Vitamin D Metabolites and Sex Steroid Indices in Postmenopausal Women with and without Low Bone Mass
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Biochemical Analysis
4.3. Anthropometrics and DXA
4.4. Calculations Used
- FAI = Total testosterone/SHBG × 100
- FEI = Total estradiol/SHBG × 100
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ansari, M.G.A.; Sabico, S.; Clerici, M.; Khattak, M.N.K.; Wani, K.; Al-Musharaf, S.; Amer, O.E.; Alokail, M.S.; Al-Daghri, N.M. Vitamin D Supplementation Is Associated with Increased Glutathione Peroxidase-1 Levels in Arab Adults with Prediabetes. Antioxidants 2020, 9, 118. [Google Scholar] [CrossRef] [Green Version]
- Gembillo, G.; Cernaro, V.; Siligato, R.; Curreri, F.; Catalano, A.; Santoro, D. Vitamin D in renal tubulopathies. Metabolites 2020, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- Charoenggam, N.; Holick, M.F. Immunologic effects of vitamin D on human health and disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Amer, O.E.; Khattak, M.N.K.; Sabico, S.; Ansari, M.G.A.; Al-Saleh, Y.; Aljohani, N.; Alfawaz, H.; Alokail, M.S. Effects of different vitamin D supplementation strategies in reversing metabolic syndrome and its component risk factors in adolescents. J. Steroid Biochem. Mol. Biol. 2019, 191, 105378. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Mohammed, A.K.; Al-Attas, O.S.; Ansari, M.G.A.; Wani, K.; Hussain, S.D.; Sabico, S.; Tripathi, G.; Alokail, M.S. Vitamin D Receptor Gene Polymorphisms Modify Cardiometabolic Response to Vitamin D Supplementation in T2DM Patients. Sci. Rep. 2017, 7, 8280. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.K.M.; Elnimeiri, M.K.M. Non-classical presentation of vitamin D deficiency: A case report. J. Med. Case Rep. 2020, 14, 126. [Google Scholar] [CrossRef]
- Al Saleh, Y.; El Seid, M.E.; Ruhaiyem, M.E.; Al Sayed, F.; Alkhairy, A.; Al Zaid, S.; Al Sayed, O.; Salih, S.; Al-Daghri, N.M. Characteristics and outcomes of osteoporotic hip fractures: Treatment gaps in a tertiary care center in Riyadh, Saudi Arabia. Aging Clin. Exp. Res. 2019, 32, 1689–1695. [Google Scholar] [CrossRef]
- Siafarikas, A.; Simm, P.; Zacharin, M.; Jefferies, C.; Lafferty, A.R.; Wheeler, B.J.; Tham, E.; Brown, J.; Biggin, A.; Hofman, P.; et al. Global consensus on nutritional rickets: Implications for Australia. J. Paediatr. Child Health 2020, 56, 841–846. [Google Scholar] [CrossRef]
- Al-Daghri, N.M. Vitamin D in Saudi Arabia: Prevalence, distribution and disease associations. J. Steroid Biochem. Mol. Biol. 2018, 175, 102–107. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Al-Attas, O.S.; Al-Okail, M.S.; Alkharfy, K.M.; Al-Yousef, M.A.; Nadhrah, H.M.; Sabico, S.B.; Chrousos, G.P. Severe hypovitaminosis D is widespread and more common in non-diabetics than diabetics in Saudi adults. Saudi Med. J. 2010, 31, 775–780. [Google Scholar]
- Barzanji, A.T.; Alamri, F.A.; Mohamed, A.G. Osteoporosis: A study of knowledge, attitude and practice among adults in Riyadh, Saudi Arabia. J. Community Health 2013, 38, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Alwahhabi, B.K. Osteoporosis in Saudi Arabia. Are we doing enough? Saudi Med. J. 2015, 36, 1149–1150. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D.; Malmstroem, S.; Schwartz, J. Current Controversies: Are Free Vitamin Metabolite Levels a More Accurate Assessment of Vitamin D Status than Total Levels? Endocrinol. Metab. Clin. N. Am. 2017, 46, 901–918. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R. Free or Total 25OHD as Marker for Vitamin D Status? J. Bone Miner. Res. 2016, 31, 1124–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bikle, D.; Bouillon, R.; Thadhani, R.; Schoenmakers, I. Vitamin D metabolites in captivity? Should we measure free or total 25(OH)D to assess vitamin D status? J. Steroid Biochem. Mol. Biol. 2017, 173, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F. Bioavailability of vitamin D and its metabolites in black and white adults. N. Engl. J. Med. 2013, 369, 2047–2048. [Google Scholar] [CrossRef]
- Riggs, B.L.; Khosla, S.; Melton, L.J., 3rd. Sex steroids and the construction and conservation of the adult skeleton. Endocr. Rev. 2002, 23, 279–302. [Google Scholar] [CrossRef]
- Khosla, S.; Melton, L.J., 3rd; Atkinson, E.J.; O’Fallon, W.M.; Klee, G.G.; Riggs, B.L. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: A key role for bioavailable estrogen. J. Clin. Endocrinol. Metab. 1998, 83, 2266–2274. [Google Scholar]
- Bhattarai, H.K.; Shrestha, S.; Rokka, K.; Shakya, R. Vitamin D, Calcium, Parathyroid Hormone, and Sex Steroids in Bone Health and Effects of Aging. J. Osteoporos 2020, 2020, 9324505. [Google Scholar] [CrossRef]
- Zhang, Z.; Kang, D.; Li, H. The effects of testosterone on bone health in males with testosterone deficiency: A systematic review and meta-analysis. BMC Endocr. Disord. 2020, 20, 33. [Google Scholar] [CrossRef]
- Simo, R.; Saez-Lopez, C.; Barbosa-Desongles, A.; Hernandez, C.; Selva, D.M. Novel insights in SHBG regulation and clinical implications. Trends Endocrinol. Metab. 2015, 26, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Jiang, J.; Yang, F.; Huang, J.; Zhao, J.; Yan, S. Genetically Predicted Sex Hormone-Binding Globulin and Bone Mineral Density: A Mendelian Randomization Study. Calcif. Tissue Int. 2020, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Velija-Asimi, Z. Evaluation of the association of vitamin D deficiency with gonadotropins and sex hormone in obese and non-obese women with polycystic ovary syndrome. Med. Glas. 2014, 11, 170–176. [Google Scholar]
- Pilz, S.; Frisch, S.; Koertke, H.; Kuhn, J.; Dreier, J.; Obermayer-Pietsch, B.; Wehr, E.; Zittermann, A. Effect of vitamin D supplementation on testosterone levels in men. Horm. Metab. Res. 2011, 43, 223–225. [Google Scholar] [CrossRef] [PubMed]
- Eliades, M.; Spyrou, E. Vitamin D: A new player in non-alcoholic fatty liver disease? World J. Gastroenterol. 2015, 21, 1718–1727. [Google Scholar] [CrossRef]
- Heijboer, A.C.; Oosterwerff, M.; Schroten, N.F.; Eekhoff, E.M.; Chel, V.G.; de Boer, R.A.; Blankenstein, M.A.; Lips, P. Vitamin D supplementation and testosterone concentrations in male human subjects. Clin. Endocrinol. 2015, 83, 105–110. [Google Scholar] [CrossRef]
- Ghaleb, A.; Abdi, S.; Yakout, S.; Hussain, S.D.; Wani, K.; Masoud, M.; Alnaami, M.; Al-Daghri, N.M. Serum iron deficiency as an independent risk factor for osteoporosis in postmenopausal Arab women. J. King Saud Univ. Sci. 2021, 33, 101217. [Google Scholar] [CrossRef]
- Wani, K.; Yakout, S.M.; Ansari, M.G.A.; Sabico, S.; Hussain, S.D.; Alokail, M.S.; Shesha, E.; Aljohani, N.J.; Al-Saleh, Y.; Reginster, J.-Y.; et al. Metabolic syndrome in Arab adults with low bone mineral density. Nutrients 2019, 11, 1405. [Google Scholar] [CrossRef] [Green Version]
- Powe, C.E.; Ricciardi, C.; Berg, A.H.; Erdenesanaa, D.; Collerone, G.; Ankers, E.; Wenger, J.; Karumanchi, S.A.; Thadhani, R.; Bhan, I. Vitamin D-binding protein modifies the vitamin D-bone mineral density relationship. J. Bone Miner. Res. 2011, 26, 1609–1616. [Google Scholar] [CrossRef]
- Saleh, Y.; Beshyah, S.A.; Hussein, W.; Almadani, A.; Hassoun, A.; Al Mamari, A.; Ba-Essa, E.; Al-Dhafiri, E.; Hassanein, M.; Fouda, M.A.; et al. Diagnosis and management of vitamin D deficiency in the Gulf Cooperative Council (GCC) countries: An expert consensus summary statement from the GCC vitamin D advisory board. Arch. Osteoporos 2020, 15, 35. [Google Scholar] [CrossRef]
- Al-Saleh, Y.; Sulimani, R.; Sabico, S.; Raef, H.; Fouda, M.; Alshahrani, F.; Al Shaker, M.; Al Wahabi, B.; Sadat-Ali, M.; Al Rayes, H.; et al. 2015 Guidelines for Osteoporosis in Saudi Arabia: Recommendations from the Saudi Osteoporosis Society. Ann. Saudi Med. 2015, 35, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Al-Saleh, Y.; Al-Daghri, N.M.; Sabico, S.; Alessa, T.; Al Emadi, S.; Alawadi, F.; Al Qasaabi, S.; Alfutaisi, A.; Al Izzi, M.; Mukhaimer, J.; et al. Diagnosis and management of osteoporosis in postmenopausal women in Gulf Cooperation Council (GCC) countries: Consensus statement of the GCC countries’ osteoporosis societies under the auspices of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Arch. Osteoporos 2020, 15, 109. [Google Scholar] [PubMed]
Clinical Parameters | Normal | Low BMD | p-Values | Adj. p-Values * |
---|---|---|---|---|
N | 80 (42.3) | 109 (57.7) | ||
Vitamin D Deficiency (%) | 36 (45.0) | 43 (39.4) | ||
Age (years) | 53.3 ± 7.7 | 57.0 ± 8.2 | <0.001 | |
BMI (kg/m2) | 34.1 ± 5.8 | 32.4 ± 6.2 | <0.001 | |
Age of menarche | 13.0 ± 1.4 | 13.3 ± 1.6 | 0.001 | 0.006 |
Menopause (years) | 9.6 ± 11.7 | 11.4 ± 10.6 | 0.01 | 0.30 |
Age during first pregnancy | 19.7 ± 4.0 | 19.0 ± 3.6 | 0.006 | 0.005 |
Amenorrhea (years) | 7.1 ± 6.0 | 9.7 ± 7.1 | <0.001 | 0.01 |
T-score (Spine) | 0.0 ± 0.8 | −2.1 ± 0.9 | <0.001 | <0.001 |
T-Score (Femur) | 0.6 ± 0.9 | −0.8 ± 1.0 | <0.001 | <0.001 |
BMD (Spine) | 1.21 ± 0.14 | 0.9 ± 0.1 | <0.001 | <0.001 |
BMD (Femur) | 1.13 ± 0.13 | 0.9 ± 0.1 | <0.001 | <0.001 |
Biochemical Parameters | Reference Ranges | Normal | Low BMD | p-Values | Adj. p-Values * |
---|---|---|---|---|---|
N | -- | 80 (42.3) | 109 (57.7) | -- | -- |
Corrected Calcium (mmol/L) | 0.7–4.0 | 2.3 ± 0.2 | 2.3 ± 0.2 | 0.84 | 0.40 |
25(OH) D (nmol/L) | 7.5–175.0 | 66.4 ± 34.2 | 73.5 ± 36.1 | <0.001 | 0.18 |
Bioavailable 25(OH)D (nmol/L) # | -- | 26.1 (13–51) | 29.1 (14–49) | 0.56 | 0.81 |
Free 25(OH)D (nmol/L) # | -- | 30.2 (15–54.1) | 33.4 (16–64) | 0.42 | 0.62 |
VDBP (mg/mL) # | 0.083–50.0 | 42.0 (7–105) | 23.2 (6–106) | 0.27 | 0.25 |
PTH (pg/mL) # | 1.2–5000.0 | 10.6 (6–20) | 15.4 (8–30) | 0.002 | 0.04 |
SHBG (nmol/L) # | 0.8–200.0 | 18.2 (0.4–34) | 32.3 (1–57) | 0.007 | 0.08 |
FSH (mIU/mL) # | 0.1–200.0 | 30.7 (11–51) | 40.6 (21–66) | 0.002 | 0.29 |
Testosterone (ng/mL) # | 0.02–15.0 | 0.7 (0.4–1) | 0.6 (0.3–0.9) | 0.007 | 0.02 |
Estradiol (pg/mL) # | 5.0–4300.0 | 108.7 (43–247) | 61.8 (33–196) | 0.02 | 0.13 |
FAI # | -- | 4.3 (1–182) | 1.5 (0.6–39) | 0.002 | 0.07 |
FEI # | -- | 307.7 (142–24168) | 182.2 (62–3988) | 0.007 | 0.09 |
FT (nmol/L) # | -- | 0.06 (0.04–0.17) | 0.0 (0.0–0.1) | 0.003 | 0.20 |
BT (pmol/L × 10−4) # | -- | 2.8 (2–9) | 2.0 (1–4) | 0.002 | 0.03 |
Biochemical Parameters | Reference Ranges | Normal | Low BMD | p-Values | Adj. p-Values * |
---|---|---|---|---|---|
N | -- | 80 (42.3) | 109 (57.7) | -- | -- |
P1NP (ng/mL) # | 5–1200 | 11.2 (5.0–30.0) | 13.4 (5.0–27.5) | 0.44 | 0.20 |
CTX (pg/mL) # | 10–6000 | 10.0 (10.0–84.5) | 20.0 (10.0–75.0) | 0.42 | 0.16 |
NTX (nmol/L) # | 20–3000 | 56.2 (42.6–75.5) | 49.8 (35.5–65.2) | 0.06 | 0.05 |
bALP (nmol/L) | -- | 1.1 ± 0.3 | 1.1 ± 0.3 | 0.98 | 0.75 |
Parameters | Total 25(OH)D | Bioavailable 25(OH)D | Free 25(OH)D | ||||||
---|---|---|---|---|---|---|---|---|---|
All | Normal | Low BMD | All | Normal | Low BMD | All | Normal | Low BMD | |
SHBG | 0.13 | 0.07 | 0.02 | −0.27 ** | −0.30 * | −0.26 ** | −0.21 ** | −0.24 | −0.20 * |
FSH | 0.17 * | 0.16 | 0.08 | −0.12 | −0.23 | −0.06 | −0.09 | −0.09 | −0.08 |
Testosterone | 0.10 | 0.21 | 0.04 | 0.38 ** | 0.45 ** | 0.34 ** | 0.37 ** | 0.44 ** | 0.33 ** |
BT | 0.04 | 0.14 | 0.07 | 0.38 ** | 0.48 ** | 0.35 ** | 0.34 ** | 0.41 ** | 0.32 ** |
FT | −0.01 | 0.11 | 0.05 | 0.33 ** | 0.44 ** | 0.30 ** | 0.34 ** | 0.46 ** | 0.31 ** |
Estradiol | 0.01 | 0.03 | 0.06 | 0.39 ** | 0.46 ** | 0.34 ** | 0.45 ** | 0.46 ** | 0.43 ** |
FAI | −0.05 | 0.04 | 0.03 | 0.34 ** | 0.43 ** | 0.32 ** | 0.29 ** | 0.35 ** | 0.27 ** |
FEI | −0.06 | −0.04 | 0.05 | 0.35 ** | 0.41 ** | 0.33 ** | 0.38 ** | 0.40 ** | 0.37 ** |
P1NP | 0.07 | 0.13 | 0.03 | −0.40 ** | −0.35 ** | −0.42 ** | −0.41 ** | −0.36 ** | −0.43 ** |
CTX | 0.09 | −0.01 | 0.12 | −0.23 ** | −0.33 ** | −0.19 | −0.24 ** | −0.35 ** | −0.18 |
NTX | −0.06 | −0.09 | −0.03 | −0.05 | −0.16 | −0.01 | −0.07 | −0.19 | −0.02 |
bALP | −0.08 | −0.16 | −0.02 | −0.11 | −0.36 | 0.10 | −0.12 | −0.38 ** | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Daghri, N.M.; Yakout, S.M.; Ansari, M.G.A.; Hussain, S.D.; Wani, K.A.; Sabico, S. Vitamin D Metabolites and Sex Steroid Indices in Postmenopausal Women with and without Low Bone Mass. Metabolites 2021, 11, 86. https://doi.org/10.3390/metabo11020086
Al-Daghri NM, Yakout SM, Ansari MGA, Hussain SD, Wani KA, Sabico S. Vitamin D Metabolites and Sex Steroid Indices in Postmenopausal Women with and without Low Bone Mass. Metabolites. 2021; 11(2):86. https://doi.org/10.3390/metabo11020086
Chicago/Turabian StyleAl-Daghri, Nasser M., Sobhy M. Yakout, Mohammed G.A. Ansari, Syed D. Hussain, Kaiser A. Wani, and Shaun Sabico. 2021. "Vitamin D Metabolites and Sex Steroid Indices in Postmenopausal Women with and without Low Bone Mass" Metabolites 11, no. 2: 86. https://doi.org/10.3390/metabo11020086
APA StyleAl-Daghri, N. M., Yakout, S. M., Ansari, M. G. A., Hussain, S. D., Wani, K. A., & Sabico, S. (2021). Vitamin D Metabolites and Sex Steroid Indices in Postmenopausal Women with and without Low Bone Mass. Metabolites, 11(2), 86. https://doi.org/10.3390/metabo11020086