Comprehensive Characterization of Bile Acids in Human Biological Samples and Effect of 4-Week Strawberry Intake on Bile Acid Composition in Human Plasma
Abstract
:1. Introduction
2. Results
2.1. Identification of BA Species in Human Biological Samples Using UHPLC-Q-TOF
2.2. Optimization of Chromatographic Conditions for BAs Separation and Quantification Using UHPLC-QQQ
2.3. Method Validation
2.4. Application of the UHPLC-QQQ Methodology to a Human Study—Influence of Chronic Strawberry Supplementation on Bile Acid Metabolism
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Sample Collection
4.3. Sample Preparation
4.4. Instrumentation
4.5. Liquid Chromatography and Mass Spectrometer Conditions
4.5.1. Liquid Chromatographic Conditions
4.5.2. Mass Spectrometric Conditions
4.6. Method Validation
4.7. Clinical Trial Study Design
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, H.; Hylemon, P.B. Bile acids are nutrient signaling hormones. Steroids 2014, 86, 62–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, H.; Kolodziejczyk, A.A.; Halstuch, D.; Elinav, E. Bile acids in glucose metabolism in health and disease. J. Exp. Med. 2018, 215, 383–396. [Google Scholar] [CrossRef]
- Chiang, J.Y.L. Bile acid metabolism and signaling in liver disease and therapy. Liver Res. 2017, 1, 3–9. [Google Scholar] [CrossRef]
- Wahlström, A.; Sayin, S.I.; Marschall, H.U.; Bäckhed, F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016, 24, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Jia, W.; Xie, G.; Jia, W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gérard, P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 2013, 3, 14–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, J.Y.L. Bile acid metabolism and signaling. PubMed Commons. Compr. Physiol. 2013, 3, 1191–1212. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.R.; Alaghband-Zadeh, J.; Cross, G.F.; Omar, S.; Le Roux, C.W.; Vincent, R.P. Urine bile acids relate to glucose control in patients with type 2 diabetes mellitus and a body mass index below 30 kg/m2. PLoS ONE 2014, 9, e93540. [Google Scholar] [CrossRef]
- Suhre, K.; Meisinger, C.; Döring, A.; Altmaier, E.; Belcredi, P.; Gieger, C.; Chang, D.; Milburn, M.V.; Gall, W.E.; Weinberger, K.M.; et al. Metabolic footprint of diabetes: A multiplatform metabolomics study in an epidemiological setting. PLoS ONE 2010, 5, e13953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersén, E.; Karlaganis, G.; Sjövall, J. Altered bile acid profiles in duodenal bile and urine in diabetic subjects. Eur. J. Clin. Investig. 1988. [Google Scholar] [CrossRef]
- Li, T.; Francl, J.M.; Boehme, S.; Ochoa, A.; Zhang, Y.; Klaassen, C.D.; Erickson, S.K.; Chiang, J.Y.L. Glucose and insulin induction of bile acid synthesis: Mechanisms and implication in diabetes and obesity. J. Biol. Chem. 2012, 287, 1861–1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marksteiner, J.; Blasko, I.; Kemmler, G.; Koal, T.; Humpel, C. Bile acid quantification of 20 plasma metabolites identifies lithocholic acid as a putative biomarker in Alzheimer’s disease. Metabolomics 2018, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sarafian, M.H.; Lewis, M.R.; Pechlivanis, A.; Ralphs, S.; McPhail, M.J.W.; Patel, V.C.; Dumas, M.E.; Holmes, E.; Nicholson, J.K. Bile Acid Profiling and Quantification in Biofluids Using Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry. Anal. Chem. 2015, 87, 9662–9670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frommherz, L.; Bub, A.; Hummel, E.; Rist, M.J.; Roth, A.; Watzl, B.; Kulling, S.E. Age-related changes of plasma bile acid concentrations in healthy adults-results from the cross-sectional Karmen study. PLoS ONE 2016, 11, e0153959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bathena, S.P.R. The profile of bile acids and their sulfate metabolites in human urine and serum. J. Chromatogr. B 2013, 942, 53–62. [Google Scholar] [CrossRef]
- Scherer, M. Rapid quantification of bile acids and their conjugates in serum by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2009, 877, 3920–3925. [Google Scholar] [CrossRef]
- Ginos, B.N.R.; Navarro, S.L.; Schwarz, Y.; Gu, H.; Wang, D.; Randolph, T.W.; Shojaie, A.; Hullar, M.A.J.; Lampe, P.D.; Kratz, M.; et al. Circulating bile acids in healthy adults respond differently to a dietary pattern characterized by whole grains, legumes and fruits and vegetables compared to a diet high in refined grains and added sugars: A randomized, controlled, crossover feeding study. Metabolism 2018, 197–204. [Google Scholar] [CrossRef]
- Amplatz, B.; Zöhrer, E.; Haas, C.; Schäffer, M.; Stojakovic, T.; Jahnel, J.; Fauler, G. Bile acid preparation and comprehensive analysis by high performance liquid chromatography–high-resolution mass spectrometry. Clin. Chim. Acta 2017, 464, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Alnouti, Y.; Csanaky, I.L.; Klaassen, C.D. Quantitative-Profiling of Bile Acids and their Conjugates in Mouse Liver, Bile, Plasma, and Urine Using LC-MS/MS. Bone 2008, 23, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Paredes-López, O.; Cervantes-Ceja, M.L.; Vigna-Pérez, M.; Hernández-Pérez, T. Berries: Improving Human Health and Healthy Aging, and Promoting Quality Life-A Review. Plant Foods Hum. Nutr. 2010, 65, 299–308. [Google Scholar] [CrossRef]
- Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013, 24, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Cabral, C.; Kumar, R.; Ganguly, R.; Gupta, A.; Carbone, C.; Reis, F.; Pandey, A.K. Beneficial Effects of Dietary Polyphenols on Gut Microbiota and Strategies to Improve delivery efficiency. Nutrients 2019, 11, 2216. [Google Scholar] [CrossRef] [Green Version]
- Holscher, H.D.; Guetterman, H.M.; Swanson, K.S.; An, R.; Matthan, N.R.; Lichtenstein, A.H.; Novotny, J.A.; Baer, D.J. Walnut consumption alters the gastrointestinal microbiota, microbially derived secondary bile acids, and health markers in healthy adults: A randomized controlled trial. J. Nutr. 2018, 148, 861–867. [Google Scholar] [CrossRef]
- Han, Y.; Haraguchi, T.; Iwanaga, S.; Tomotake, H.; Okazaki, Y.; Mineo, S.; Moriyama, A.; Inoue, J.; Kato, N. Consumption of some polyphenols reduces fecal deoxycholic acid and lithocholic acid, the secondary bile acids of risk factors of colon cancer. J. Agric. Food Chem. 2009, 57, 8587–8590. [Google Scholar] [CrossRef]
- Fotschki, B.; Juśkiewicz, J.; Jurgoński, A.; Rigby, N.; Sójka, M.; Kołodziejczyk, K.; Mackie, A.; Zduńczyk, Z. Raspberry pomace alters cecal microbial activity and reduces secondary bile acids in rats fed a high-fat diet. J. Nutr. Biochem. 2017, 46, 13–20. [Google Scholar] [CrossRef]
- McDougall, G.J.; Allwood, J.W.; Pereira-Caro, G.; Brown, E.M.; Ternan, N.; Verrall, S.; Stewart, D.; Lawther, R.; O’Connor, G.; Rowland, I.; et al. Nontargeted LC-MSn profiling of compounds in ileal fluids that decrease after raspberry intake identifies consistent alterations in bile acid composition. J. Nat. Prod. 2016, 79, 2606–2615. [Google Scholar] [CrossRef]
- Ulaszewska, M.M.; Mancini, A.; Garcia-Aloy, M.; Del Bubba, M.; Tuohy, K.M.; Vrhovsek, U. Isotopic dilution method for bile acid profiling reveals new sulfate glycine-conjugated dihydroxy bile acids and glucuronide bile acids in serum. J. Pharm. Biomed. Anal. 2019, 173, 1–17. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Chen, J.; Feng, C.; He, Y.; Shao, Y.; Ding, M. Targeted metabolomics of sulfated bile acids in urine for the diagnosis and grading of intrahepatic cholestasis of pregnancy. Genes Dis. 2018, 5, 358–366. [Google Scholar] [CrossRef]
- Trottier, J.; Perreault, M.; Rudkowska, I.; Levy, C.; Dallaire-Theroux, A.; Verreault, M.; Caron, P.; Staels, B.; Vohl, M.C.; Straka, R.J.; et al. Profiling serum bile acid glucuronides in humans: Gender divergences, genetic determinants, and response to fenofibrate. Clin. Pharmacol. Ther. 2013, 94, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Bathena, S.P.R.; Csanaky, I.L.; Alnouti, Y. Simultaneous characterization of bile acids and their sulfate metabolites in mouse liver, plasma, bile, and urine using LC-MS/MS. J. Pharm. Biomed. Anal. 2011, 55, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Humbert, L.; Maubert, M.A.; Wolf, C.; Duboc, H.; Mahé, M.; Farabos, D.; Seksik, P.; Mallet, J.M.; Trugnan, G.; Masliah, J.; et al. Bile acid profiling in human biological samples: Comparison of extraction procedures and application to normal and cholestatic patients. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 899, 135–145. [Google Scholar] [CrossRef]
- Xiang, X.; Han, Y.; Neuvonen, M.; Laitila, J.; Neuvonen, P.J.; Niemi, M. High performance liquid chromatography tandem mass spectrometry for the determination of bile acid concentrations in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Pellicciari, R.; Pruzanski, M.; Auwerx, J.; Schoonjans, K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 2008, 7, 678–693. [Google Scholar] [CrossRef]
- Dawson, P.A.; Karpen, S.J. Intestinal transport and metabolism of bile acids. J. Lipid Res. 2015, 56, 1085–1099. [Google Scholar] [CrossRef] [Green Version]
- Ikegami, T.; Honda, A. Reciprocal interactions between bile acids and gut microbiota in human liver diseases. Hepatol. Res. 2018, 48, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Su, M.; Xie, G.; Li, X.; Wei, R.; Liu, C.; Lan, K.; Jia, W. Factors affecting separation and detection of bile acids by liquid chromatography coupled with mass spectrometry in negative mode. Anal. Bioanal. Chem. 2017, 409, 5533–5545. [Google Scholar] [CrossRef]
- Mano, N.; Mori, M.; Ando, M.; Goto, T.; Goto, J. Ionization of unconjugated, glycine- and taurine-conjugated bile acids by electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal. 2006, 40, 1231–1234. [Google Scholar] [CrossRef]
- Alnouti, Y. Bile acid sulfation: A pathway of bile acid elimination and detoxification. Toxicol. Sci. 2009, 108, 225–246. [Google Scholar] [CrossRef]
- Han, J.; Liu, Y.; Wang, R.; Yang, J.; Ling, V.; Borchers, C.H. Metabolic profiling of bile acids in human and mouse blood by LC-MS/MS in combination with phospholipid-depletion solid-phase extraction. Anal. Chem. 2015, 87, 1127–1136. [Google Scholar] [CrossRef]
- Dams, R.; Huestis, M.A.; Lambert, W.E.; Murphy, C.M. Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: Influence of ionization type, sample preparation, and biofluid. J. Am. Soc. Mass Spectrom. 2003, 14, 1290–1294. [Google Scholar] [CrossRef] [Green Version]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Matrix Effect in Quantitative LC/MS/MS Analyses of Biological Fluids: A Method for Determination of Finasteride in Human Plasma at Picogram Per Milliliter Concentrations. Anal. Chem. 1998, 70, 882–889. [Google Scholar] [CrossRef]
- Ridlon, J.M.; Bajaj, J.S. The human gut sterolbiome: Bile acid-microbiome endocrine aspects and therapeutics. Acta Pharm. Sin. B 2015, 5, 99–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prinz, P.; Hofmann, T.; Ahnis, A.; Elbelt, U.; Goebel-Stengel, M.; Klapp, B.F.; Rose, M.; Stengel, A. Plasma bile acids show a positive correlation with body mass index and are negatively associated with cognitive restraint of eating in obese patients. Front. Neurosci. 2015, 9, 199. [Google Scholar] [CrossRef] [Green Version]
- Angelin, B.; Einarsson, K.; Hellstrom, K.; Leijd, B. Bile acid kinetics in relation to endogenous tryglyceride metabolism in various types of hyperlipoproteinemia. J. Lipid Res. 1978, 19, 1004–1016. [Google Scholar] [CrossRef]
- Tilg, H.; Moschen, A.R.; Kaser, A. Obesity and the Microbiota. Gastroenterology 2009, 136, 1476–1483. [Google Scholar] [CrossRef]
- DeWeerdt, S. Microbiome: A complicated relationship status. Nature 2014, 508, S61–S63. [Google Scholar] [CrossRef]
- Wahlström, A.; Kovatcheva-Datchary, P.; Ståhlman, M.; Khan, M.T.; Bäckhed, F.; Marschall, H.U. Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota. J. Lipid Res. 2017, 58, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Sandhu, A.; Edirisinghe, I.; Burton-Freeman, B. An exploratory study of red raspberry (Rubus idaeus L.) (poly)phenols/metabolites in human biological samples. Food Funct. 2018, 9, 806–818. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Zhu, L.; Edirisinghe, I.; Fareed, J.; Brailovsky, Y.; Burton-Freeman, B. Attenuation of Postmeal Metabolic Indices with Red Raspberries in Individuals at Risk for Diabetes: A Randomized Controlled Trial. Obesity 2019, 27, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Xiao, D.; Zhang, X.; Sandhu, A.; Chandra, P.; Kay, C.; Edirisinghe, I.; Burton-Freeman, B. Strawberry consumption on cardio-metabolic risk factors and vascular function: A randomized controlled trial in adults with moderate hypercholesterolemia. J. Nutr. 2020. accepted for publication 01/27/2021. [Google Scholar]
Compounds | RT (min) | UHPLC-Q-TOF Qualification | Reference(s) | ||||
---|---|---|---|---|---|---|---|
m/z1 | MS/MS Fragments 2 | Occurrence 3 | |||||
3-oxo-LCA-isomer 1 | 12.5 | 373.2728 | 373.2728 | F | [13] | ||
3-oxo-LCA-isomer 2 | 12.9 | 373.2745 | 373.2745 | F | [13] | ||
isoLCA | 12.3 | 375.2899 | 375.2899 | F | [13] | ||
LCA | 12.8 | 375.2906 | 375.2906 | F | Standard | ||
Nor-DCA | 13.0 | 377.2685 | 377.2685 | P | F | U | [13] |
5α-cholanic acid-3,6-dione isomer 1 | 10.2 | 387.2544 | 387.2544 | F | [13] | ||
5α-cholanic acid-3,6-dione isomer 2 | 10.5 | 387.2542 | 387.2542 | F | [13] | ||
5α-cholanic acid-3,6-dione isomer 3 | 11.1 | 387.2524 | 387.2524 | F | [13] | ||
7-oxo-LCA isomer 1 | 9.1 | 389.2696 | 389.2696 | F | [13] | ||
7-oxo-LCA isomer 2 | 9.5 | 389.2692 | 389.2692 | F | [13] | ||
7-oxo-LCA isomer 3 | 9.8 | 389.2683 | 389.2683 | F | [13] | ||
7-oxo-LCA isomer 4 | 10.1 | 389.2699 | 389.2699 | F | [13] | ||
7-oxo-LCA isomer 5 | 10.4 | 389.2698 | 389.2698 | F | [13] | ||
7-oxo-LCA isomer 6 | 11.1 | 389.2683 | 389.2683 | F | [13] | ||
7-oxo-LCA isomer 7 | 13.0 | 389.2701 | 389.2701 | F | [13] | ||
MuriDCA | 8.3 | 391.2842 | 391.2842 | P | F | Standard | |
UDCA | 8.9 | 391.2845 | 391.2845 | P | F | Standard | |
HDCA isomer | 9.7 | 391.2853 | 391.2853 | P | F | U | [13] |
CDCA | 10.8 | 391.2850 | 391.2850 | P | F | Standard | |
DCA | 11.1 | 391.2846 | 391.2846 | P | F | U | Standard |
3α-hydroxy-6,7-diketocholanic acid | 6.2 | 403.2479 | 403.2479 | U | [13] | ||
7-oxo-DCA isomer 1 | 4.8 | 405.2644 | 405.2644 | F | [13] | ||
7-oxo-DCA isomer 2 | 7.2 | 405.2639 | 405.2639 | F | [13] | ||
7-oxo-DCA isomer 3 | 7.8 | 405.2634 | 405.2634 | F | [13] | ||
β -MCA isomer 1 | 3.1 | 407.2809 | 407.2809 | F | [13] | ||
β -MCA isomer 2 | 4.5 | 407.2804 | 407.2804 | F | U | [13] | |
β -MCA isomer 3 | 4.9 | 407.2808 | 407.2808 | F | U | [13] | |
β -MCA isomer 4 | 5.3 | 407.2807 | 407.2807 | F | [13] | ||
β -MCA isomer 5 | 6.7 | 407.2805 | 407.2805 | F | [13] | ||
β-MCA | 7.3 | 407.2797 | 407.2797 | F | Standard | ||
HCA isomer 1 | 5.9 | 407.2814 | 407.2814 | F | [13] | ||
HCA isomer 2 | 8.1 | 407.2793 | 407.2793 | F | [13] | ||
HCA isomer 3 | 8.4 | 407.2806 | 407.2806 | F | [13] | ||
CA | 8.7 | 407.2809 | 407.2809 | P | F | Standard | |
GLCA | 11.1 | 432.3121 | 74.0242 | P | Standard | ||
Glyco-7-oxo-LCA isomer 1 | 4.6 | 446.2900 | 74.0247 | P | U | No reference 4 | |
Glyco-7-oxo-LCA isomer 2 | 5.6 | 446.2910 | 74.0239 | P | No reference | ||
Glyco-7-oxo-LCA isomer 3 | 7.9 | 446.2894 | 74.0243 | P | F | U | No reference |
GUDCA isomer 1 | 6.7 | 448.3060 | 74.0244 | P | F | Standard | |
GUDCA isomer 2 | 7.6 | 448.3068 | 74.0243 | P | F | U | Standard |
GCDCA | 8.9 | 448.3059 | 74.0242 | P | F | Standard | |
GDCA | 9.3 | 448.3066 | 74.0246 | P | F | Standard | |
3-oxo-LCA-sulfate isomer | 8.1 | 453.2292 | 96.9599 | F | [13] | ||
LCA-sulfate | 8.3 | 455.2478 | 96.9598 | F | [13] | ||
Glyco-12-oxo-CDCA isomer | 3.9 | 462.2860 | 74.0239 | P | No reference | ||
GHCA isomer 1 | 3.0 | 464.3006 | 74.0240 | P | U | [13] | |
GHCA isomer 2 | 3.4 | 464.3001 | 74.0245 | P | U | [13] | |
GHCA | 4.7 | 464.3006 | 74.0242 | P | U | [13] | |
GCA | 6.9 | 464.3023 | 74.0244 | P | F | Standard | |
12-oxo-LCA-sulfate | 3.3 | 469.2265 | 96.9599 | F | [13] | ||
CDCA-sulfate isomer 1 | 3.8 | 471.2426 | 96.9598 | F | [13] | ||
CDCA-sulfate isomer 2 | 6.5 | 471.2433 | 96.9597 | F | U | [13] | |
CDCA-sulfate isomer 3 | 7.5 | 471.2425 | 96.9598 | P | F | U | [13] |
12-oxo-CDCA sulfate isomer | 2.6 | 485.2220 | 96.9598 | F | [13] | ||
CA-sulfate isomer 1 | 2.8 | 487.2377 | 96.9597 | F | [13] | ||
CA-sulfate isomer 2 | 3.5 | 487.2368 | 96.9595 | F | [13] | ||
TCDCA isomer 1 | 7.0 | 498.2896 | 79.9571 | P | Standard | ||
TCDCA isomer 2 | 7.7 | 498.2892 | 79.9567 | P | Standard | ||
TCDCA isomer 3 | 8.2 | 498.2889 | 79.9565 | P | Standard | ||
TCA isomer 1 | 2.3 | 514.2837 | 514.2837 79.9566 | P | F | [13,27] | |
TCA isomer 2 | 3.2 | 514.2844 | 514.2844 79.9573 | P | [13,27] | ||
GCDCA-sulfate isomer 1 | 3.2 | 528.2627 | 74.0242 96.9597 | U | [13] | ||
GCDCA-sulfate isomer 2 | 7.0 | 528.2627 | 74.0245 96.9598 | U | [13] | ||
GCA-sulfate isomer | 3.4 | 544.2591 | 96.9596 464.3014 | U | [28] | ||
Glucuronide-12-oxo-LCA isomer 1 | 5.4 | 565.3009 | 389.2712 75.0084 | U | [27] | ||
Glucuronide-12-oxo-LCA isomer 2 | 5.8 | 565.2995 | 389.2685 75.0080 | P | U | [27] | |
Glucuronide-12-oxo-LCA isomer 3 | 6.4 | 565.3021 | 389.2704 75.0082 | P | [27] | ||
Glucuronide-CDCA isomer 1 | 4.2 | 567.3178 | 391.2847 75.0077 | U | [27,29] | ||
Glucuronide-CDCA isomer 2 | 6.7 | 567.3168 | 391.2858 75.0078 | P | U | [27,29] | |
Glucuronide-CDCA isomer 3 | 8.5 | 567.3175 | 391.2845 75.0080 | P | U | [27,29] | |
Glucuronide-CA isomer 1 | 2.6 | 583.3137 | 407.2799 75.0081 | P | U | [27,29] | |
Glucuronide-CA isomer 2 | 4.0 | 583.3130 | 407.2804 75.0085 | U | [27,29] | ||
Glucuronide-CA isomer 3 | 5.3 | 583.3117 | 407.2800 75.0086 | P | U | [27,29] | |
Glucuronide-CA isomer 4 | 5.9 | 583.3100 | 407.2798 75.0071 | U | [27,29] | ||
Glucuronide-GLCA | 8.6 | 608.3425 | 432.3117 74.0242 | P | No reference | ||
Glucuronide-GCDCA isomer 1 | 3.0 | 624.3400 | 448.3051 74.0245 | P | U | No reference | |
Glucuronide-GCDCA isomer 2 | 7.0 | 624.3388 | 448.3070 74.0246 | P | U | No reference | |
Glucuronide-GCDCA isomer 3 | 7.4 | 624.3385 | 448.3062 74.0245 | U | No reference | ||
Glucuronide-GCA isomer 1 | 2.2 | 640.3318 | 464.3014 74.0234 | P | U | No reference | |
Glucuronide-GCA isomer 2 | 2.9 | 640.3344 | 464.3017 74.0240 | U | No reference | ||
Glucuronide-GCA isomer 3 | 3.3 | 640.3345 | 464.3019 74.0239 | P | No reference |
Compounds | Linearity Range nmol/L | Correlation Coefficient (R2) | LOQ 2 nmol/L | LOD 3 nmol/L | %Recovery at High Level 4 | %Recovery at Low Level 4 | %Matrix Effect | Intra-Day Precision (RSD%) 5 | Inter-Day Precision (RSD%) 5 |
---|---|---|---|---|---|---|---|---|---|
TUDCA | LOQ–2002.9 | 0.9977 | 2.5 | 0.3 | 105 ± 2 | 82 ± 4 | 5 | 2.2 | 14.7 |
THDCA | LOQ–2002.9 | 0.9986 | 2.5 | 0.2 | 105 ± 3 | 79 ± 1 | 8 | 1.6 | 13.0 |
TCDCA | LOQ–2002.9 | 0.9914 | 2.5 | 0.6 | 136 ± 9 | 104 ± 6 | −5 | 1.2 | 8.2 |
TDCA | LOQ–2002.9 | 0.9927 | 2.5 | 0.6 | 112 ± 3 | 90 ± 9 | −3 | 0.7 | 8.0 |
GUDCA | LOQ–2225.6 | 0.9999 | 2.8 | 0.7 | 117 ± 5 | 99 ± 3 | 16 | 3.2 | 8.9 |
GCDCA | LOQ–2225.6 | 0.9999 | 2.8 | 0.4 | 114 ± 3 | 105 ± 8 | 10 | 1.5 | 5.4 |
GDCA | LOQ–4451.3 | 0.9997 | 2.8 | 0.4 | 112 ± 3 | 107 ± 4 | −2 | 0.4 | 4.4 |
TCA | LOQ–1940.6 | 0.9988 | 4.9 | 0.3 | 123 ± 6 | 90 ± 2 | 6 | 5.2 | 10.8 |
TLCA | LOQ–2069.2 | 0.9994 | 2.6 | 0.7 | 114 ± 5 | 89 ± 6 | −14 | 4.5 | 5.1 |
GCA | LOQ–2149.2 | 0.9994 | 5.4 | 1.3 | 116 ± 8 | 91 ± 9 | 31 | 3.5 | 11.4 |
GLCA | LOQ–2307.9 | 0.9998 | 1.4 | 0.2 | 106 ± 9 | 103 ± 4 | −5 | 3.0 | 7.5 |
β-MCA | LOQ–2447.4 | 0.9996 | 6.1 | 3.1 | 112 ± 3 | 93 ± 4 | 14 | 0.4 | 3.1 |
HCA | LOQ–2447.4 | 0.9995 | 6.1 | 3.1 | 77 ± 9 | 80 ± 17 | 23 | 2.8 | 4.9 |
CA | LOQ–39158.1 | 0.9979 | 49.0 | 6.1 | 123 ± 5 | 90 ± 6 | 7 | 3.8 | 6.7 |
MuriDCA | LOQ–2549.1 | 0.9974 | 6.4 | 3.2 | 115 ± 4 | 99 ± 6 | 14 | 0.9 | 4.9 |
UDCA | LOQ–2549.1 | 0.9995 | 6.4 | 3.2 | 117 ± 3 | 100 ± 3 | 0 | 2.2 | 2.9 |
HDCA | LOQ–2549.1 | 0.9995 | 6.4 | 3.2 | 84 ± 15 | 74 ± 13 | 0 | 1.5 | 11.2 |
CDCA | LOQ–2549.1 | 0.9988 | 6.4 | 3.2 | 105 ± 7 | 84 ± 3 | −11 | 0.3 | 0.9 |
DCA | LOQ–5098.1 | 0.9975 | 6.4 | 1.6 | 151 ± 6 | 94 ± 4 | −11 | 0.6 | 7.1 |
LCA | LOQ–2657.5 | 0.9994 | 6.6 | 3.3 | 98 ± 11 | 84 ± 4 | −17 | 2.1 | 4.1 |
Compounds | Transition (m/z) | Quantifier/Qualifier Ion (m/z) 1 | Retention Time (min) | Baseline 2,3 (μmol/L) | Control 3 (μmol/L) | STR 3,4 (μmol/L) | p-Value | |||
---|---|---|---|---|---|---|---|---|---|---|
Treatment Effect | Baseline vs. Control | Baseline vs. STR | Control vs. STR | |||||||
CA | 407.30 | 407.30 | 9.47 | 0.70 ± 0.51 | 1.18 ± 1.05 | 0.25 ± 0.10 | NS 5 | NS | NS | NS |
GCA | 464.30 | 73.90 | 7.23 | 1.22 ± 0.46 | 2.00 ± 1.03 | 0.82 ± 0.17 | NS | NS | NS | NS |
GCDCA | 448.31 | 74.02 | 14.86 | 5.30 ± 1.61 | 7.54 ± 3.01 | 3.44 ± 0.62 | NS | NS | NS | NS |
CDCA | 391.30 | 391.30 | 16.27 | 1.51 ± 0.41 | 2.20 ± 1.25 | 1.18 ± 0.32 | NS | NS | NS | NS |
TCA | 514.30 | 514.30 | 7.31 | 0.29 ± 0.10 | 0.41 ± 0.25 | 0.18 ± 0.04 | NS | NS | NS | NS |
TCDCA | 498.29 | 79.96 | 14.94 | 0.59 ± 0.20 | 0.63 ± 0.33 | 0.35 ± 0.07 | NS | NS | NS | NS |
Total Primary | 9.60 ± 2.55 | 13.96 ± 5.14 | 6.21 ± 0.99 | NS | NS | NS | NS | |||
beta-MCA | 407.30 | 407.30 | 2.30 | 0.02 ± 0.00 | 0.03 ± 0.00 | 0.02 ± 0.00 | NS | NS | NS | NS |
beta-MCA isomer | 407.30 | 407.30 | 3.04 | 0.01 ± 0.00 | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.03 6 | 0.03 | NS | NS |
HCA | 407.30 | 407.30 | 5.22 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.04 ± 0.01 | NS | NS | NS | NS |
HCA isomer | 407.30 | 407.30 | 6.62 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.01 | NS | NS | NS | NS |
GLCA | 432.30 | 73.90 | 18.58 | 0.33 ± 0.08 | 0.62 ± 0.19 | 0.29 ± 0.06 | 0.02 | NS | NS | 0.04 |
Glucuronide-GLCA | 608.34 | 432.31/74.02 | 4.53 | 0.24 ± 0.06 | 0.44 ± 0.13 | 0.20 ± 0.04 | 0.02 | NS | NS | 0.04 |
GLCA-sulfate | 512.27 | 74.02 | 5.72 | 0.10 ± 0.02 | 0.13 ± 0.02 | 0.09 ± 0.01 | 0.04 | NS | NS | NS |
GUDCA | 448.31 | 74.02 | 4.30 | 0.68 ± 0.15 | 1.25 ± 0.39 | 0.54 ± 0.13 | <0.01 | 0.05 | NS | <0.01 |
GDCA | 448.31 | 74.02 | 14.86 | 4.03 ± 1.24 | 5.42 ± 1.48 | 2.47 ± 0.32 | 0.03 | NS | NS | 0.04 |
LCA | 375.30 | 375.30 | 21.86 | 0.04 ± 0.01 | 0.05 ± 0.01 | 0.03 ± 0.01 | 0.04 | NS | NS | 0.04 |
LCA-sulfate isomer 1 | 455.25 | 96.96 | 5.84 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | NS | NS | NS | NS |
LCA-sulfate isomer 2 | 455.25 | 96.96 | 2.07 | <LOQ 7 | <LOQ | <LOQ | NA 8 | NA | NA | NA |
LCA-sulfate isomer 3 | 455.25 | 96.96 | 4.21 | <LOQ | <LOQ | <LOQ | NA | NA | NA | NA |
LCA-sulfate isomer 4 | 455.25 | 96.96 | 10.71 | <LOQ | <LOQ | <LOQ | NA | NA | NA | NA |
LCA-sulfate isomer 5 | 455.25 | 96.96 | 4.52 | <LOQ | <LOQ | <LOQ | NA | NA | NA | NA |
3-OXO-LCA isomer 1 | 373.27 | 373.27 | 14.94 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | NS | NS | NS | NS |
3-OXO-LCA isomer 2 | 373.27 | 373.27 | 3.35 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | NS | NS | NS | NS |
3-OXO-LCA isomer 3 | 373.27 | 373.27 | 12.54 | <LOQ | <LOQ | 0.00 ± 0.00 | NA | NA | NA | NA |
3-OXO-LCA isomer 4 | 373.27 | 373.27 | 19.64 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | NA | NA | NA | NA |
Glyco-3-OXO-LCA isomer 1 | 430.30 | 74.02 | 8.90 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.03 | NS | NS | NS |
Glyco-3-OXO-LCA isomer 2 | 430.30 | 74.02 | 18.44 | <LOQ | <LOQ | <LOQ | NA | NA | NA | NA |
Glyco-3-OXO-LCA isomer 3 | 430.30 | 74.02 | 23.35 | 0.00 ± 0.00 | 0.00 ± 0.00 | <LOQ | <0.01 | <0.01 | NA | NA |
3-OXO-LCA-sulfate isomer 1 | 453.23 | 96.96 | 2.95 | <LOQ | <LOQ | <LOQ | NA | NA | NA | NA |
3-OXO-LCA-sulfate isomer 2 | 453.23 | 96.96 | 3.35 | <LOQ | <LOQ | <LOQ | NA | NA | NA | NA |
3-OXO-LCA-sulfate isomer 3 | 453.23 | 96.96 | 4.32 | <LOQ | <LOQ | <LOQ | NA | NA | NA | NA |
3-OXO-LCA-sulfate isomer 4 | 453.23 | 96.96 | 5.92 | <LOQ | <LOQ | <LOQ | NA | NA | NA | NA |
3-OXO-LCA-sulfate isomer 5 | 453.23 | 96.96 | 15.74 | <LOQ | <LOQ | <LOQ | NA | NA | NA | NA |
3-OXO-LCA-sulfate isomer 6 | 453.23 | 96.96 | 16.02 | <LOQ | <LOQ | <LOQ | NA | NA | NA | NA |
7-OXO-LCA isomer 1 | 389.27 | 389.27 | 14.88 | 0.05 ± 0.01 | 0.07 ± 0.02 | 0.04 ± 0.01 | NS | NS | NS | NS |
7-OXO-LCA isomer 2 | 389.27 | 389.27 | 3.03 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | NS | NS | NS | NS |
7-OXO-LCA isomer 3 | 389.27 | 389.27 | 3.58 | 0.03 ± 0.01 | 0.04 ± 0.01 | 0.03 ± 0.01 | NS | NS | NS | NS |
7-OXO-LCA isomer 4 | 389.27 | 389.27 | 3.85 | 0.05 ± 0.01 | 0.07 ± 0.01 | 0.06 ± 0.01 | 0.01 | 0.01 | NS | NS |
7-OXO-LCA isomer 5 | 389.27 | 389.27 | 5.20 | 0.01 ± 0.00 | 0.02 ± 0.01 | 0.01 ± 0.00 | NS | NS | NS | NS |
7-OXO-LCA isomer 6 | 389.27 | 389.27 | 7.70 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.01 | NS | NS | NS | NS |
7-OXO-LCA isomer 7 | 389.27 | 389.27 | 8.47 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.00 | NS | NS | NS | NS |
7-OXO-LCA isomer 8 | 389.27 | 389.27 | 16.56 | <LOQ | <LOQ | <LOQ | NA | NA | NA | NA |
Glyco-7-oxo-LCA isomer 1 | 446.29 | 74.02 | 6.26 | 0.02 ± 0.01 | 0.04 ± 0.02 | 0.01 ± 0.00 | NS | NS | NS | NS |
Glyco-7-oxo-LCA isomer 2 | 446.29 | 74.02 | 2.46 | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | NS | NS | NS | NS |
Glyco-7-oxo-LCA isomer 3 | 446.29 | 74.02 | 3.63 | <LOQ | 0.00 ± 0.00 | <LOQ | NA | NA | NA | NA |
Glyco-7-oxo-LCA isomer 4 | 446.29 | 74.02 | 6.55 | 0.01 ± 0.01 | 0.03 ± 0.02 | 0.01 ± 0.00 | NS | NS | NS | NS |
Glucuronide-12-oxo-LCA isomer 1 | 565.30 | 389.27/ 75.01 | 1.88 | <LOQ | <LOQ | <LOQ | NA | NA | NA | NA |
Glucuronide-12-oxo-LCA isomer 2 | 565.30 | 389.27/ 75.01 | 2.17 | <LOQ | <LOQ | <LOQ | NA | NA | NA | NA |
Glucuronide-12-oxo-LCA isomer 3 | 565.30 | 389.27/ 75.01 | 4.04 | <LOQ | <LOQ | <LOQ | NA | NA | NA | NA |
3α-hydroxy-6,7-diketo cholanic acid isomer 1 | 403.25 | 403.25 | 3.60 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | NS | NS | NS | NS |
3α-hydroxy-6,7-diketo cholanic acid isomer 2 | 403.25 | 403.25 | 4.33 | 0.01 ± 0.00 | 0.00 ± 0.00 | <LOQ | NS | NS | NS | NS |
3α-hydroxy-6,7-diketo cholanic acid isomer 3 | 403.25 | 403.25 | 1.40 | <LOQ | 0.00 ± 0.00 | 0.00 ± 0.00 | NA | NA | NA | NA |
5α-cholanic acid-3,6-dione isomer 1 | 387.25 | 387.25 | 6.02 | 0.02 ± 0.00 | 0.04 ± 0.01 | 0.04 ± 0.01 | <0.01 | <0.01 | 0.01 | NS |
5α-cholanic acid-3,6-dione isomer 2 | 387.25 | 387.25 | 1.40 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | NS | NS | NS | NS |
5α-cholanic acid-3,6-dione isomer 3 | 387.25 | 387.25 | 15.62 | <LOQ | 0.00 ± 0.00 | 0.00 ± 0.00 | NS | NS | NS | NS |
5α-cholanic acid-3,6-dione isomer 4 | 387.25 | 387.25 | 19.30 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.00 | NS | NS | NS | NS |
5α-cholanic acid-3,6-dione isomer 5 | 387.25 | 387.25 | 1.80 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | NS | NS | NS | NS |
MuriDCA | 391.30 | 391.30 | 3.78 | 1.20 ± 0.36 | 1.84 ± 0.55 | 1.61 ± 0.47 | NS | NS | NS | NS |
UDCA | 391.30 | 391.30 | 5.88 | 0.53 ± 0.11 | 0.75 ± 0.14 | 0.57 ± 0.12 | NS | NS | NS | NS |
HDCA | 391.30 | 391.30 | 7.41 | 0.93 ± 0.16 | 1.31 ± 0.29 | 1.16 ± 0.26 | NS | NS | NS | NS |
DCA | 391.30 | 391.30 | 16.95 | 3.33 ± 0.56 | 4.48 ± 1.00 | 2.69 ± 0.33 | 0.01 | NS | NS | 0.01 |
nor-DCA isomer 1 | 377.27 | 377.27 | 7.70 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.04 ± 0.01 | NS | NS | NS | NS |
nor-DCA isomer 2 | 377.27 | 377.27 | 10.39 | 0.02 ± 0.00 | 0.02 ± 0.01 | 0.02 ± 0.01 | NS | NS | NS | 0.05 |
nor-DCA isomer 3 | 377.27 | 377.27 | 1.33 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | NS | NS | NS | NS |
nor-DCA isomer 4 | 377.27 | 377.27 | 16.43 | 0.02 ± 0.01 | 0.01 ± 0.00 | 0.01 ± 0.00 | NS | NS | NS | NS |
nor-DCA isomer 5 | 377.27 | 377.27 | 18.17 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.05 | NS | 0.04 | NS |
7-oxo-DCA isomer 1 | 405.26 | 96.96 | 1.75 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | NS | NS | NS | NS |
12-oxo-CDCA-sulfate isomer 1 | 485.22 | 96.96 | 4.70 | 0.00 ± 0.00 | <LOQ | <LOQ | NA | NA | NA | NA |
12-oxo-CDCA-sulfate isomer 2 | 485.22 | 96.96 | 13.98 | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.00 ± 0.00 | <0.01 | <0.01 | <0.01 | <0.01 |
Glyco-12-oxo-CDCA isomer 1 | 462.29 | 74.02 | 2.08 | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.01 ± 0.00 | NS | NS | NS | NS |
Glyco-12-oxo-CDCA isomer 2 | 462.29 | 74.02 | 2.55 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | NS | NS | NS | NS |
Glyco-12-oxo-CDCA isomer 3 | 462.29 | 74.02 | 1.59 | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | NA | NA | NA | NA |
Glyco-12-oxo-CDCA isomer 4 | 462.29 | 74.02 | 2.90 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | NS | NS | NS | NS |
TCA isomer 1 | 514.30 | 514.30/79.96 | 4.21 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.00 | NS | NS | NS | NS |
TCA isomer 2 | 514.30 | 514.30/79.96 | 14.86 | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | NS | NS | NS | NS |
TCA isomer 3 | 514.30 | 514.30/79.96 | 15.56 | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | NS | NS | NS | NS |
TLCA | 482.29 | 482.29 | 18.54 | 0.01 ± 0.00 | 0.03 ± 0.02 | 0.01 ± 0.00 | 0.02 | 0.02 | NS | NS |
TLCA-sulfate | 562.25 | 482.29 | 5.88 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | NS | NS | NS | NS |
TUDCA | 498.29 | 79.96 | 4.40 | 0.01 ± 0.00 | 0.02 ± 0.01 | 0.01 ± 0.00 | NS | NS | NS | NS |
THDCA | 498.29 | 79.96 | 5.14 | 0.01 ± 0.00 | 0.01 ± 0.01 | 0.00 ± 0.00 | NS | NS | NS | NS |
TDCA | 498.29 | 79.96 | 15.60 | 0.47 ± 0.12 | 0.80 ± 0.46 | 0.27 ± 0.06 | NS | NS | NS | NS |
Total Secondary | 12.73 ± 1.92 | 18.14 ± 2.98 | 10.74 ± 1.07 | <0.01 | < 0.01 | NS | <0.01 | |||
Glucuronide-GCDCA isomer 1 | 624.34 | 448.31/74.02 | 2.67 | 0.26 ± 0.08 | 0.26 ± 0.05 | 0.19 ± 0.04 | NS | NS | NS | NS |
Glucuronide-GCDCA isomer 2 | 624.34 | 448.31/74.02 | 3.05 | 0.11 ± 0.04 | 0.12 ± 0.05 | 0.13 ± 0.07 | NS | NS | NS | NS |
GCDCA-sulfate isomer 1 | 528.26 | 74.02/96.96 | 2.95 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 | 0.01 | NS | NS |
GCDCA-sulfate isomer 2 | 528.26 | 74.02/96.96 | 3.33 | 0.03 ± 0.01 | 0.03 ± 0.02 | 0.01 ± 0.00 | NS | NS | NS | NS |
GCDCA-sulfate isomer 3 | 528.26 | 74.02/96.96 | 6.24 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | NS | NS | NS | NS |
Glucuronide-CA isomer 1 | 583.31 | 407.27/75.01 | 1.69 | 0.05 ± 0.02 | 0.07 ± 0.02 | 0.05 ± 0.02 | NS | NS | NS | NS |
Glucuronide-CA isomer 2 | 583.31 | 407.27/75.01 | 2.26 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | NS | NS | NS | NS |
CA-sulfate isomer 1 | 487.24 | 96.96 | 1.39 | 0.03 ± 0.01 | 0.04 ± 0.02 | 0.03 ± 0.01 | NS | NS | NS | NS |
CA-sulfate isomer 2 | 487.24 | 96.96 | 2.87 | 0.07 ± 0.02 | 0.08 ± 0.02 | 0.14 ± 0.07 | NS | NS | NS | NS |
Glucuronide-GCA | 640.33 | 464.30/74.02 | 1.85 | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | NS | NS | NS | NS |
Glucuronide-CDCA isomer 1 | 567.32 | 391.28/75.01 | 1.79 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | NS | NS | NS | NS |
Glucuronide-CDCA isomer 2 | 567.32 | 391.28/75.01 | 2.12 | 0.02 ± 0.00 | 0.02 ± 0.01 | 0.02 ± 0.00 | NS | NS | NS | NS |
Glucuronide-CDCA isomer 3 | 567.32 | 391.28/75.01 | 2.56 | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.00 ± 0.00 | NS | NS | NS | NS |
Glucuronide-CDCA isomer 4 | 567.32 | 391.28/75.01 | 4.00 | 0.01 ± 0.00 | 0.02 ± 0.01 | 0.02 ± 0.01 | NS | NS | NS | NS |
Glucuronide-CDCA isomer 5 | 567.32 | 391.28/75.01 | 5.31 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | NS | NS | NS | NS |
CDCA-sulfate isomer 1 | 471.24 | 96.96 | 1.83 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | NS | NS | NS | NS |
CDCA-sulfate isomer 2 | 471.24 | 96.96 | 2.81 | 0.03 ± 0.01 | 0.04 ± 0.01 | 0.03 ± 0.01 | NS | NS | NS | NS |
CDCA-sulfate isomer 3 | 471.24 | 96.96 | 4.82 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | NS | NS | NS | NS |
CDCA-sulfate isomer 4 | 471.24 | 96.96 | 5.39 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | NS | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, A.; Zhang, L.; Zhang, X.; Edirisinghe, I.; Burton-Freeman, B.M.; Sandhu, A.K. Comprehensive Characterization of Bile Acids in Human Biological Samples and Effect of 4-Week Strawberry Intake on Bile Acid Composition in Human Plasma. Metabolites 2021, 11, 99. https://doi.org/10.3390/metabo11020099
Zhao A, Zhang L, Zhang X, Edirisinghe I, Burton-Freeman BM, Sandhu AK. Comprehensive Characterization of Bile Acids in Human Biological Samples and Effect of 4-Week Strawberry Intake on Bile Acid Composition in Human Plasma. Metabolites. 2021; 11(2):99. https://doi.org/10.3390/metabo11020099
Chicago/Turabian StyleZhao, Anqi, Liyun Zhang, Xuhuiqun Zhang, Indika Edirisinghe, Britt M. Burton-Freeman, and Amandeep K. Sandhu. 2021. "Comprehensive Characterization of Bile Acids in Human Biological Samples and Effect of 4-Week Strawberry Intake on Bile Acid Composition in Human Plasma" Metabolites 11, no. 2: 99. https://doi.org/10.3390/metabo11020099
APA StyleZhao, A., Zhang, L., Zhang, X., Edirisinghe, I., Burton-Freeman, B. M., & Sandhu, A. K. (2021). Comprehensive Characterization of Bile Acids in Human Biological Samples and Effect of 4-Week Strawberry Intake on Bile Acid Composition in Human Plasma. Metabolites, 11(2), 99. https://doi.org/10.3390/metabo11020099