoyl conjugates of isoprenyl-hydroquinone glucoside and quinic acid on leukocyte function. Life Sci. 2002, 71, 2995–3004. [Google Scholar] [CrossRef]
- Marín, M.; Giner, R.M.; Recio, M.C.; Máñez, S. Phenylpropanoid and phenylisoprenoid metabolites from Asteraceae species as inhibitors of protein carbonylation. Phytochemistry 2011, 72, 1821–1825. [Google Scholar] [CrossRef]
- Gouveia, S.C.; Castilho, P.C. Validation of a HPLC-DAD-ESI/MSn method for caffeoylquinic acids separation, quantification and identification in medicinal Helichrysum species from Macaronesia. Food Res. Int. 2012, 45, 362–368. [Google Scholar] [CrossRef]
- Farah, A.; de Paulis, T.; Moreira, D.P.; Trugo, L.C.; Martin, P.R. Chlorogenic acids and lactones in regular and water-decaffeinated arabica coffees. J. Agric. Food Chem. 2006, 54, 374–381. [Google Scholar] [CrossRef]
- Lima, A.R.; Pereira, R.; Abrahao, S.A.; Duarte, S.d.S.; Paula, F.d.A. Coffee bioactive compounds: In vitro antioxidant activity of green and roasted coffees before and after decaffeination. Quim. Nova 2010, 33, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Moreira, A.S.; Nunes, F.M.; Simões, C.; Maciel, E.; Domingues, P.; Domingues, M.R.M.; Coimbra, M.A. Data on coffee composition and mass spectrometry analysis of mixtures of coffee related carbohydrates, phenolic compounds and peptides. Data Brief 2017, 13, 145–161. [Google Scholar] [CrossRef]
- Meinhart, A.D.; Damin, F.M.; Caldeirão, L.; da Silveira, T.F.F.; Teixeira Filho, J.; Godoy, H.T. Chlorogenic acid isomer contents in 100 plants commercialized in Brazil. Food Res. Int. 2017, 99, 522–530. [Google Scholar] [CrossRef]
- Chen, S.; Xing, X.-H.; Huang, J.-J.; Xu, M.-S. Enzyme-assisted extraction of flavonoids from Ginkgo biloba leaves: Improvement effect of flavonol transglycosylation catalyzed by Penicillium decumbens cellulase. Enzym. Microb. Technol. 2011, 48, 100–105. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Day, A.J.; Morgan, M.R. Experimental determination of octanol−water partition coefficients of quercetin and related flavonoids. J. Agric. Food Chem. 2005, 53, 4355–4360. [Google Scholar] [CrossRef]
- Dastmalchi, K.; Dorman, H.D.; Oinonen, P.P.; Darwis, Y.; Laakso, I.; Hiltunen, R. Chemical composition and in vitro antioxidative activity of a lemon balm (Melissa officinalis L.) extract. LWT-Food Sci. Technol. 2008, 41, 391–400. [Google Scholar] [CrossRef]
- Jiang, X.-W.; Bai, J.-P.; Zhang, Q.; Hu, X.-L.; Tian, X.; Zhu, J.; Liu, J.; Meng, W.-H.; Zhao, Q.-C. Caffeoylquinic acid derivatives from the roots of Arctium lappa L. (burdock) and their structure–activity relationships (SARs) of free radical scavenging activities. Phytochem. Lett. 2016, 15, 159–163. [Google Scholar] [CrossRef]
- Ge, L.; Wan, H.; Tang, S.; Chen, H.; Li, J.; Zhang, K.; Zhou, B.; Fei, J.; Wu, S.; Zeng, X. Novel caffeoylquinic acid derivatives from Lonicera japonica Thunb. flower buds exert pronounced anti-HBV activities. RSC Adv. 2018, 8, 35374–35385. [Google Scholar] [CrossRef] [Green Version]
- Olszowy, M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 2019, 144, 135–143. [Google Scholar] [CrossRef]
- Xiang, Z.; Ning, Z. Scavenging and antioxidant properties of compound derived from chlorogenic acid in South-China honeysuckle. LWT-Food Sci. Technol. 2008, 41, 1189–1203. [Google Scholar] [CrossRef]
- Ceccarelli, N.; Curadi, M.; Picciarelli, P.; Martelloni, L.; Sbrana, C.; Giovannetti, M. Globe artichoke as a functional food. Med. J. Nutr. Metab. 2010, 3, 197–201. [Google Scholar] [CrossRef]
- Baeza, G.; Amigo-Benavent, M.; Sarriá, B.; Goya, L.; Mateos, R.; Bravo, L. Green coffee hydroxycinnamic acids but not caffeine protect human HepG2 cells against oxidative stress. Food Res. Int. 2014, 62, 1038–1046. [Google Scholar] [CrossRef] [Green Version]
- Zanin, R.C.; Corso, M.P.; Kitzberger, C.S.G.; dos Santos Scholz, M.B.; de Toledo Benassi, M. Good cup quality roasted coffees show wide variation in chlorogenic acids content. LWT 2016, 74, 480–483. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Pietta, P.-G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Cuyckens, F.; Claeys, M. Mass spectrometry in the structural analysis of flavonoids. J. Mass Spectrom. 2004, 39, 1–15. [Google Scholar] [CrossRef]
- Smolyaninov, I.V.; Pitikova, O.V.; Korchagina, E.O.; Poddel’sky, A.I.; Fukin, G.K.; Luzhnova, S.A.; Tichkomirov, A.M.; Ponomareva, E.N.; Berberova, N.T. Catechol thioethers with physiologically active fragments: Electrochemistry, antioxidant and cryoprotective activities. Bioorg. Chem. 2019, 89, 103003. [Google Scholar] [CrossRef]
- Chougui, N.; Djerroud, N.; Naraoui, F.; Hadjal, S.; Aliane, K.; Zeroual, B.; Larbat, R. Physicochemical properties and storage stability of margarine containing Opuntia ficus-indica peel extract as antioxidant. Food Chem. 2015, 173, 382–390. [Google Scholar] [CrossRef]
- Chougui, N.; Tamendjari, A.; Hamidj, W.; Hallal, S.; Barras, A.; Richard, T.; Larbat, R. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds. Food Chem. 2013, 139, 796–803. [Google Scholar] [CrossRef]
Extract | Yield (%) | TPC (mg GAE/g DW) | TFC (mg CE/g DW) | TTC (mg EC/g DW) | |
---|---|---|---|---|---|
LSPSs | Hx | 2.3 | 0.50 ± 0.03 | 0 | 0.60 ± 0.02 |
D | 0.8 | 0.40 ± 0.01 | 0.30 ± 0.01 | 0.40 ± 0.02 | |
M | 8.2 | 23.1 ± 0.1 | 15.9 ± 0.1 | 0 | |
W | 8.5 | 15.1 ± 0.3 | 8.2 ± 0.1 | 0 |
Extract | Total Antioxidant Activity (mg EAG/g MS) | IC50/DPPH (µg/mL) | EC50/iron reducing (µg/mL) | IC50/ABTS (µg/mL) | IC50/Iron chelation (µg/mL) | IC50/β-carotène (µg/mL) | |
---|---|---|---|---|---|---|---|
LSPSs | Hx | 1.7 ± 0.1 | - | - | / | / | / |
D | 0.4 ± 0.1 | - | - | / | / | / | |
M | 18.2 ± 0.3 | 5.5 ± 0.1 | 343 ± 5 | 63.8 ± 0.9 | - | 22.7 ± 0.4 | |
W | 11.8 ± 0.1 | 7.0 ± 0.1 | 332 ± 2 | 122.9 ± 1.8 | 4450 ± 3 | 125.9 ± 1.5 | |
Standards | 10.5 ± 0.4 a | 99.6 ± 1.8 a | 73.1 ± 1.7 a | 46.5 ± 0.3 b | 48 ± 0.9 c |
Peak | Rt | λ Max (nm) | MS2 [M − H]− | [M − H]− | Calculated Mass | Formula | Compound Name | LSPSs M (μg/g DW) | LSPSs Aq (μg/g DW) |
---|---|---|---|---|---|---|---|---|---|
1 | 3.7 | 300, 324 | 353, 191, 179, 135 | 353.0864 | 354.0943 | C16H18O9 | Caffeoylquinic acid isomer | 326.0 ± 20.8 | 694.0 ± 7.0 |
2 | 5.5 | 239, 300, 324 | 353, 191, 179, 135 | 353.0864 | 354.0943 | C16H18O9 | Caffeoylquinic acid isomer | 11,807.0 ± 1000.6 | 2373.3 ± 24.8 |
3 | 6.0 | 239, 300, 326 | 353, 191, 179, 135 | 353.0864 | 354.0943 | C16H18O9 | Caffeoylquinic acid isomer | 230.3 ± 26.6 | 793.7 ± 19.0 |
4 | 6.1 | NI | |||||||
5 | 6.9 | 239, 300, 326 | 353, 191, 179, 135 | 353.0864 | 354.0943 | C16H18O9 | Caffeoylquinic acid isomer | 199.0 ± 16.5 | 56.3 ± 2.9 |
6 | 7.2 | 300 sh, 323 | 353, 191, 179 | 337.0926 | 338.1003 | Coumaroyl quinic acid | 73.7 ± 5.5 | - | |
7 | 8.9 | 330 | 609, 447, 285 | 609.1437 | 610.1507 | Luteolin di-glucoside | 290.0 ± 19.9 | 529.7 ± 29.1 | |
8 | 11.0 | 297, 326 | 515, 353, 335, 179, 173 | 515.1106 | 516.1185 | C25H24O12 | di-O-Caffeoylquinic acid isomer | 921.3 ± 69.3 | 945.0 ± 9.5 |
9 | 11.2 | 297, 326 | 515, 353, 335, 179, 173 | 515.1106 | 516.1185 | C25H24O12 | di-O-Caffeoylquinic acid isomer | 17,214.7 ± 1824.3 | 810.7 ± 15.0 |
10 | 11.3 | 346 | 447, 285 | 447.0904 | 448.0983 | C21H20O11 | Luteolin glucoside | - | 683.5 ± 6.9 |
11 | 11.4 | 251, 350 | 463,300 | 463.0855 | 464.0934 | C21H20O12 | quercetin-glucoside | 2220.6 ± 178.9 | 554.0 ± 16.8 |
12 | 12.7 | 300, 328 | 515, 353, 335, 179, 173 | 515.1166 | 516.1245 | C25H24O12 | di-O-Caffeoylquinic acid isomer | 7230.0 ± 603.9 | 1077.7 ± 14.6 |
13 | 13.3 | 267, 336 | 447, 285 | 447.0904 | 448.0983 | C21H20O11 | Luteolin glucoside | 1709.9 ± 134.9 | 378.8 ± 33.9 |
14 | 15.8 | 254, 350 | 285, 133, 151 | 285.0385 | 286.0464 | C15H10O6 | Luteolin | 130.3 ± 12.4 | - |
15 | 16.5 | 267, 342 | 269, 151 | 269.0444 | 270.0523 | C15H10O5 | Apigenin | 30.0 ± 2.7 | - |
Class of Phenolic Compounds | Compound Name | LSPSs M (mg/g DW) | LSPSs Aq (mg/g DW) |
---|---|---|---|
hydroxycinnamic acid esters | Caffeoylquinic acid isomer | 12.56 | 3.90 |
di-O-Caffeoylquinic acid isomer | 25.37 | 2.80 | |
Coumaroyl quinic acid | 0.07 | - | |
Sum of individual amounts | 38.00 | 6.70 | |
% of the total phenolic compounds | 90% | 76% | |
Flavonoids | Luteolin di-glucoside | 0.29 | 0.53 |
Luteolin glucoside | 1.71 | 1.06 | |
Luteolin | 0.13 | - | |
Quercetin-glucoside | 2.22 | 0.55 | |
Apigenin | 0.03 | - | |
Sum of individual amounts | 4.38 | 2.14 | |
% of the total phenolic compounds | 10% | 24% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haddouchi, F.; Chaouche, T.M.; Ksouri, R.; Larbat, R. Leafy Stems of Phagnalon saxatile subsp. saxatile from Algeriaas a Source of Chlorogenic Acids and Flavonoids with Antioxidant Activity: Characterization and Quantification Using UPLC-DAD-ESI-MSn. Metabolites 2021, 11, 280. https://doi.org/10.3390/metabo11050280
Haddouchi F, Chaouche TM, Ksouri R, Larbat R. Leafy Stems of Phagnalon saxatile subsp. saxatile from Algeriaas a Source of Chlorogenic Acids and Flavonoids with Antioxidant Activity: Characterization and Quantification Using UPLC-DAD-ESI-MSn. Metabolites. 2021; 11(5):280. https://doi.org/10.3390/metabo11050280
Chicago/Turabian StyleHaddouchi, Farah, Tarik Mohammed Chaouche, Riadh Ksouri, and Romain Larbat. 2021. "Leafy Stems of Phagnalon saxatile subsp. saxatile from Algeriaas a Source of Chlorogenic Acids and Flavonoids with Antioxidant Activity: Characterization and Quantification Using UPLC-DAD-ESI-MSn" Metabolites 11, no. 5: 280. https://doi.org/10.3390/metabo11050280
APA StyleHaddouchi, F., Chaouche, T. M., Ksouri, R., & Larbat, R. (2021). Leafy Stems of Phagnalon saxatile subsp. saxatile from Algeriaas a Source of Chlorogenic Acids and Flavonoids with Antioxidant Activity: Characterization and Quantification Using UPLC-DAD-ESI-MSn. Metabolites, 11(5), 280. https://doi.org/10.3390/metabo11050280