Hemorheological Parameters in Diabetic Patients: Role of Glucose Lowering Therapies
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patients and Methods
4.2. Hemorheological Measurements
4.2.1. Plasma and Whole Blood Viscosity
4.2.2. RBC Aggregation
4.2.3. Hematocrit
4.3. Measurement of von Willebrand Factor
4.4. Measurement of Platelet Aggregability
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Irace, C.; Carallo, C.; Scavelli, F.; De Franceschi, M.S.; Esposito, T.; Gnasso, A. Blood viscosity in subjects with normoglycemia and prediabetes. Diabetes Care 2014, 37, 488–492. [Google Scholar] [CrossRef] [Green Version]
- Khodabandehlou, T.; Zhao, H.; Vimeux, M.; Aouane, F.; Le Devehat, C. Haemorheological consequences of hyperglycaemic spike in healthy volunteers and insulin-dependent diabetics. Clin. Hemorheol. Microcirc. 1998, 19, 105–114. [Google Scholar] [PubMed]
- Brun, J.F.; Aloulou, I.; Varlet-Marie, E. Hemorheological aspects of the metabolic syndrome: Markers of insulin resistance, obesity or hyperinsulinemia? Clin. Hemorheol. Microcirc. 2004, 30, 203–209. [Google Scholar] [PubMed]
- Koltai, K.; Feher, G.; Kesmarky, G.; Keszthelyi, Z.; Czopf, L.; Toth, K. The effect of blood glucose levels on hemorheological parameters, platelet activation and aggregation in oral glucose tolerance tests. Clin. Hemorheol. Microcirc. 2006, 35, 517–525. [Google Scholar] [CrossRef]
- Cho, Y.I.; Mooney, M.P.; Cho, D.J. Hemorheological disorders in diabetes mellitus. J. Diabetes Sci. Technol. 2008, 2, 1130–1138. [Google Scholar] [CrossRef] [Green Version]
- Vekasi, J.; Marton, Z.S.; Kesmarky, G.; Cser, A.; Russai, R.; Horvath, B. Hemorheological alterations in patients with diabetic retinopathy. Clin. Hemorheol. Microcirc. 2001, 24, 59–64. [Google Scholar] [PubMed]
- Patti, G.; Cavallari, I.; Andreotti, F.; Calabrò, P.; Cirillo, P.; Denas, G.; Galli, M.; Golia, E.; Maddaloni, E.; Marcucci, R.; et al. Working Group on Thrombosis of the Italian Society of Cardiology. Prevention of atherothrombotic events in patients with diabetes mellitus: From antithrombotic therapies to new-generation glucose-lowering drugs. Nat. Rev. Cardiol. 2019, 16, 113–130. [Google Scholar] [CrossRef] [Green Version]
- Forst, T.; Weber, M.M.; Löbig, M.; Lehmann, U.; Müller, J.; Hohberg, C.; Friedrich, C.; Fuchs, W.; Pfützner, A. Pioglitazone in addition to metformin improves erythrocyte deformability in patients with Type 2 diabetes mellitus. Clin. Sci. (Lond.) 2010, 119, 345–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrly, A.M. Specific Part. In Therapeutic Hemorheology, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 207–211. [Google Scholar] [CrossRef]
- Konya, H.; Hasegawa, Y.; Hamaguchi, T.; Satani, K.; Umehara, A.; Katsuno, T.; Ishikawa, T.; Miuchi, M.; Kohri, K.; Suehiro, A.; et al. Effects of gliclazide on platelet aggregation and the plasminogen activator inhibitor type 1 level in patients with type 2 diabetes mellitus. Metabolism 2010, 59, 1294–1299. [Google Scholar] [CrossRef] [PubMed]
- Larkins, R.G.; Jerums, G.; Taft, J.L.; Godfrey, H.; Smith, I.L.; Martin, T.J. Lack of effect of gliclazide on platelet aggregation in insulin-treated and non-insulin-treated diabetes: A two-year controlled study. Diabetes Res. Clin. Pract. 1988, 4, 81–87. [Google Scholar] [CrossRef]
- Rodriguez, B.A.T.; Johnson, A.D. Platelet Measurements and Type 2 Diabetes: Investigations in Two Population-Based Cohorts. Front. Cardiovasc. Med. 2020, 7, 118. [Google Scholar] [CrossRef]
- Vitale, C.; Mercuro, G.; Cornoldi, A.; Fini, M.; Volterrani, M.; Rosano, G.M. Metformin improves endothelial function in patients with metabolic syndrome. J. Intern. Med. 2005, 258, 250–256. [Google Scholar] [CrossRef]
- Schiapaccassa, A.; Maranhão, P.A.; de Souza, M.D.G.C.; Panazzolo, D.G.; Neto, J.F.N.; Bouskela, E.; Kraemer-Aguiar, L.G. 30-days effects of vildagliptin on vascular function, plasma viscosity, inflammation, oxidative stress, and intestinal peptides on drug-naïve women with diabetes and obesity: A randomized head-to-head metformin-controlled study. Diabetol. Metab. Syndr. 2019, 23, 70. [Google Scholar] [CrossRef] [Green Version]
- Formoso, G.; De Filippis, E.A.; Michetti, N.; Di Fulvio, P.; Pandolfi, A.; Bucciarelli, T.; Ciabattoni, G.; Nicolucci, A.; Davì, G.; Consoli, A. Decreased in vivo oxidative stress and decreased platelet activation following metformin treatment in newly diagnosed type 2 diabetic subjects. Diabetes Metab. Res. Rev. 2008, 24, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Gin, H.; Freyburger, G.; Boisseau, M.; Aubertin, J. Study of the effect of metformin on platelet aggregation in insulin-dependent diabetics. Diabetes Res. Clin. Pract. 1989, 6, 61–67. [Google Scholar] [CrossRef]
- Dolasık, I.; Sener, S.Y.; Celebı, K.; Aydın, Z.M.; Korkmaz, U.; Canturk, Z. The effect of metformin on mean platelet volume in dıabetıc patients. Platelets 2013, 24, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Shimabukuro, M.; Higa, N.; Chinen, I.; Yamakawa, K.; Takasu, N. Effects of a single administration of acarbose on postprandial glucose excursion and endothelial dysfunction in type 2 diabetic patients: A randomized crossover study. J. Clin. Endocrinol. Metab. 2006, 91, 837–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tranquilli, A.L.; De Tommaso, G.; Boemi, M.; Arduini, D.; Garzetti, G.G.; Fumelli, P.; Romanini, C. Glycemic control by insulin reduces erythrocyte aggregation in gestational diabetes. J. Matern.-Fetal Investig. 1995, 5, 110–112. [Google Scholar]
- Jennings, A.M.; Ford, I.; Murdoch, S.; Greaves, M.; Preston, F.E.; Ward, J.D. The effects of diet and insulin therapy on coagulation factor VII, blood viscosity, and platelet release proteins in diabetic patients with secondary sulphonylurea failure. Diabet. Med. 1991, 8, 346–353. [Google Scholar] [CrossRef]
- Fuller, J.H.; Keen, H.; Jarrett, R.J.; Omer, T.; Meade, T.W.; Chakrabarti, R.R.; North, W.R.; Stirling, Y. Haemostatic variables associated with diabetes and its complications. Br. Med. J. 1979, 2, 964–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannel, W.; D’Agostino, R.B.; Wilson, P.W.; Belanger, A.J.; Gagnon, D.R. Diabetes, fibrinogen and risk of cardiovascular disease: The Framingham experience. Am. Heart J. 1990, 120, 672–676. [Google Scholar] [CrossRef]
- Ganda, O.; Arkin, C.F. Hyperfibrinogenemia: An important risk factor for vascular complications in diabetes. Diabetes Care 1992, 15, 1245–1250. [Google Scholar] [CrossRef]
- De Feo, P.; Volpi, E.; Lucidi, P.; Cruciani, G.; Reboldi, G.; Siepi, D.; Mannarino, E.; Santeusanio, F.; Brunetti, P.; Bolli, G.B. Physiological increments in plasma insulin concentrations have selective and different effects on synthesis of hepatic proteins in normal humans. Diabetes 1993, 42, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- O’Riordain, M.G.; Ross, J.A.; Fearon, K.C.; Maingay, J.; Farouk, M.; Garden, O.J.; Carter, D.C. Insulin and counterregulatory hormones influence acute-phase protein production in human hepatocytes. Am. J. Physiol. 1995, 269, E323–E330. [Google Scholar] [CrossRef]
- Barazzoni, R.; Kiwanuka, E.; Zanetti, M.; Cristini, M.; Vettore, M.; Tessari, P. Insulin acutely increases fibrinogen production in individuals with type 2 diabetes but not in individuals without diabetes. Diabetes 2003, 52, 1851–1856. [Google Scholar] [CrossRef] [Green Version]
- Sahebkar, A.; Serban, M.C.; Mikhailidis, D.P.; Toth, P.P.; Muntner, P.; Ursoniu, S.; Mosterou, S.; Glasser, S.; Martin, S.S.; Jones, S.R.; et al. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Head-to-head comparison of statins versus fibrates in reducing plasma fibrinogen concentrations: A systematic review and meta-analysis. Pharmacol. Res. 2016, 103, 236–252. [Google Scholar] [CrossRef]
- De Silva, S.R.; Shawe, J.E.; Patel, H.; Cudworth, A.G. Plasma fibrinogen in diabetes mellitus. Diabete Metab. 1979, 5, 201–206. [Google Scholar] [PubMed]
- Santilli, F.; Simeone, P.; Liani, R. The role of platelets in diabetes mellitus. In Platelets, 4th ed.; Michelson, A.D., Ed.; Elsevier: Cambridge, MA, USA, 2019; pp. 469–503. [Google Scholar]
- Santilli, F.; Simeone, P.; Liani, R.; Davì, G. Platelets and diabetes mellitus. Prostaglandins Other Lipid Mediat. 2015, 120, 28–39. [Google Scholar] [CrossRef]
Variables | Diabetic Patients (n = 159) | Healthy Controls (n = 25) | p |
---|---|---|---|
Body weight (kg) | 83 (75–95) | 72 (63–92) | p < 0.05 |
BMI (kg/m2) | 29.4 (26.1–32.9) | 24.9 (21.8–29.3) | p < 0.001 |
Physical activity/week | 1 (1–2) | 3 (2–3.5) | p < 0.001 |
Glucose (mmol/L) | 8.0 (6.7–11.3) | 4.7 (4.4–4.9) | p < 0.001 |
Triglyceride (mmol/L) | 1.90 (1.30–2.82) | 0.94 (0.70–1.29) | p < 0.001 |
Total cholesterol (mmol/L) | 4.99 (4.31–5.71) | 4.91 (4.37–5.45) | NS |
HDL cholesterol (mmol/L) | 1.12 (0.96–1.37) | 1.37 (1.17–1.69) | p < 0.001 |
Uric acid (µmol/L) | 288 (234–342) | 279 (242–341) | NS |
CRP (mg/L) | 3.55 (1.6–6.1) | 1.95 (1.0–3.43) | p < 0.001 |
Hematocrit (%) | 40.8 (38.7–43.3) | 41.5 (38.9–44.8) | NS |
Platelet count (G/L) | 240 (189–280) | 260 (206–325) | NS |
Whole blood viscosity (mPAS) | 4.74 (4.22–5.21) | 4.5 (4.13–4.94) | NS |
Plasma viscosity (mPAS) | 1.33 (1.28–1.40) | 1.28 (1.24–1.3) | p < 0.001 |
Erythrocyte aggregation index M | 11.35 (9.48–13.3) | 8.05 (7.15–10.73) | p < 0.01 |
Erythrocyte aggregation index M1 | 24.13 (21.86–26.21) | 19.95 (16.95–21.73) | p < 0.001 |
Fibrinogen (g/L) | 3.44 (3.03–3.94) | 3.27 (2.93–3.65) | NS |
vWf activity | 138 (98–182) | 102 (75–117) | p < 0.01 |
Inducer Concentrations | Diabetic Patients (n = 45) | Control Group (n = 25) | p (Mann-Whitney) |
---|---|---|---|
ADP 10 µM | 79 (69–84) | 79 (69–89) | NS |
ADP 5 µM | 78 (64–82) | 76 (62–86) | NS |
ADP 2.5 µM | 68 (58–76) | 67 (82–80) | NS |
ADP 1 µM | 57 (16–77) | 37 (14–72) | NS |
ADP 0.5 µM | 12 (4–62) | 11 (2–64) | NS |
Collagen 2 µg/mL | 75 (67–81) | 78 (69–89) | NS |
Collagen 1 µg/mL | 68 (60–74) | 70 (35–77) | NS |
Collagen 0.5 µg/mL | 66 (44–75) | 21 (2–76) | NS |
Collagen 0.2 µg/mL | 58 (6–70) | 2 (0–53) | p < 0.01 |
Epinephrine 10 µM | 81 (68–89) | 85 (64–92) | NS |
Epinephrine 5 µM | 71 (55–77) | 71 (43–79) | NS |
Epinephrine 2.5 µM | 68 (39–83) | 68 (13–73) | NS |
Epinephrine 1 µM | 65 (29–77) | 60 (5–70) | NS |
Spont. aggr | 4 (1–19) | 2 (0–4) | NS |
Variables | Insulin Therapy (n = 33) | Oral Antidiabetic Therapy (n = 124) | p (Mann-Whitney) |
---|---|---|---|
Age (years) | 59 (50.5–67) | 60.5 (54–68) | NS |
Sex | 61% male | 52% male | NS (Chi Square Test) |
Body weight (kg) | 85 (78–94) | 82 (73–95) | NS |
BMI (kg/m2) | 30.4 (27.2–33.1) | 29.3 (25.9–32.9) | NS |
Physical activity/week | 1.5 (1–2.25) | 1 (1–2) | NS |
Glucose (mmol/L) | 11.1 (7.7–13.4) | 7.7 (6.5–9.6) | p < 0.001 |
HbA1c (%) | 7.89 (6.65–8.74) | 6.56 (5.91–7.57) | p = 0.001 |
Triglyceride (mmol/L) | 1.76 (1.19–2.30) | 1.90 (1.41–2.86) | NS |
Total cholesterol (mmol/L) | 5.11 (4.61–5.89) | 4.98 (4.26–5.68) | NS |
HDL cholesterol (mmol/L) | 1.14 (1.03–1.54) | 1.10 (0.92–1.30) | NS |
Uric acid (µmol/L) | 297 (240–338) | 286 (234–350) | NS |
CRP (mg/L) | 5.0 (3.0–8.1) | 3.0 (1.3–6.0) | p < 0.01 |
Hematocrit (%) | 41.5 (40.0–44.2) | 40.8 (38.6–43.1) | NS |
Platelet (G/L) | 244 (192–283) | 235 (189–279) | NS |
Whole blood viscosity (mPAS) | 4.8 (4.36–5.39) | 4.72 (4.29–5.21) | NS |
Plasma viscosity (mPAS) | 1.35 (1.28–1.44) | 1.33 (1.28–1.39) | NS |
Erythrocyte aggregation index M | 10.7 (9.5–12.7) | 11.5 (9.5–13.6) | NS |
Erythrocyte aggregation index M1 | 24.7 (20.0–25.6) | 24.0 (22.0–26.7) | NS |
Fibrinogen (g/L) | 3.58 (3.16–4.25) | 3.40 (2.96–3.83) | NS |
vWf activity | 138 (119–200) | 138 (87–178) | NS |
Inducer Concentrations | Insulin Therapy (n = 15) | Oral Antidiabetic Therapy (n = 31) | p (Mann-Whitney) |
---|---|---|---|
ADP 10 µM | 79 (70–85) | 78 (68–84) | NS |
ADP 5 µM | 80 (72–84) | 76 (63–82) | NS |
ADP 2.5 µM | 72 (59–76) | 66 (51–76) | NS |
ADP 1 µM | 67 (40–77) | 36 (14–70) | NS |
ADP 0.5 µM | 10 (6–59) | 13 (4–65) | NS |
Collagen 2 µg/mL | 71 (66–79) | 76 (68–83) | NS |
Collagen 1 µg/mL | 75 (66–82) | 66 (52–72) | p < 0.05 |
Collagen 0.5 µg/mL | 72 (59–76) | 66 (31–71) | NS |
Collagen 0.2 µg/mL | 65 (45–78) | 14 (3–65) | p < 0.05 |
Epinephrine 10 µM | 76 (68–88) | 84 (77–90) | NS |
Epinephrine 5 µM | 74 (69–78) | 70 (32–76) | NS |
Epinephrine 2.5 µM | 83 (68–84) | 66 (13–76) | NS |
Epinephrine 1 µM | 70 (65–80) | 65 (9–76) | NS |
Spont. aggr | 6 (1–42) | 4 (1–17) | NS |
Variables | Metformin n = 16 | Sulfonylureas n = 41 | Acarbose n = 15 | Combined Oral Antidiabetic Therapy n = 42 | No Antidiabetic Therapy n = 12 |
---|---|---|---|---|---|
Whole blood viscosity (mPAS) | 4.75 (4.44–5.26) | 4.80 (4.29–5.28) | 4.56 (4.15–5.11) | 4.67 (4.27–5.08) | 4.48 (4.10 –5.58) |
Plasma viscosity (mPAS) | 1.35 (1.28–1.40) | 1.34 (1.29–1.44) | 1.31 (1.27–1.35) | 1.34 (1.27–1.42) | 1.26 (1.24–1.38) |
Aggregation index M | 11.8 (9.3–14.1) | 10.4 (8.8–12.9) | 11.6 (9.8–14.9) | 11.5 (9.0–13.6) | 12.9 (10.1–14.9) |
Aggregation index M1 | 25.5 (22.9–27.7) | 23.8 (22.6–26.2) | 25.8 (19.2–27.3) | 23.9 (20.8–25.5) | 25.0 (23.0–29.7) |
Plasma fibrinogen (g/L) | 3.51 (2.96–3.74) | 3.48 (3.05–4.06) | 3.42 (3.01–3.61) | 3.40 (2.89–3.85) | 3.53 (3.06–3.78) |
Triglyceride (mmol/L) | 2.15 (1.37–3.08) | 2.09 (1.24–3.01) | 1.84 (1.46–2.57) | 1.90 (1.43–2.87) | 2.04 (1.51–3.94) |
Cholesterol (mmol/L) | 4.72 (4.19–5.26) | 5.19 (4.42–5.72) | 4.78 (4.16–5.74) | 4.80 (3.96–5.62) | 4.48 (4.04–6.03) |
HDL cholesterol (mmol/L) | 1.18 (1.06–1.31) | 1.05 (0.88–1.44) | 1.07 (0.98–1.45) | 1.07 (0.88–1–24) | 1.15 (1.02–1.52) |
vWf activity | 115 (35–171) | 132 (118–185) | 141 (78–240) | 129 (88–177) | 118 (36–156) |
Glucose (mmol/L) | 8.04 (5.6–9.3) | 7.7 (6.8–10.0) | 6.5 (5.9–8.2) | 7.9 (6.7–11.8) | 6.8 (6.4–8.3) |
HbA1c (%) | 6.7 (5.08–7.3) | 6.5 (6.1–7.2) | 6.03 (5.6–8.1) | 6.6 (6.1–8.0) | 7.9 (6.6–8.7) |
Hematocrit (%) | 40.8 (39.7–44.0) | 41.7 (38.6–43.1) | 40.3 (38.2–45.6) | 40.2 (38.0–41.7) | 42.5 (38.3–45.9) |
Body weight (kg) | 75 (70–92) | 80 (75–94) | 77 (64–92) | 87 (77–105) | 75 (63–94) |
BMI (kg/m2) | 27.1 (25.2–31.7) | 29.4 (26.0–32.5) | 27.6 (25.1–30.1) | 30.5 (27.5–35.8) | 27.7 (23.9–32.8) |
Previous diseases (%) | |||||
Hypertension | 87 | 92 | 83 | 90 | 100 |
Myocardial infarction | 18 | 22 | 21 | 12 | 0 |
Angina pectoris | 43 | 35 | 35 | 46 | 27 |
Stroke | 56 | 32 | 14 | 37 | 54 |
Transient ischemic attack | 31 | 12 | 28 | 23 | 18 |
Peripheral artery disease | 6 | 7 | 0 | 7 | 0 |
Carotid stenosis | 0 | 2 | 0 | 0 | 0 |
Venous thromboembolism | 0 | 2 | 0 | 0 | 18 |
Average of years since diagnosis of diabetes | 11 | 7 | 2 | 10 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biro, K.; Feher, G.; Vekasi, J.; Kenyeres, P.; Toth, K.; Koltai, K. Hemorheological Parameters in Diabetic Patients: Role of Glucose Lowering Therapies. Metabolites 2021, 11, 806. https://doi.org/10.3390/metabo11120806
Biro K, Feher G, Vekasi J, Kenyeres P, Toth K, Koltai K. Hemorheological Parameters in Diabetic Patients: Role of Glucose Lowering Therapies. Metabolites. 2021; 11(12):806. https://doi.org/10.3390/metabo11120806
Chicago/Turabian StyleBiro, Katalin, Gergely Feher, Judit Vekasi, Peter Kenyeres, Kalman Toth, and Katalin Koltai. 2021. "Hemorheological Parameters in Diabetic Patients: Role of Glucose Lowering Therapies" Metabolites 11, no. 12: 806. https://doi.org/10.3390/metabo11120806
APA StyleBiro, K., Feher, G., Vekasi, J., Kenyeres, P., Toth, K., & Koltai, K. (2021). Hemorheological Parameters in Diabetic Patients: Role of Glucose Lowering Therapies. Metabolites, 11(12), 806. https://doi.org/10.3390/metabo11120806