Trichoderma Strains and Metabolites Selectively Increase the Production of Volatile Organic Compounds (VOCs) in Olive Trees
Abstract
:1. Introduction
2. Results
2.1. VOCs Identification
2.2. VOCs Quantification
2.3. Correlation between Emission of VOCs and Trichoderma Applications
3. Discussion
4. Materials and Methods
4.1. Fungal Strains and Microbial Metabolites
4.2. Plant Material and Experimental Setup
4.3. Collection of VOCs
4.4. GC-MS Analysis
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bao, L.-J.; Wei, Y.-L.; Yao, Y.; Ruan, Q.-Q.; Zeng, E.Y. Global trends of research on emerging contaminants in the environment and humans: A literature assimilation. Environ. Sci. Poll. Res. 2015, 22, 1635–1643. [Google Scholar] [CrossRef]
- Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks, and bioremediation. New Biotechnol. 2015, 32, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Savita, S.A. Fungi as biological control agents. In Biofertilizers for Sustainable Agriculture and Environment: Soil Biology; Giri, B., Prasad, R., Wu, Q.S., Varma, A., Eds.; Springer: Cham, Switzerland, 2019; Volume 55. [Google Scholar] [CrossRef]
- Woo, S.L.; Pepe, O. Microbial consortia: Promising probiotics as plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1801. [Google Scholar] [CrossRef] [PubMed]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Marra, R.; Woo, S.L.; Lorito, M. Trichoderma–plant–pathogen interactions. Soil Biol. Biochem. 2008, 40, 1–10. [Google Scholar] [CrossRef]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species, opportunistic avirulent plant symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Lorito, M.; Woo, S.L.; Harman, G.E.; Monte, E. Translational research on Trichoderma: From Omics to the field. Ann. Rev. Phytopathol. 2010, 48, 395–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinale, F.; Sivasithamparam, K. Beneficial effects of Trichoderma secondary metabolites on crops. Phytother. Res. 2020, 34, 2835–2842. [Google Scholar] [CrossRef]
- Siddiquee, S. Recent advancements on the role and analysis of volatile compounds (VOCs) from Trichoderma. In Biotechnology and Biology of Trichoderma; Gupta, V.K., Schmoll, M., Herrera-Estrella, A., Upadhyay, R.S., Druzhinina, I., Tuohy, M.G., Eds.; Elsevier Press: Cambridge, MA, USA, 2014; pp. 139–175. [Google Scholar]
- Coppola, M.; Cascone, P.; Chiusano, M.L.; Colantuono, C.; Lorito, M.; Pennacchio, F.; Rao, R.; Woo, S.L.; Guerrieri, E.; Digilio, M.C. Trichoderma harzianum enhances tomato indirect defense against aphids. Insect Sci. 2017, 24, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Turlings, T.C.; Loughrin, J.H.; McCall, P.J.; Rose, U.S.; Lewis, W.J.; Tumlinson, J.H. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc. Natl. Acad. Sci. USA 1995, 92, 4169–4174. [Google Scholar] [CrossRef] [Green Version]
- Kessler, A. Defensive function of herbivore-induced plant volatile emissions in nature. Science 2001, 291, 2141–2144. [Google Scholar] [CrossRef]
- Dicke, M.; van Poecke, R.M.P.; de Boer, J.G. Inducible indirect defence of plants: From mechanisms to ecological functions. Basic Appl. Ecol. 2003, 4, 27–42. [Google Scholar] [CrossRef]
- Ranieri, E.; Ruschioni, S.; Riolo, P.; Isidoro, N.; Romani, R. Fine structure of antennal sensilla of the spittlebug Philaenus spumarius L. (Insecta: Hemiptera: Aphrophoridae). I. Chemoreceptors and thermo-/hygroreceptors. Arthropod. Struct. Dev. 2016, 45, 432–439. [Google Scholar] [CrossRef]
- Baccouri, O.; Bendini, A.; Cerretani, L.; Guerfel, M.; Baccouri, B.C.; Lercker, G.; Zarrouk, M.; Daoud Ben Miled, D. Comparative study on volatile compounds from Tunisian and Sicilian monovarietal virgin olive oils. Food Chem. 2008, 111, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Campeol, E.; Flamini, G.; Chericoni, S.; Catalano, S. Volatile Compounds from Three Cultivars of Olea europaea from Italy. J. Agric. Food Chem. 2001, 49, 5409–5411. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, N.; Marsilio, V. Volatile compounds in table olives (Olea europaea L.; Nocellara del Belice cultivar). Food Chem. 2008, 107, 1522–1528. [Google Scholar] [CrossRef]
- Masi, E.; Romani, A.; Pandolfi, C.; Heimler, D.; Mancuso, S. PTR-TOF-MS analysis of volatile compounds in olive fruits. J. Sci. Food Agric. 2015, 95, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Sansone-Land, A.; Takeoka, G.R.; Shoemaker, C.F. Volatile constituents of commercial imported and domestic black-ripe table olives (Olea europaea). Food Chem. 2014, 149, 285–295. [Google Scholar] [CrossRef]
- Servili, M.; Esposto, S.; Lodolini, E.M.; Selvaggini, R.; Taticchi, A.; Urbani, S.; Montedoro, G.; Serravalle, M.; Gucci, R. Irrigation effects on quality, phenolic composition and selected volatiles of virgin olive oil cv. Leccino. J. Agric. Food Chem. 2007, 55, 6609–6618. [Google Scholar] [CrossRef]
- Campeol, E.; Flamini, G.; Cioni, P.L.; Morelli, I.; Cremonini, R.; Ceccarini, L. Volatile fractions from three cultivars of Olea europaea L. collected in two different seasons. J. Agric. Food Chem. 2003, 51, 1994–1999. [Google Scholar] [CrossRef]
- Dini, I.; Graziani, G.; Fedele, F.L.; Sicari, A.; Vinale, F.; Castaldo, L.; Ritieni, A. An Environmentally Friendly Practice Used in Olive Cultivation Capable of Increasing Commercial Interest in Waste Products from Oil Processing. Antioxidants 2020, 9, 466. [Google Scholar]
- Dini, I.; Graziani, G.; Fedele, F.L.; Sicari, A.; Vinale, F.; Castaldo, L.; Ritieni, A. Effects of Trichoderma biostimulation on the phenolic profile of extra-virgin olive oil and olive oil by-products. Antioxidants 2020, 9, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dini, I.; Graziani, G.; Gaspari, A.; Fedele, F.L.; Sicari, A.; Vinale, F.; Cavallo, P.; Lorito, M.; Ritieni, A. New Strategies in the Cultivation of Olive Trees and Repercussions on the Nutritional Value of the Extra Virgin Olive Oil. Molecules 2020, 25, 2345. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Rapoport, H.F.; Gucci, R. Long-term evaluation of yield components of young olive trees during the onset of fruit production under different irrigation regimes. Irrig. Sci. 2013, 31, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Massolo, L.; Rehwagen, M.; Porta, A.; Ronco, A.; Herbarth, O.; Mueller, A. Indoor-outdoor distribution and risk assessment of volatile organic compounds in the atmosphere of industrial and urban areas. Environ. Toxicol. 2010, 25, 339–349. [Google Scholar] [CrossRef]
- Kesen, S.; Kelebek, H.; Selli, S. Characterization of the Volatile, Phenolic and Antioxidant Properties of Monovarietal Olive Oil Obtained from cv. Halhali. J. Am. Oil Chem. Soc. 2013, 90, 1685–1696. [Google Scholar] [CrossRef]
- Angerosa, F. Influence of volatile compounds on virgin olive oil quality evaluated by analytical approaches and sensor panels. Eur. J. Lipid Sci. Technol. 2002, 104, 639–660. [Google Scholar] [CrossRef]
- Lin, P.; Cai, J.; Li, J.; Sang, W.; Su, Q. Constituents of the essential oil of Hemerocallis flava day lily. Flavour Fragr. J. 2003, 18, 539–541. [Google Scholar] [CrossRef]
- Vichi, S.; Guadayol, J.M.; Caixach, J.; Lόpez-Tamames, E.; Buxaderas, S. Comparative study of different extraction techniques for the analysis of virgin olive oil aroma. Food Chem. 2007, 105, 1171–1178. [Google Scholar] [CrossRef]
- Üçüncüoğlu, D.; Sivri-Özay, D. Geographical origin impact on volatile composition and some quality parameters of virgin olive oils extracted from the “Ayvalık” variety. Heliyon 2020, 6, e04919. [Google Scholar] [CrossRef]
- Zhang, Y.-R.; Wang, R.; Yu, L.-F.; Lu, P.-F.; Luo, Y.-Q. Identification of Caragana plant volatiles, overlapping profiles, and olfactory attraction to Chlorophorus caragana in the laboratory. J. Plant Interact. 2015, 10, 41–50. [Google Scholar] [CrossRef]
- Ben Abdeljelil, Z.; Tekaya, M.; Mechri, B.; Flamini, G.; Hammami, M. Changes in volatiles of olive tree Olea europaea according to season and foliar fertilization. Int. J. Agric. Biol. 2017, 19, 1633–1639. [Google Scholar]
- Malheiro, R.; Casal, S.; Cunha, S.C.; Baptista, P.; Pereira, J.A. Identification of leaf volatiles from olive (Olea europaea) and their possible role in the ovipositional preferences of olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae). Phytochemistry 2016, 121, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Ribes, A.; Carrera, G.; Gallego, E.; Roca, X.; Berenguer, M.J.; Guardino, X. Development and validation of a method for air-quality and nuisance odors monitoring of volatile organic compounds using multi-sorbent adsorption and gas chromatography/mass spectrometry thermal desorption system. J. Chromatog. A 2007, 1140, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Gallego, E.; Roca, F.J.; Perales, J.F.; Guardino, X. Comparative study of the adsorption performance of an active multi-sorbent bed tube (Carbotrap, Carbopack X, Carboxen 569) and a Radiello® diffusive sampler for the analysis of VOCs. Talanta 2011, 85, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Baratella, V.; Volpe, D.; Marucchini, C.; Pucci, C. Early attempts to detect VOCs emission from Olea europaea L. (Laurales: Oleaceae) in different phenological growth stages. Integrated Protection of Fruit Crops Subgroups Pome fruit arthropods and Stone fruits. IOBC/wprs Bull. 2012, 74, 233–240. [Google Scholar]
- Flamini, G.; Cioni, P.L.; Morelli, I. Volatiles from Leaves, Fruits, and Virgin Oil from Olea europaea Cv. Olivastra Seggianese from Italy. J. Agric. Food Chem. 2003, 51, 1382–1386. [Google Scholar] [CrossRef]
- Lee, S.; Yap, M.; Behringer, G.; Hung, R.; Bennet, J.W. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 2016, 3, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asaph, A.; Jongsma, M.A.; Kim, T.-Y.; Ri, M.-B.; Giri, A.P.; Verstappen, W.A.; Schwab, W.; Bouwmeester, H.J. Metabolic engineering of terpenoid biosynthesis in plants. Phytochem. Rev. 2006, 5, 49–58. [Google Scholar]
- Erasto, P.; Viljoen, A.M. Limonene—A review: Biosynthetic, ecological and pharmacological relevance. Nat. Prod. Commun. 2008, 3, 1193–1202. [Google Scholar] [CrossRef] [Green Version]
- Langenheim, J.H. Higher plant terpenoids: A phytocentric overview of their ecological roles. Chem. Ecol. J. 1994, 20, 1223–1280. [Google Scholar] [CrossRef]
- Sadof, C.S.; Grant, G.G. Monoterpene composition of Pinus sylvestris varieties resistant and susceptible to Dioryctria zimmermani. Chem. Ecol. J. 1997, 23, 1917–1926. [Google Scholar] [CrossRef]
- Cates, R.G.; Redak, R.A. Variation in the terpene chemistry of Douglas-fir and its relationship to western spruce budworm success. In Chemical Mediation of Coevolution; Spencer, K.C., Ed.; Academic Press: San Diego, CA, USA, 1998; pp. 317–344. [Google Scholar]
- Yu, X.; Lin, H.; Wang, Y.; Lv, W.; Zhang, S.; Qian, Y.; Deng, Y.; Feng, N.; Yu, H.; Quan, B. D-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. Onco Targets Ther. 2018, 11, 1833–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yilmaz, B.S.; Özbek, H. Investigation of the anti-inflammatory, hypoglycemic activity and median lethal dose (LD50) level of limonene in mice and rats. ACTA Pharm. Sci. 2018, 56, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Shah, B.B.; Mehta, A.A. In vitro evaluation of antioxidant activity of d-limonene. Asian J. Pharm. Sci. 2018, 4, 883–887. [Google Scholar] [CrossRef]
- Bai, J.; Zheng, Y.; Wang, G.; Liu, P. Protective effect of d-limonene against oxidative stress-induced cell damage in human lens epithelial cells via the p38 pathway. Oxid. Med. Cell. Longev. 2016, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pathirana, H.N.K.S.; Wimalasena, S.H.M.P.; De Silva, B.C.J.; Hossain, S.; Heo, G.J. Antibacterial activity of lime (Citrus aurantifolia) essential oil and limonene against fish pathogenic bacteria isolated from cultured olive flounder (Paralichthys oilvaceus). Fisher. Aquat. Life 2018, 26, 131–139. [Google Scholar] [CrossRef]
- Dias, A.L.B.; Sousa, W.C.; Batista, H.R.F.; Alves, C.C.F.; Souchie, E.L.; Silva, F.G.; Pereira, P.S.; Sperandio, E.M.; Cazal, C.M.; Forim, M.R.; et al. Chemical composition and in vitro inhibitory effects of essential oils from fruit peel of three Citrus species and limonene on mycelial growth of Sclerotinia sclerotiorum. Braz. J. Biol. 2019, 80. [Google Scholar] [CrossRef] [Green Version]
- Penuelas, J.; Asensio, D.; Tholl, D.; Wenke, K.; Rosenkranz, M.; Piechulla, B.; Schnitzler, J.P. Biogenic volatile emissions from the soil. Plant Cell Environ. 2014, 37, 1866–1891. [Google Scholar] [CrossRef] [PubMed]
- Lawo, N.C.; Weingart, G.J.; Schuhmacher, R.; Forneck, A. The volatile metabolome of grapevine roots: First insights into the metabolic response upon phylloxera attack. Plant Physiol. Biochem. 2011, 49, 1059–1063. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Sun, H.; Chen, S.; Zeng, L.; Wang, T. Anti-fungal activity, mechanism studies on α-Phellandrene and Nonanal against Penicillium cyclopium. Bot. Stud. 2017, 58, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zeng, L.; Sun, H.; Chen, S.; Wang, T.; Ma, S. Use of Nonanal-wax as Postharvest Fungicide of Tomato against Botrytis cinereal. J. Food Nutr. Res. 2017, 5, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Twidle, A.M.; Barker, D.; Seal, A.G.; Fedrizzi, B.; Suckling, D.M. Identification of floral volatiles and pollinator responses in kiwifruit cultivars, Actinidia chinensis var. chinensis. J. Chem. Ecol. 2018, 44, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Egigu, M.C.; Ibrahim, M.A.; Yahya, A.; Holopainen, J.K. Cordeauxia edulis and Rhododendron tomentosum extracts disturb orientation and feeding behavior of Hylobius abietis and Phyllodecta laticollis. Entomol. Exp. Appl. 2011, 138, 162–174. [Google Scholar] [CrossRef]
- Wang, C.; Li, G.; Miao, C.; Zhao, M.; Wang, B.; Guo, X. Nonanal modulates oviposition preference in female Helicoverpa assulta (Lepidoptera: Noctuidae) via the activation of peripheral neurons. Pest Manag. Sci. 2020, 76, 3159–3167. [Google Scholar] [CrossRef]
- Zavala-Sanchez, M.A.; Perez-Gutierrez, S.; Perez-Gonzalez, C.; Sanchez-Saldivar, D.; Arias-Garcia, L. Antidiarrheal activity of nonanal, an aldehyde isolated from Artemisia ludoviciana. Pharm. Biol. 2002, 40, 263–268. [Google Scholar] [CrossRef]
- Kougan, G.B.; Tabopda, T.; Kuete, V.; Verpoorte, R. Simple phenols, phenolic acids, and related esters from the medicinal plants of Africa. In Medicinal Plant Research in Africa. Pharmacology and Chemistry; Kuete, V., Ed.; Elsevier Inc.: San Diego, CA, USA, 2013; pp. 54–58. [Google Scholar]
- Vinale, F.; Manganiello, G.; Nigro, M.; Mazzei, P.; Piccolo, A.; Pascale, A.; Ruocco, M.; Marra, R.; Lombardi, N.; Lanzuise, S.; et al. A novel fungal metabolite with beneficial properties for agricultural applications. Molecules 2014, 19, 9760–9772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascale, A.; Vinale, F.; Manganiello, G.; Nigro, M.; Lanzuise, S.; Ruocco, M.; Marra, R.; Lombardi, N.; Woo, S.L.; Lorito, M. Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Prot. 2017, 92, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Marra, R.; Barbetti, M.J.; Li, H.; Woo, S.L.; Lorito, M. A novel role for Trichoderma secondary metabolites in the interactions with plants. Phys. Mol. Plant Pathol. 2008, 72, 80–86. [Google Scholar] [CrossRef]
- Van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006, 8, 7–142. [Google Scholar] [CrossRef] [Green Version]
N. | Compound Name | N. | Compound Name |
---|---|---|---|
1 | 1-Heptene, 2,6,6-trimethyl- | 24 * | Ethylbenzene |
2 | 1-Hexanol, 5-methyl-2-(1-methylethyl)- | 25 * | Hexadecane |
3 | 2,3-Dihydroxystearic acid | 26 * | Hexane, 3,3,4-trimethyl- |
4 | 3-Thiazolidinecarboxylic acid, 4-(acetyloxy)-2-(1,1-dimethylethyl), phenylmethyl ester, 1-oxide, [1R-(1.α., 2.β.,4.β)] | 27 | Isobutyl 2-methylpentyl carbonate |
5 | Acetic acid, butyl ester | 28 | Methylene chloride |
6 * | Benzene | 29 | Nonane, 2,3-dimethyl- |
7 * | Benzene, 1,2,4-trimethyl- | 30 | Nonane, 2,5-dimethyl- |
8 * | Benzene, 1,3-bis(1,1-dimethylethyl)- | 31 | Nonane, 5-(2-methylpropyl)- |
9 * | Benzene, 1,3-dimethyl- | 32 * | Octane, 1,1’-oxybis- |
10 * | Benzene, 1-ethyl-4-methyl- | 33 * | Octane, 5-ethyl-2-methyl- |
11 | Butyronitrile, 2-(trimethylsilyloxy)-(3S)-(t-butoxycarbonyl)amino- | 34 * | o-Xylene |
12 | Cyclohexene, 1-methyl-4-(1-methylethenyl)-, (S)- | 35 * | p-Xylene |
13 * | Cyclopentane, (2-methylpropyl)- | 36 | Sulfurous acid, butyl nonyl ester |
14 * | Decane, 1-iodo- | 37 | Sulfurous acid, decyl hexyl ester |
15 * | Decane, 2,3,5,8-tetramethyl- | 38 * | Tetrachloroethylene |
16 * | Decane, 2-methyl- | 39 | Tetradecane |
17 * | Decane, 3,7-dimethyl- | 40 | Tetradecane, 5-methyl- |
18 * | Decane, 3,8-dimethyl- | 41 * | Toluene |
19 * | Decane, 4-methyl- | 42 | trans-2,3-Epoxydecane |
20 * | Decane, 5-methyl- | 43 * | Tridecane |
21 * | Dodecane | 44 * | Undecane |
22 * | Dodecane, 4,6-dimethyl- | 45 | Undecane, 6-ethyl- |
23 | Ethanol, 1-(1-cyclohexenyl)- |
N. | Compound | Class | CAS Number | SIM Signal (amu/z) | Kovats Index | Ref. |
---|---|---|---|---|---|---|
1 | 1-Hexanol, 2-ethyl- | Alcohols | 104-76-7 | 57 | 1030 | [27] |
2 | Acetophenone | Aromatic ketones | 98-86-2 | 105 | 1068 | [28] |
3 | Benzaldehyde,4-methyl- | Aromatic aldehydes | 104-87-0 | 119 | 1086 | [16] |
4 | Benzyl alcohol | Alcohols | 100-51-6 | 79 | 1040 | [27] |
5 | Copaene | Sesquiterpenoids | 3856-25-5 | 119 | 1375 | [28] |
6 | Cumyl alcohol | Alcohols | 617-94-7 | 121 | 1084 | [29] |
7 | DMNT [(E)-4,8-Dimethyl-1,3,7-nonatriene] | Terpenoids | 51911-82-1 | 69 | 1759 | [30] |
8 | Funebrene | Terpenoids | 50894-66-1 | 119 | 1403 | [31] |
9 | Isophorone | Cyclic ketones | 78-59-1 | 82 | 1123 | [32] |
10 | Limonene | Monoterpenes | 138-86-3 | 68 | 1030 | [28] |
11 | Methyl benzoate | Benzoic acid esters | 93-58-3 | 105 | 1096 | [28] |
12 | Methyl salicylate | Benzoic acid esters | 119-36-8 | 120 | 1192 | [28] |
13 | Muurolene | Sesquiterpenoids | 10208-80-7 | 105 | 1497 | [28] |
14 | Myrcene | Monoterpenes | 123-35-3 | 93 | 991 | [31] |
15 | Nonanal | Aldehydes | 124-19-6 | 57 | 1107 | [28] |
16 | Nonane | Hydrocarbons | 111-84-2 | 57 | 900 | [33] |
17 | Phenol | Phenols | 108-95-2 | 94 | 1011 | [27] |
18 | Pinene | Monoterpenes | 2437-95-8 | 93 | 943 | [34] |
19 | t-Ocimene | Monoterpenes | 13877-91-3 | 93 | 976 | [30] |
VOC (p-Value) | CTRL * | M10 | T22 & | TH1 % | KV906 £ | GV41 ¥ | HA @ | 6PP § |
---|---|---|---|---|---|---|---|---|
1-Hexanol, 2-Ethyl- (0.0013527) | 18.35 ± 4.29 | 16.03 ± 4.59 | 10.66 ± 0.18 §*¶ | 11.00 ± 0.75 §*¥¶ | 11.42 ± 0.30 §*¶ | 15.45 ± 4.95 | 10.58 ± 0.47 §*¶ | 15.70 ± 4.25 |
Acetophenone (5.03 × 10−1) | 11.88 ± 0.99 §¥ | 11.53 ± 1.03 §¥ | 12.00 ± 0.52 §¥ | 11.32 ± 0.62 §¥ | 11.06 ± 0.42 §¥ | 13.14 ± 0.87 * | 11.40 ± 0.24 §¥ | 13.47 ± 0.88 * |
Benzaldehyde, 4-Methyl (1.11 × 10−2) | 2.96 ± 0.49 §¥ | 3.17 ± 0.36 §& | 2.70 ± 0.18 §¥¶ | 2.90 ± 0.20 §¥& | 2.46 ± 0.33 *§¥¶& | 3.42 ± 0.37 *§£& | 3.08 ± 0.06 §& | 3.93 ± 0.32 *£% |
Benzyl alcohol (1.51 × 10−5) | 3.68 ± 0.16 §& | 3.17 ± 0.10 *§¥@& | 4.32 ± 0.40 * | 3.13 ± 0.24 *§¥@& | 3.21 ± 0.16 *§¥& | 4.35 ± 0.44 * | 3.53 ± 0.31 §¥ | 4.18 ± 0.19 * |
Copaene (0.031723) | 2.35 ± 0.62 * | 2.19 ± 0.69 | 1.71 ± 0.03 §¥ | 1.77 ± 0.16 §* | 1.88 ± 0.18 § | 2.25 ± 0.32 | 2.06 ± 0.17 | 2.46 ± 0.34 |
Cumyl alcohol (0.00047929) | 1.60 ± 0.28 §& | 1.79 ± 0.27 | 1.91 ± 0.18 | 1.38 ± 0.03 §¥£¶& | 1.73 ± 0.16 | 1.85 ± 0.22 % | 1.42 ± 0.20 §¥£¶& | 1.92 ± 0.23 |
DMNT (0.00010625) | 7.00 ± 4.43 £&% | 7.18 ± 4.78 £&% | 11.10 ± 0.64 * | 12.53 ± 0.81 * | 14.14 ± 0.47 * | 6.12 ± 3.99 @£&% | 10.50 ± 0.23 | 4.95 ± 3.19 @£% |
Funebrene (3.14 × 10−2) | 6.68 ± 1.48 ¶&%£@§ | 5.46 ± 1.22 &%£¥@ | 3.64 ± 0.55 *£¥§ | 3.82 ± 0.09 * | 2.79 ± 0.10 *¶¥§ | 6.08 ± 1.68 &%@ | 3.14 ± 0.10 *¥§ | 5.08 ± 1.44 *&£@ |
Isophorone (2.35 × 10−2) | 2.16 ± 0.28 @§§ | 2.46 ± 0.20 & | 1.98 ± 0.14 ¶% | 2.56 ± 0.29 & | 2.19 ± 0.64 | 2.12 ± 0.51 @§ | 2.66 ± 0.21 *&£¥§ | 1.12 ± 0.20 *¶&%£¥@ |
Limonene (3.93 × 10−2) | 3.30 ± 0.75 ¶&%¥@§ | 5.45 ± 0.76 *£ | 5.00 ± 0.27 *£@§ | 4.56 ± 0.16 *@§ | 3.64 ± 0.15 ¶&@§ | 4.43 ± 1.42 *@§ | 6.42 ± 1.56 *&%£¥ | 6.32 ± 0.22 *&%£¥ |
Methyl benzoate (3.54 × 10−3) | 5.10 ± 0.98 %¥§ | 4.57 ± 0.85 § | 4.39 ± 0.13 § | 4.16 ± 0.17 *&§ | 4.43 ±0.68 ¥§ | 6.20 ± 0.87 *¶&%£@ | 4.89 ± 0.37 ¥§ | 6.80 ± 0.21 *¶&%£@ |
Methyl salicylate (0.00071484) | 2.58 ± 0.36 ¥§ | 2.37 ± 0.25 ¥§ | 2.47 ± 0.26 ¥§ | 2.68 ± 0.05 ¥§ | 2.70 ± 0.12 ¥§ | 3.17 ± 0.31 *¶£@ | 2.72 ± 0.48 ¥ | 3.06 ± 0.06 *¶&%£ |
Muurolene (3.98 × 10−1) | 3.09 ± 0.72 &%£¥@ | 3.17 ± 1.65 &%£¥@ | 1.81 ± 0.70 *¶£@ | 1.54 ± 0.64 *¶&£ | 0.32 ± 0.06 *¶&%§ | 1.40 ± 0.74 *¶ | 0.66 ± 0.31 *¶&§ | 2.17 ± 1.09 £@ |
Myrcene (0.00088287) | 11.66 ± 1.23 ¥§ | 12.14 ± 1.64 @ | 11.48 ± 0.65 ¥ | 10.42 ± 0.42 ¶¥ | 11.41 ± 0.42 ¥ | 13.22 ± 1.75 *&%£@§ | 10.70 ± 0.43 ¶¥§ | 13.02 ± 0.31 *&%£@ |
Nonanal (1.39 × 10−1) | 9.20 ± 5.59 &%£@ | 8.67 ± 5.27 &%£@ | 14.30 ± 1.90 *¶¥§ | 16.44 ± 1.02 *¶§ | 17.15 ± 0.37 *¶¥§ | 8.57 ± 4.88 &%£@ | 15.08 ± 1.15 *¶¥§ | 5.33 ± 2.98 &%£@ |
Nonane (7.07 × 10−2) | 3.43 ±0.58 | 2.91 ±0.65 @% | 3.57 ±0.06 ¥£% | 4.84 ±0.57 *§¥ | 4.47 ±0.59 *§¥ | 2.63 ±1.01 @ | 4.37 ±0.46 *§ | 2.75 ±0.83 |
Phenol (2.01 × 10−4) | 1.10 ± 0.11 | 1.59 ± 0.17 §*¥@ | 1.22 ± 0.02 ¥@¶ | 0.65 ± 0.02 §*¥@¶& | 0.83 ± 0.24 §*¶& | 0.96 ± 0.16 | 0.99 ± 0.24 | 1.08 ± 0.17 |
Pinene (1.28 × 10−6) | 3.03 ± 0.44 § | 3.78 ± 0.22 *¥@£% | 3.79 ± 0.16 *¥@£% | 2.83 ± 0.20 §£ | 3.51 ± 0.19 §*¥@ | 2.93 ± 0.11 § | 2.91 ± 0.06 § | 3.88 ± 0.06 |
t-Ocimene (1.13 × 10−2) | 1.94 ± 0.10 § | 3.51 ± 0.76 §*£ | 3.16 ± 0.19 §*@£ | 2.98 ± 0.09 §*£ | 1.97 ± 0.09 §@ | 2.86 ± 0.85 §*@£ | 4.02 ± 1.21 * | 4.29 ± 0.13 |
Trichoderma | Metabolic Pathway | Class of VOCs |
---|---|---|
Strain GV41 | Shikimate pathway | Aromatics |
Lipid-signaling pathway | Aldehydes | |
Strain KV906 | Lipid-signaling pathway | Aldehydes |
Strain M10 | MEP pathway | Terpenes |
Shikimate pathway | Aromatics | |
Strain T22 | Shikimate pathway | Aromatics |
Strain TH1 | Shikimate pathway | Aromatics |
Metabolite HA | MEP pathway | Terpenes |
Shikimate pathway | Aromatics | |
Lipid-signaling pathway | Aldehydes | |
Metabolite 6PP | MEP pathway | Terpenes |
Shikimate pathway | Aromatics |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dini, I.; Marra, R.; Cavallo, P.; Pironti, A.; Sepe, I.; Troisi, J.; Scala, G.; Lombari, P.; Vinale, F. Trichoderma Strains and Metabolites Selectively Increase the Production of Volatile Organic Compounds (VOCs) in Olive Trees. Metabolites 2021, 11, 213. https://doi.org/10.3390/metabo11040213
Dini I, Marra R, Cavallo P, Pironti A, Sepe I, Troisi J, Scala G, Lombari P, Vinale F. Trichoderma Strains and Metabolites Selectively Increase the Production of Volatile Organic Compounds (VOCs) in Olive Trees. Metabolites. 2021; 11(4):213. https://doi.org/10.3390/metabo11040213
Chicago/Turabian StyleDini, Irene, Roberta Marra, Pierpaolo Cavallo, Angela Pironti, Immacolata Sepe, Jacopo Troisi, Giovanni Scala, Pasquale Lombari, and Francesco Vinale. 2021. "Trichoderma Strains and Metabolites Selectively Increase the Production of Volatile Organic Compounds (VOCs) in Olive Trees" Metabolites 11, no. 4: 213. https://doi.org/10.3390/metabo11040213
APA StyleDini, I., Marra, R., Cavallo, P., Pironti, A., Sepe, I., Troisi, J., Scala, G., Lombari, P., & Vinale, F. (2021). Trichoderma Strains and Metabolites Selectively Increase the Production of Volatile Organic Compounds (VOCs) in Olive Trees. Metabolites, 11(4), 213. https://doi.org/10.3390/metabo11040213