Sexual Dimorphism of Metabolite Profiles in Pigs Depends on the Genetic Background
Abstract
:1. Introduction
2. Results
2.1. Meat Quality Data
2.2. High Individual Variability of Metabolites in Muscle, Liver and Blood
2.3. Accumulation of Gender Regulated Metabolites Is Genotype-Dependent
2.3.1. Divergences in the Free, Proteinogenic Amino Acid Pool
2.3.2. Amino Acids with Crucial Physiological Importance Accumulated in PIxGL Boars
2.3.3. Increased Levels of Metabolites from Energy Metabolism in PIxGL Boar Blood
2.3.4. Relationship between Markers of Increased Energy Metabolism and Amino Acids with Scavenging Functions
2.3.5. Enhanced Lipid Metabolism in Gilt’s Liver
2.3.6. Summary
2.4. Differences According to the Genetic Background
2.5. Correlations of Candidate Compounds to Meat Quality Parameters
3. Discussion
3.1. Differences in Metabolite Levels between Boars and Gilts Are Genotype Dependent
3.2. Carbon and Nitrogen Shifts in PIxGL Gilts and Boars
3.3. Association of Metabolite Levels to Meat Quality Data
4. Materials and Methods
4.1. Chemicals
4.2. Sample Collection
4.3. Meat Quality Parameters
4.4. Sample Preparation and GC × GC qMS Measurement
4.5. Metabolomic Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berri, C.; Picard, B.; Lebret, B.; Andueza, D.; Lefèvre, F.; Le Bihan-Duval, E.; Beauclercq, S.; Chartrin, P.; Vautier, A.; Legrand, I.; et al. Predicting the Quality of Meat: Myth or Reality? Foods 2019, 8, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muroya, S.; Ueda, S.; Komatsu, T.; Miyakawa, T.; Ertbjerg, P. MEATabolomics: Muscle and Meat Metabolomics in Domestic Animals. Metabolites 2020, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Pas, M.F.W.T.; Lebret, B.; Oksbjerg, N. Invited review: Measurable biomarkers linked to meat quality from different pig production systems. Arch. Anim. Breed. 2017, 60, 271–283. [Google Scholar] [CrossRef]
- Matarneh, S.K.; England, E.M.; Scheffler, T.L.; Gerrard, D.E. The Conversion of Muscle to Meat. Lawrie’s Meat Sci. 2017, 60, 159–185. [Google Scholar]
- Bendall, J.R. Postmortem changes in muscle. In The Structure and Function of Muscle, 2nd ed.; Bourne, G.H., Ed.; Academic Press: Cambridge, MA, USA, 1973; pp. 243–309. [Google Scholar]
- Honikel, K.O.; Hamm, R. Über das Pufferungsvermögen des Fleisches und seine Veränderungen post mortem. Z. Lebensm. Unters. Forsch. 1974, 156, 145–152. [Google Scholar] [CrossRef]
- Dransfield, E. Optimisation of tenderisation, ageing and tenderness. Meat Sci. 1994, 36, 105–121. [Google Scholar] [CrossRef]
- Dransfield, E. Letter to the editor: Initial toughness of meat. Meat Sci. 1998, 48, 319–321. [Google Scholar] [CrossRef]
- Dransfield, E.; Etherington, D.J.; Taylor, M.A. Modelling post-mortem tenderisation—II: Enzyme changes during storage of electrically stimulated and non-stimulated beef. Meat Sci. 1992, 31, 75–84. [Google Scholar] [CrossRef]
- Koohmaraie, M. Biochemical factors regulating the toughening and tenderization processes of meat. Meat Sci. 1996, 43 (Suppl. S1), 193–201. [Google Scholar] [CrossRef]
- Ouali, A.; Herrera-Mendez, C.H.; Coulis, G.; Becila, S.; Boudjellal, A.; Aubry, L.; Sentandreu, M.A. Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Sci. 2006, 74, 44–58. [Google Scholar] [CrossRef]
- Lebedová, N.; Stupka, R.; Čítek, J.; Zadinová, K.; Kudrnáčová, E.; Okrouhlá, M.; Dundáčková, P. Muscle Fibre Types and Their Relation to Meat Quality Traits in Pigs. Sci. Agric. Bohem. 2019, 50, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Lepetit, J. Collagen contribution to meat toughness: Theoretical aspects. Meat Sci. 2008, 80, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Purslow, P.P. Intramuscular connective tissue and its role in meat quality. Meat Sci. 2005, 70, 435–447. [Google Scholar] [CrossRef]
- Picard, B.; Lebret, B.; Cassar-Malek, I.; Liaubet, L.; Berri, C.; Le Bihan-Duval, E.; Hocquette, J.; Renand, G. Recent advances in omic technologies for meat quality management. Meat Sci. 2015, 109, 18–26. [Google Scholar] [CrossRef]
- Bertram, H.C. NMR Spectroscopy and NMR Metabolomics in Relation to Meat Quality. In New Aspects of Meat Quality; Purslow, P.P., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 355–371. [Google Scholar]
- Straadt, I.K.; Aaslyng, M.D.; Bertram, H.C. Assessment of meat quality by NMR-an investigation of pork products originating from different breeds. Magn. Reson. Chem. 2011, 49, S71–S78. [Google Scholar] [CrossRef]
- Schilling, M.; Suman, S.; Zhang, X.; Nair, M.; Desai, M.; Cai, K.; Ciaramella, M.; Allen, P. Proteomic approach to characterize biochemistry of meat quality defects. Meat Sci. 2017, 132, 131–138. [Google Scholar] [CrossRef]
- Ueda, S.; Iwamoto, E.; Kato, Y.; Shinohara, M.; Shirai, Y.; Yamanoue, M. Comparative metabolomics of Japanese Black cattle beef and other meats using gas chromatography–mass spectrometry. Biosci. Biotechnol. Biochem. 2019, 83, 137–147. [Google Scholar] [CrossRef]
- Beauclercq, S.; Nadal-Desbarats, L.; Hennequet-Antier, C.; Collin, A.; Tesseraud, S.; Bourin, M.; Le Bihan-Duval, E.; Berri, C. Serum and Muscle Metabolomics for the Prediction of Ultimate pH, a Key Factor for Chicken-Meat Quality. J. Proteome Res. 2016, 15, 1168–1178. [Google Scholar] [CrossRef]
- Welzenbach, J.; Neuhoff, C.; Heidt, H.; Cinar, M.U.; Looft, C.; Schellander, K.; Tholen, E.; Große-Brinkhaus, C. Integrative Analysis of Metabolomic, Proteomic and Genomic Data to Reveal Functional Pathways and Candidate Genes for Drip Loss in Pigs. Int. J. Mol. Sci. 2016, 17, 1426. [Google Scholar] [CrossRef] [Green Version]
- Bovo, S.; Mazzoni, G.; Galimberti, G.; Calò, D.G.; Fanelli, F.; Mezzullo, M.; Schiavo, G.; Manisi, A.; Trevisi, P.; Bosi, P.; et al. Metabolomics evidences plasma and serum biomarkers differentiating two heavy pig breeds. Animal 2016, 10, 1741–1748. [Google Scholar] [CrossRef] [PubMed]
- Carmelo, V.A.O.; Banerjee, P.; da Silva Diniz, W.J.; Kadarmideen, H.N. Metabolomic networks and pathways associated with feed efficiency and related-traits in Duroc and Landrace pigs. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrillo, J.A.; He, Y.; Li, Y.; Liu, J.; Erdman, R.A.; Sonstegard, T.S.; Song, J. Integrated metabolomic and transcriptome analyses reveal finishing forage affects metabolic pathways related to beef quality and animal welfare. Sci. Rep. 2016, 6, 25948. [Google Scholar] [CrossRef] [PubMed]
- Welzenbach, J.; Neuhoff, C.; Looft, C.; Schellander, K.; Tholen, E.; Große-Brinkhaus, C. Different Statistical Approaches to Investigate Porcine Muscle Metabolome Profiles to Highlight New Biomarkers for Pork Quality Assessment. PLoS ONE 2016, 11, e0149758. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, F.; Trimigno, A.; Ferranti, P. Proteomics and Metabolomics in Relation to Meat Quality. In Poultry Quality Evaluation; Petracci, M., Berri, C., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 221–245. [Google Scholar]
- Goldansaz, S.A.; Guo, A.C.; Sajed, T.; Steele, M.A.; Plastow, G.S.; Wishart, D.S. Livestock metabolomics and the livestock metabolome: A systematic review. PLoS ONE 2017, 12, e0177675. [Google Scholar] [CrossRef] [Green Version]
- Zampiga, M.; Flees, J.; Meluzzi, A.; Dridi, S.; Sirri, F. Application of omics technologies for a deeper insight into quali-quantitative production traits in broiler chickens: A review. J. Anim. Sci. Biotechnol. 2018, 9, 1–18. [Google Scholar] [CrossRef]
- Egert, B.; Weinert, C.H.; Kulling, S.E. A peaklet-based generic strategy for the untargeted analysis of comprehensive two-dimensional gas chromatography mass spectrometry data sets. J. Chromatogr. A 2015, 1405, 168–177. [Google Scholar] [CrossRef]
- Weinert, C.H.; Egert, B.; Kulling, S.E. On the applicability of comprehensive two-dimensional gas chromatography combined with a fast-scanning quadrupole mass spectrometer for untargeted large-scale metabolomics. J. Chromatogr. A 2015, 1405, 156–167. [Google Scholar] [CrossRef]
- Fujii, J.; Otsu, K.; Zorzato, F.; De Leon, S.; Khanna, V.K.; Weiler, J.E.; O’Brien, P.J.; MacLennan, D.H. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 1991, 253, 448–451. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Straadt, I.K.; Aaslyng, M.D.; Bertram, H.C. An NMR-based metabolomics study of pork from different crossbreeds and relation to sensory perception. Meat Sci. 2014, 96, 719–728. [Google Scholar] [CrossRef]
- Neuhoff, C.; Gunawan, A.; Farooq, M.O.; Cinar, M.U.; Große-Brinkhaus, C.; Sahadevan, S.; Frieden, L.; Tesfaye, D.; Tholen, E.; Looft, C.; et al. Preliminary study of FMO1, FMO5, CYP21, ESR1, PLIN2 and SULT2A1 as candidate gene for compounds related to boar taint. Meat Sci. 2015, 108, 67–73. [Google Scholar] [CrossRef]
- Barton-Gade, P.A. Meat and fat quality in boars, castrates and gilts. Livest. Prod. Sci. 1987, 16, 187–196. [Google Scholar] [CrossRef]
- Lundström, K.; Matthews, K.R.; Haugen, J.-E. Pig meat quality from entire males. Animal 2009, 3, 1497–1507. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.; Judas, M. Carcass composition of boars compared to gilts and barrows. Zuchtungskunde 2014, 86, 374–389. [Google Scholar]
- Bovo, S.; Mazzoni, G.; Calò, D.G.; Galimberti, G.; Fanelli, F.; Mezzullo, M.; Schiavo, G.; Scotti, E.; Manisi, A.; Samoré, A.B.; et al. Deconstructing the pig sex metabolome: Targeted metabolomics in heavy pigs revealed sexual dimorphisms in plasma biomarkers and metabolic pathways. J. Anim. Sci. 2015, 93, 5681–5693. [Google Scholar] [CrossRef]
- Danfaer, A.; Strathe, A. Quantitative and physiological aspects of pig growth. In Nutrition and Physiology of the Pig; Bach Knudsen, K.E., Ed.; Pig Research Centre: Copenhagen, Denmark, 2012. [Google Scholar]
- Walstra, P. Growth and Carcass Composition from Birth to Maturity in Relation to Feeding Level and Sex in Dutch Landrace Pigs; WUR: Wageningen, The Netherlands, 1980. [Google Scholar]
- Laurent, G.J.; McAnulty, R.J.; Gibson, J. Changes in collagen synthesis and degradation during skeletal muscle growth. Am. J. Physiol. Physiol. 1985, 249, C352–C355. [Google Scholar] [CrossRef]
- Dello, S.A.; Neis, E.P.; de Jong, M.C.; van Eijk, H.M.; Kicken, C.H.; Damink, S.W.O.; Dejong, C.H. Systematic review of ophthalmate as a novel biomarker of hepatic glutathione depletion. Clin. Nutr. 2013, 32, 325–330. [Google Scholar] [CrossRef]
- Geenen, S.; Du Preez, F.B.; Reed, M.; Nijhout, H.F.; Kenna, J.G.; Wilson, I.D.; Westerhoff, H.V.; Snoep, J.L. A mathematical modelling approach to assessing the reliability of biomarkers of glutathione metabolism. Eur. J. Pharm. Sci. 2012, 46, 233–243. [Google Scholar] [CrossRef]
- Farthing, D.E.; Farthing, C.A.; Xi, L. Inosine and hypoxanthine as novel biomarkers for cardiac ischemia: From bench to point-of-care. Exp. Biol. Med. 2015, 240, 821–831. [Google Scholar] [CrossRef]
- Nemkov, T.; Sun, K.; Reisz, J.A.; Song, A.; Yoshida, T.; Dunham, A.; Wither, M.J.; Francis, R.O.; Roach, R.C.; Dzieciatkowska, M.; et al. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage. Haematologica 2017, 103, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Boldyrev, A.; Stvolinsky, S.; Fedorova, T.; Suslina, Z. Carnosine as a Natural Antioxidant and Geroprotector: From Molecular Mechanisms to Clinical Trials. Rejuvenation Res. 2010, 13, 156–158. [Google Scholar] [CrossRef]
- Muroya, S.; Oe, M.; Nakajima, I.; Ojima, K.; Chikuni, K. CE-TOF MS-based metabolomic profiling revealed characteristic metabolic pathways in postmortem porcine fast and slow type muscles. Meat Sci. 2014, 98, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Dungan, K.M. 1,5-anhydroglucitol (GlycoMark™) as a marker of short-term glycemic control and glycemic excursions. Expert Rev. Mol. Diagn. 2008, 8, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yin, R.; Yang, X. O-GlcNAc: A Bittersweet Switch in Liver. Front. Endocrinol. 2014, 5, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castejón, D.; García-Segura, J.M.; Escudero, R.; Herrera, A.; Cambero, M.I. Metabolomics of meat exudate: Its potential to evaluate beef meat conservation and aging. Anal. Chim. Acta 2015, 901, 1–11. [Google Scholar] [CrossRef]
- Kodani, Y.; Miyakawa, T.; Komatsu, T.; Tanokura, M. NMR-based metabolomics for simultaneously evaluating multiple determinants of primary beef quality in Japanese Black cattle. Sci. Rep. 2017, 7, 1297. [Google Scholar] [CrossRef] [Green Version]
- King, D.A.; Shackelford, S.D.; Broeckling, C.D.; Prenni, J.E.; Belk, K.E.; Wheeler, T.L. Metabolomic Investigation of Tenderness and Aging Response in Beef Longissimus Steaks. Meat Muscle Biol. 2019, 3, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Bischof, G.; Witte, F.; Terjung, N.; Januschewski, E.; Heinz, V.; Juadjur, A.; Gibis, M. Analysis of aging type- and aging time-related changes in the polar fraction of metabolome of beef by (1)H NMR spectroscopy. Food Chem. 2021, 342, 128353. [Google Scholar] [CrossRef]
- Diez-Simon, C.; Mumm, R.; Hall, R.D. Mass spectrometry-based metabolomics of volatiles as a new tool for understanding aroma and flavour chemistry in processed food products. Metabolomics 2019, 15, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Eisenreich, R.; Dodenhoff, J.; Gerstner, K.; Dahinten, G.; Lindner, J.P. Jahresbericht 2017 über Leistungsprüfungen und Zuchtwertschätzung beim Schwein in Bayern; Bayerische Landesanstalt für Landwirtschaft (LfL), Ed.; Institut für Tierzucht: Freising-Weihenstephan, Germany, 2018. [Google Scholar]
- Richtlinie für die Stationsprüfung auf Mastleistung, Schlachtkörperwert und Fleischbeschaffenheit beim Schwein; Ausschuß für Leistungsprüfungen und Zuchtwertfeststellung beim Schwein (ALZ) des Zentralverbandes der Deutschen Schweineproduktion (ZDS) (Ed.) Der Bundesverband Rind und Schwein: Bonn, Germany, 2007. [Google Scholar]
- Rasmussen, A.J.; Andersson, M. New method for determination of drip loss in pork muscles. In Meat for the Consumer, Proceedings of the 42nd International Congress of Meat Science and Technology, Lillehammer, Norway, 1–6 September 1996; Kjell Ivar Hildrum: Lillehammer, Norway, 1996. [Google Scholar]
- Wagner, L.; Peukert, M.; Kranz, B.; Gerhardt, N.; Andrée, S.; Busch, U.; Brüggemann, D.A. Comparison of Targeted (HPLC) and Nontargeted (GC-MS and NMR) Approaches for the Detection of Undeclared Addition of Protein Hydrolysates in Turkey Breast Muscle. Foods 2020, 9, 1084. [Google Scholar] [CrossRef]
- Worley, B.; Powers, R. Multivariate Analysis in Metabolomics. Curr. Metab. 2012, 1, 92–107. [Google Scholar] [CrossRef] [Green Version]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
Blood | Muscle | Liver | ||
---|---|---|---|---|
Signals used in data analysis | 375 | 323 | 476 | |
Differences between gilts and boars | VIP > 1 | 117 | 89 | 120 |
Significant by Student’s T-Test/Wilcoxon | 61 | 41 | 75 | |
Significant by Tukey’s HSD/Steel Dwass Test | 26 | 9 | 28 | |
Differences between both genotypes | Significant by Student’s T-Test/Wilcoxon | 15 | 15 | 20 |
Significant by Tukey’s HSD/Steel Dwass Test | 3 | 2 | 5 |
Metabolite Class | Tissue | Analyt ID | Annotation | OPLS-DA | Test for Normality | Genotype | Parametric | Non-Parametric | log2 FC (Boars/Gilts) |
---|---|---|---|---|---|---|---|---|---|
VIP | Anderson-Darling | Tukey | Steel-Dwass | ||||||
Amino acids and derivatives | Blood | A0274 | Beta-alanine | 2.66655 | <0.0001 | PIxGL | 0.0135 | 0.0199 | 0.95 |
A0363 | Oxoproline | 2.14204 | 0.785 | PIxGL | 0.0378 | 0.30 | |||
A0381 | Hydroxyproline | 1.32486 | 0.025 | PIxGL | 0.0288 | 0.0389 | 0.48 | ||
A0386 | Unknown amine | 1.87376 | <0.0001 | PIxGL | 0.0389 | 1.25 | |||
A0462 | Glutamic acid | 1.72612 | 0.316 | PIxGL | 0.0361 | 0.0389 | 0.35 | ||
A0528 | Glutamine | 1.63493 | <0.0001 | PIxGL | 0.0341 | 0.0251 | 0.66 | ||
A0581 | Putative histamine | 1.69071 | 0.528 | PIxGL | 0.0443 | 0.49 | |||
Muscle | A0273 | Hydroxyproline | 2.01281 | 0.132 | PIxGL | 0.0047 | 0.0074 | 0.42 | |
A0449 | Glutamine | 2.39137 | 0.142 | PIxGL | 0.0135 | 0.0147 | 0.46 | ||
Liver | A0173 | Putative allo-Isoleucine | 0.325 | PIx(LWxGL) | 0.0213 | −0.65 | |||
A0328 | Aspartic acid | 3.32175 | 0.038 | PIx(LWxGL) | 0.0014 | 0.0155 | 0.64 | ||
A0328 | Aspartic acid | 3.32175 | 0.038 | PIxGL | 0.0007 | 0.0085 | 0.65 | ||
A0333 | Unknown amine | 2.1025 | 0.814 | PIxGL | 0.0416 | 0.26 | |||
A0502 | Phosphorylethanolamine | 1.43293 | 0.673 | PIxGL | 0.0073 | 0.0067 | 0.70 | ||
A0680 | Acetyl glucosamine 1 | 1.94297 | 0.001 | PIxGL | 0.0189 | 0.0468 | −1.20 | ||
A0686 | Acetyl glucosamine 2 | 1.96005 | <0.0001 | PIxGL | 0.0152 | 0.0126 | −1.89 | ||
Lipids | Blood | A0483 | Putative fatty acid | 1.79711 | 0.473 | PIxGL | 0.0386 | 0.66 | |
A0624 | Fatty acid (putative Pentadecanoic acid) | 2.18734 | 0.001 | PIxGL | 0.015 | 0.0033 | 0.44 | ||
Liver | A0808 | Eicosatrienoic acid | 2.08445 | 0.001 | PIx(LWxGL) | 0.0487 | 1.94 | ||
A0816 | Fatty acid (putative Butyl-9,12-octadecadienoate) | 2.2954 | 0.004 | PIx(LWxGL) | 0.0478 | 0.27 | |||
A0847 | Eicosapentaenoic acid | 2.2939 | 0.066 | PIxGL | 0.0013 | 0.0107 | −0.51 | ||
Organic acids | Blood | A0430 | 2-Oxoglutaric acid | 1.75833 | <0.0001 | PIxGL | 0.0097 | 0.0199 | 1.06 |
A0453 | Putative pimelic acid | 0.06 | PIxGL | 0.0248 | 0.0199 | 0.20 | |||
A0565 | Citric acid | 2.46605 | <0.0001 | PIxGL | 0.0009 | 0.0251 | 1.03 | ||
Muscle | A0481 | Citric acid | 2.05545 | 0.257 | PIxGL | 0.0205 | 0.0277 | 1.10 | |
Liver | A0205 | Fumaric acid | 1.52228 | 0.419 | PIxGL | 0.0296 | 0.0107 | 0.98 | |
Carbo-hydrates | Blood | A0497 | Pentose (unknown isomer) | 1.54153 | <0.0001 | PIxGL | 0.0162 | 0.0478 | 1.23 |
A0558 | Glyceraldehyde 3-phosphate | 1.77768 | 0.636 | PIxGL | 0.0059 | 0.0251 | 0.76 | ||
A0618_H2 | Hexose alcohol (unknown isomer) | 1.51685 | 0.47 | PIxGL | 0.0018 | 0.0313 | 0.64 | ||
A0656 | Myo Inositol | 1.81065 | 0.719 | PIxGL | 0.0385 | 0.28 | |||
Muscle | A0489 | 1,5-Anhydroglucitol | 2.31495 | 0.516 | PIxGL | 0.0412 | 0.0339 | −0.82 | |
Liver | A0624 | Inositol (unknown isomer) | 1.51716 | 0.18 | PIx(LWxGL) | 0.0315 | −0.79 | ||
A0659 | Inositol (unknown isomer) | 1.95406 | 0.106 | PIxGL | 0.0316 | 0.32 | |||
A0778 | Glyceryl-glycoside | 2.24976 | 0.129 | PIxGL | 0.0002 | 0.0079 | 1.91 | ||
Nucleotide metabolism | Blood | A0550 | Hypoxanthine | 2.29192 | <0.0001 | PIxGL | 0.0027 | 0.0033 | 1.09 |
A0731 | Inosine | 1.50638 | <0.0001 | PIxGL | 0.031 | n.a. | |||
Unknowns | Blood | A0237 | Unknown | 1.44216 | 0.005 | PIx(LWxGL) | 0.0478 | 0.17 | |
A0521 | Unknown | 2.15177 | 0.141 | PIx(LWxGL) | 0.0425 | −0.71 | |||
A0135 | Unknown | 2.31982 | 0.035 | PIxGL | 0.0326 | 0.048 | 0.95 | ||
A0336 | Unknown | 1.35796 | 0.171 | PIxGL | 0.0432 | 0.0124 | 0.36 | ||
A0432 | Unknown | 1.25233 | <0.0001 | PIxGL | 0.0449 | 0.0217 | 1.14 | ||
A0467 | Unknown | 1.19814 | <0.0001 | PIxGL | 0.038 | 2.20 | |||
A0590 | Unknown | 1.92151 | <0.0001 | PIxGL | 0.048 | 1.46 | |||
A0603 | Unknown | 1.6805 | <0.0001 | PIxGL | 0.048 | 1.76 | |||
Muscle | A0431 | Unknown | 1.37717 | 0.423 | PIx(LWxGL) | 0.0138 | 0.34 | ||
A0013 | Unknown | 1.28436 | 0.107 | PIxGL | 0.0496 | −0.16 | |||
A0428 | Unknown | 2.46274 | 0.310 | PIxGL | 0.0107 | 0.0498 | 0.55 | ||
A0555 | Unknown | 1.8396 | 0.500 | PIxGL | 0.0451 | 1.18 | |||
A0714 | Unknown | 2.56177 | 0.040 | PIxGL | 0.0044 | 0.0116 | 1.57 | ||
Liver | A0076 | Unknown | 2.24581 | 0.643 | PIx(LWxGL) | 0.0046 | 0.0478 | −0.65 | |
A0266 | Unknown | 0.456 | PIx(LWxGL) | 0.0383 | −0.66 | ||||
A0533 | Unknown | 2.06327 | 0.654 | PIx(LWxGL) | 0.0287 | 0.0277 | −0.62 | ||
A0569 | Unknown | 1.4654 | 0.814 | PIx(LWxGL) | 0.0275 | −0.65 | |||
A0608 | Unknown | 1.50611 | 0.004 | PIx(LWxGL) | 0.0451 | 0.0478 | −0.90 | ||
A0615 | Unknown | 2.11088 | 0.607 | PIx(LWxGL) | 0.0129 | −1.12 | |||
A0862 | Unknown | 1.19302 | 0.058 | PIx(LWxGL) | 0.0186 | −0.90 | |||
A0356 | Unknown | 0.144 | PIxGL | 0.0443 | 0.55 | ||||
A0364 | Unknown | 1.61973 | 0.049 | PIxGL | 0.0193 | 0.0168 | 1.12 | ||
A0379 | Unknown | 2.50225 | 0.776 | PIxGL | 0.0283 | 0.0209 | −0.48 | ||
A0447 | Unknown | 1.02693 | <0.0001 | PIxGL | 0.0117 | 2.31 | |||
A0528 | Unknown | 1.21156 | 0.24 | PIxGL | 0.0123 | 0.0386 | 1.20 | ||
A0536 | Unknown | 0.879 | PIxGL | 0.0359 | 0.49 | ||||
A0610 | Unknown | 2.35537 | 0.005 | PIxGL | 0.0423 | −1.71 | |||
A0795 | Unknown | 1.89984 | 0.413 | PIxGL | 0.0155 | 0.0316 | 0.86 |
Beta-Alanine | Oxoproline | Hydroxy-proline | GA-3P | Citrate | 2-Oxoglutarate | Glutamate | Glutamine | Hypoxanthine | Inosine | 2-Hydroxybutyric Acid | 2-Ainobutyric Acid | Cysteine | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beta-Alanine | 0.0040 | 0.0078 | 0.0051 | 0.0003 | 0.0334 | 0.2128 | 0.0341 | 0.0005 | 0.0093 | 0.9290 | 0.5147 | 0.2276 | |
Oxoproline | 0.4681 | <0.0001 | 0.0025 | <0.0001 | 0.0208 | 0.0017 | <0.0001 | 0.0515 | 0.1316 | 0.9447 | 0.6478 | 0.0625 | |
Hydroxyproline | 0.4365 | 0.7306 | 0.0060 | 0.0019 | 0.0370 | 0.0122 | <0.0001 | 0.3070 | 0.6759 | 0.7480 | 0.4436 | 0.1208 | |
GA3P | 0.4566 | 0.4889 | 0.4488 | <0.0001 | 0.0007 | 0.1427 | 0.0005 | 0.0003 | 0.0420 | 0.0182 | 0.0419 | 0.0085 | |
Citrate | 0.5669 | 0.6664 | 0.4995 | 0.6718 | <0.0001 | 0.0001 | <0.0001 | <0.0001 | 0.0019 | 0.1199 | 0.3042 | <0.0001 | |
2-Oxoglutarate | 0.3555 | 0.3838 | 0.3489 | 0.5403 | 0.7480 | 0.0011 | 0.0198 | <0.0001 | 0.0064 | 0.0024 | 0.0197 | <0.0001 | |
Glutamate | 0.2128 | 0.5049 | 0.4133 | 0.2492 | 0.5992 | 0.5211 | 0.0004 | 0.1037 | 0.1478 | 0.5975 | 0.6655 | 0.0013 | |
Glutamine | 0.3541 | 0.8134 | 0.6822 | 0.5476 | 0.6974 | 0.3866 | 0.5573 | 0.0750 | 0.0965 | 0.8977 | 0.6672 | 0.0823 | |
Hypoxanthine | 0.5484 | 0.3271 | 0.1751 | 0.5727 | 0.6717 | 0.6893 | 0.2757 | 0.3005 | <0.0001 | 0.0135 | 0.1196 | 0.0010 | |
Inosine | 0.4274 | 0.2561 | 0.0721 | 0.3408 | 0.5003 | 0.4460 | 0.2462 | 0.2813 | 0.8147 | 0.4198 | 0.9585 | 0.0643 | |
2-Hydroxybutyric acid | 0.0154 | −0.0120 | −0.0555 | 0.3916 | 0.2639 | 0.4905 | 0.0910 | −0.0222 | 0.4079 | 0.1387 | <0.0001 | <0.0001 | |
2-Aminobutyric acid | −0.1122 | −0.0788 | −0.1318 | 0.3408 | 0.1761 | 0.3870 | 0.0746 | −0.0742 | 0.2641 | 0.0090 | 0.8957 | <0.0001 | |
Cysteine | 0.2062 | 0.3136 | 0.2633 | 0.4322 | 0.6387 | 0.8274 | 0.5154 | 0.2935 | 0.5270 | 0.3116 | 0.7515 | 0.6212 |
Tissue | Quality Parameter | Compound | Correlation Coefficient [r] | Significance Probability [p] | Explained Variance [adj. R2] | Significance of the Model [p] |
---|---|---|---|---|---|---|
Blood | % Drip loss | Hexose alcohol (A0618_H2) | −0.329 | 0.047 | ||
b* | Putative fatty acid (A0483) | −0.466 | 0.004 | 0.28 | 0.0085 | |
b* | Hypoxanthine | −0.439 | 0.007 | |||
b* | Glyceraldehyde 3-phosphate | −0.407 | 0.013 | |||
b* | Beta-alanine | −0.406 | 0.013 | |||
b* | Unknown (A0237) | −0.400 | 0.014 | |||
b* | Unknown (A0135) | −0.362 | 0.028 | |||
b* | Citric acid | −0.358 | 0.030 | |||
b* | Inosine | −0.350 | 0.034 | |||
L* | Citric acid | −0.350 | 0.034 | |||
pH 1 | Putative histamine | 0.385 | 0.019 | |||
pH 1 | Hexose alcohol (A0618_H2) | 0.349 | 0.034 | |||
Fat area | Unknown (A0135) | −0.520 | 0.001 | 0.27 | 0.0094 | |
Fat area | Glutamine | −0.430 | 0.008 | |||
Fat area | Citric acid | −0.417 | 0.010 | |||
Fat area | Putative histamine | −0.402 | 0.014 | |||
Fat area | Beta-alanine | −0.400 | 0.014 | |||
Meat area | Unknown (A0135) | −0.329 | 0.047 | |||
Muscle | % Drip loss | Citric acid | −0.463 | 0.004 | 0.32 | 0.0005 |
% Drip loss | 1,5-Anhydroglucitol | 0.569 | 0.000 | |||
b* | Citric acid | −0.421 | 0.010 | 0.15 | 0.0095 | |
b* | Unknown (A0428) | −0.362 | 0.028 | |||
L* | Citric acid | −0.337 | 0.042 | |||
L* | 1,5-Anhydroglucitol | 0.508 | 0.001 | 0.23 | 0.0013 | |
pH 1 | 1,5-Anhydroglucitol | −0.501 | 0.002 | 0.27 | 0.0018 | |
pH 1 | Citric acid | 0.471 | 0.003 | |||
pH 1 | Glutamine | 0.346 | 0.036 | |||
Liver | % Drip loss | Fumaric acid | −0.366 | 0.024 | ||
% Drip loss | Unknown (A0447) | −0.341 | 0.036 | |||
% Drip loss | Acetyl glucosamine 2 | 0.325 | 0.046 | |||
% Drip loss | Acetyl glucosamine 1 | 0.325 | 0.047 | |||
a* | Unknown (A0076) | 0.403 | 0.012 | 0.28 | 0.0112 | |
a* | Inositol (A0624) | 0.401 | 0.013 | |||
a* | Unknown (A0608) | 0.387 | 0.016 | |||
a* | Aspartic acid | −0.361 | 0.026 | |||
b* | Aspartic acid | −0.543 | 0.000 | 0.31 | 0.0006 | |
b* | Unkown (A0795) | −0.436 | 0.006 | |||
b* | Unknown (A0533) | 0.378 | 0.019 | |||
b* | Fatty acid (A0816) | −0.373 | 0.021 | |||
b* | Unknown (A0615) | 0.342 | 0.036 | |||
b* | Eicosatrienoic acid | −0.330 | 0.043 | |||
b* | Fumaric acid | −0.325 | 0.047 | |||
b* | Inositol (A0659) | −0.323 | 0.048 | |||
b* | Unknown (A0610) | 0.321 | 0.049 | |||
b* | Eicosapentaenoic acid | 0.320 | 0.050 | |||
L* | Eicosapentaenoic acid | 0.521 | 0.001 | 0.25 | 0.0078 | |
L* | Acetyl glucosamine 2 | 0.424 | 0.008 | |||
L* | Acetyl glucosamine 1 | 0.408 | 0.011 | |||
L* | Fumaric acid | −0.403 | 0.012 | |||
L* | Unknown (A0528) | −0.324 | 0.048 | |||
pH 1 | Unknown (A0528) | 0.376 | 0.020 | |||
pH 1 | Glyceryl-glycoside | 0.344 | 0.035 | |||
pH 1 | Acetyl glucosamine 2 | −0.329 | 0.044 | |||
pH 1 | Acetyl glucosamine 1 | −0.323 | 0.048 | |||
Fat area | Unknown (A0533) | 0.488 | 0.002 | 0.34 | 0.0038 | |
Fat area | Unknown (A0379) | 0.431 | 0.007 | |||
Fat area | Acetyl glucosamine 2 | 0.425 | 0.008 | |||
Fat area | Acetyl glucosamine 1 | 0.416 | 0.009 | |||
Fat area | Urea | 0.405 | 0.012 | |||
Fat area | Unknown (A0615) | 0.403 | 0.012 | |||
Fat area | Eicosapentaenoic acid | 0.393 | 0.015 | |||
Fat area | Fatty acid (A0816) | −0.368 | 0.023 | |||
Fat area | Fumaric acid | −0.358 | 0.027 | |||
Fat area | Eicosatrienoic acid | −0.335 | 0.040 | |||
Fat area | Unknown (A0569) | 0.322 | 0.049 | |||
Meat area | Aspartic acid | −0.389 | 0.016 | |||
Meat area | Acetyl glucosamine 2 | 0.377 | 0.020 | |||
Meat area | Acetyl glucosamine 1 | 0.369 | 0.023 | |||
Meat area | Unknown (A0615) | 0.345 | 0.034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peukert, M.; Zimmermann, S.; Egert, B.; Weinert, C.H.; Schwarzmann, T.; Brüggemann, D.A. Sexual Dimorphism of Metabolite Profiles in Pigs Depends on the Genetic Background. Metabolites 2021, 11, 261. https://doi.org/10.3390/metabo11050261
Peukert M, Zimmermann S, Egert B, Weinert CH, Schwarzmann T, Brüggemann DA. Sexual Dimorphism of Metabolite Profiles in Pigs Depends on the Genetic Background. Metabolites. 2021; 11(5):261. https://doi.org/10.3390/metabo11050261
Chicago/Turabian StylePeukert, Manuela, Sebastian Zimmermann, Björn Egert, Christoph H. Weinert, Thomas Schwarzmann, and Dagmar A. Brüggemann. 2021. "Sexual Dimorphism of Metabolite Profiles in Pigs Depends on the Genetic Background" Metabolites 11, no. 5: 261. https://doi.org/10.3390/metabo11050261
APA StylePeukert, M., Zimmermann, S., Egert, B., Weinert, C. H., Schwarzmann, T., & Brüggemann, D. A. (2021). Sexual Dimorphism of Metabolite Profiles in Pigs Depends on the Genetic Background. Metabolites, 11(5), 261. https://doi.org/10.3390/metabo11050261