Evaluation of Bioactive Metabolites and Antioxidant-Rich Extracts of Amaranths with Possible Role in Pancreatic Lipase Interaction: In Silico and In Vitro Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Heavy Metals, Minerals, and Proximate Contents
2.2. Extraction and Preliminary Phytochemicals Screening
2.2.1. Yield
2.2.2. Estimation of TPC and TFC
2.2.3. Antioxidant Potential
2.3. Analyses GC-MS Chromatograms
2.4. In Silico and In Vitro Binding with PL
2.4.1. In Silico Interaction with PL, Drug-Likeness, and Bioavailability
2.4.2. Effect on Intrinsic Fluorescence of PPL and Quenching Statistics
2.5. Correlation and Significance
3. Materials and Methods
3.1. Chemicals
3.2. Collection of Plants and Extracts Preparation
3.3. Proximate Analysis
3.4. Stock Preparation and Assays
3.4.1. Determination of TPC and TFC
3.4.2. Total Antioxidant Potential
3.5. Volatile Metabolite Profiling
3.6. Interactions with PL
3.6.1. Molecular Docking and Drug-Likeness of the Selected Compounds
3.6.2. Effect on Intrinsic Fluorescence of PPL
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popova, A.; Mihaylova, D. Antinutrients in plant-based foods: A review. Open Biotechnol. J. 2019, 13, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Soriano-García, M.; Aguirre-Díaz, I.S. Nutritional functional value and therapeutic utilization of Amaranth. In Nutritional Value of Amaranth, 1st ed.; Waisundara, V.Y., Ed.; IntechOpen: London, UK, 2019; pp. 1–18. [Google Scholar]
- Singh, N.; Singh, P. Amaranth: Potential Source for Flour Enrichment. In Flour and Breads and Their Fortification in Health and Disease Prevention, 1st ed.; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2011; pp. 101–111. [Google Scholar] [CrossRef]
- Orona-Tamayo, D.; Paredes-López, O. Amaranth part 1—Sustainable crop for the 21st century: Food properties and nutraceuticals for improving human health. In Sustainable Protein Sources, 1st ed.; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Elsevier Academic Press: London, UK, 2017; pp. 239–256. [Google Scholar] [CrossRef]
- Mondor, M.; Melgar-Lalanne, G.; Hernández-Álvarez, A.J. Cold pressed amaranth (Amaranthus tricolor) oil. In Cold Pressed Oils: Green Technology, Bioactive Compounds, Functionality, and Applications, 1st ed.; Ramadan, M.F., Ed.; Elsevier Academic Press: London, UK, 2020; pp. 113–127. [Google Scholar] [CrossRef]
- Simpson, M.G. Diversity and Classification of Flowering Plants: Eudicots. In Plant Systematics, 2nd ed.; Simpson, M.G., Ed.; Elsevier Academic Press: Burlington, MA, USA, 2010; pp. 275–448. [Google Scholar] [CrossRef]
- Fletcher, R.J. Pseudocereals: Overview. In Encyclopedia of Food Grains: The World of Food Grains, 2nd ed.; Wrigley, C.W., Corke, H., Seetharaman, K., Jonathan Faubion, Eds.; Elsevier Academic Press: Kidlington, MA, USA, 2016; pp. 274–279. [Google Scholar] [CrossRef]
- Bautista, R.J.H.; Mahmoud, A.M.; Königsberg, M.; Guerrero, N.E.L.D. Obesity: Pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomed. Pharmacother. 2019, 111, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Petrides, J.; Collins, P.; Kowalski, A.; Sepede, J.; Vermeulen, M. Lifestyle changes for disease prevention. Prim. Care 2019, 46, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.N.; Wu, T.Y.; Chau, C.F. Natural dietary and herbal products in anti-obesity treatment. Molecules 2016, 21, 1351. [Google Scholar] [CrossRef] [PubMed]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alblihed, M.; Guerreiro, S.G.; Cruz-Martins, N.; Batiha, G.E.-S. COVID-19 in relation to hyperglycemia and diabetes mellitus. Front. Cardiovasc. Med. 2021, 8, 644095. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.P.; Shin, J.H.; Seo, S.H.; Kim, S.G.; Lee, S.H.; Shin, E.H. Effects of antioxidants in reducing accumulation of fat in hepatocyte. Int. J. Mol. Sci. 2018, 19, 2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, I.J.; Bhaskaran, K.; Batterham, R.L.; Smeeth, L. The effectiveness of pharmaceutical interventions for obesity: Weight loss with orlistat and sibutramine in a United Kingdom population-based cohort. Br. J. Clin. Pharmacol. 2015, 79, 1020–1027. [Google Scholar] [CrossRef] [Green Version]
- Narayanaswami, V.; Dwoskin, L.P. Obesity: Current and potential pharmacotherapeutics and targets. Pharmacol. Ther. 2017, 170, 116–147. [Google Scholar] [CrossRef] [Green Version]
- Qi, X. Review of the clinical effect of Orlistat. In Materials Science and Engineering (MSEE2017), IOP Conference Series, Xiamen, China, 15-17 December 2017; IOP Publishing: Beijing, China, 2018; Volume 301, p. 012063. [Google Scholar] [CrossRef]
- Baboota, R.K.; Bishnoi, M.; Ambalam, P.; Kondepudi, K.K.; Sarma, S.M.; Boparai, R.K.; Podili, K. Functional food ingredients for the management of obesity and associated co-morbidities—A review. J. Funct. Foods 2013, 5, 997–1012. [Google Scholar] [CrossRef]
- Karri, S.; Sharma, S.; Hatware, K.; Patil, K. Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective. Biomed. Pharmacother. 2019, 110, 224–238. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Segura-Carretero, A.; del Mar Contreras, M. Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1212–1229. [Google Scholar] [CrossRef] [PubMed]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content, and antioxidant potential of wild vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndhlala, A.R.; Ghebrehiwot, H.M.; Ncube, B.; Aremu, A.O.; Gruz, J.; Šubrtová, M.; Doležal, K.; du Plooy, C.P.; Abdelgadir, H.A.; Staden, J.V. Antimicrobial, anthelmintic activities and characterization of functional phenolic acids of Achyranthes aspera Linn.: A medicinal plant used for the treatment of wounds and Ringworm in East Africa. Front. Pharmacol. 2015, 6, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Świerczewska, A.; Buchholz, T.; Melzig, M.F.; Czerwińska, M.E. In vitro α-amylase and pancreatic lipase inhibitory activity of Cornus mas L. and Cornus alba L. fruit extracts. J. Food Drug Anal. 2019, 27, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Nasri, R.; Bidel, L.P.R.; Rugani, N.; Perrier, V.; Carrière, F.; Dubreucq, E.; Jay-Allemand, C. Inhibition of CpLIP2 lipase hydrolytic activity by four flavonols (Galangin, Kaempferol, Quercetin, Myricetin) compared to orlistat and their binding mechanisms studied by quenching of fluorescence. Molecules 2019, 24, 2888. [Google Scholar] [CrossRef] [Green Version]
- Mroczek, A. Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochem. Rev. 2015, 14, 577–605. [Google Scholar] [CrossRef]
- Miguel, M.G. Betalains in some species of the Amaranthaceae family: A review. Antioxidants 2018, 7, 53. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, S.; Gupta, P. Functional components in extracts of Beta vulgaris (Chukandar) parts for antioxidant effect and antiobesity potential with lipase inhibition. Food Biosci. 2021, 41, 100983. [Google Scholar] [CrossRef]
- Vaughan, R.A.; Gannon, N.P.; Carriker, C.R. Nitrate-containing beetroot enhances myocyte metabolism and mitochondrial content. J. Tradit. Complement. Med. 2016, 6, 17–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez, R.; Cuenca, E.; Maté-Muñoz, J.L.; García-Fernández, P.; Serra-Paya, N.; Estevan, M.C.L.; Garnacho-Castaño, M.V. Effects of beetroot juice supplementation on cardiorespiratory endurance in athletes. A systematic review. Nutrients 2017, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Pulipati, S.; Babu, P.S.; Naveena, U.; Parveen, S.K.R.; Nausheen, S.K.S.; Sai, M.T.N. Determination of total phenolic, tannin, flavonoid contents, and evaluation of antioxidant property of Amaranthus tricolor (L). Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 814–819. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Hossain, M.M.; Oba, S. Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yuniarto, A.; Putri, A.Z.; Selifiana, N.; Adnyana, I.K. Preventive effect of ethanol extract of red spinach (Amaranthus tricolor L.) on diet-induced obese Zebrafish. European J. Med. Plants 2020, 31, 27–32. [Google Scholar] [CrossRef]
- Rani, N.; Sharma, S.K.; Vasudeva, N. Assessment of antiobesity potential of Achyranthes aspera Linn. seed. Evid. Based Complement. Alternat. Med. 2012, 2012, 715912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinan, K.I.; Zengin, G.; Zheleva-Dimitrova, D.; Etienne, O.K.; Mahomoodally, M.F.; Bouyahya, A.; Lobine, D.; Chiavaroli, A.; Ferrante, C.; Menghini, L.; et al. Qualitative phytochemical fingerprint and network pharmacology investigation of Achyranthes aspera Linn. extracts. Molecules 2020, 25, 1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvamani, S.; Gunasekaran, B.; Shukor, M.Y.; Shaharuddin, N.A.; Sabullah, M.K.; Ahmad, S.A. Anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities of Amaranthus viridis leaf extract as a potential treatment for hypercholesterolemia. Evid. Based Complement. Alternat. Med. 2016, 2016, 8090841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbagermi, M.A.; Edwards, H.G.M.; Alajtal, A.I. Monitoring of heavy metal content in fruits and vegetables collected from production and market sites in the Misurata area of Libya. Int. Sch. Res. Not. 2012, 2012, 827645. [Google Scholar] [CrossRef] [Green Version]
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Seventy-second Meeting (2010, Rome, Italy): Safety Evaluation of Certain Contaminants in Food. Prepared by World Health Organization & Food and Agriculture Organization of the United Nations. 2011. Available online: https://apps.who.int/iris/handle/10665/44520 (accessed on 26 September 2021).
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Seventy-third Report (2010, Geneva, Switzerland): Evaluation of Certain Food Additives and Contaminants. Prepared by World Health Organization & Food and Agriculture Organization of the United Nations. 2011. Available online: https://apps.who.int/iris/handle/10665/44515 (accessed on 26 September 2021).
- Joint FAO/WHO Expert Committee on Food Additives. Twenty-sixth Report (1982, Geneva, Switzerland): Evaluation of Certain Food Additives and Contaminants. Prepared by World Health Organization & Food and Agriculture Organization of the United Nations. 1982. Available online: https://apps.who.int/iris/handle/10665/41546 (accessed on 26 September 2021).
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Sixty-fourth Meeting (2005, Rome, Italy): Safety Evaluation of Certain Contaminants in Food. Prepared by World Health Organization, Food and Agriculture Organization of the United Nations & IPCS-International Programme on Chemical Safety. 2006. Available online: https://apps.who.int/iris/handle/10665/43406 (accessed on 26 September 2021).
- WHO. Trace Elements in Human Nutrition and Health. Report (1996, Geneva, Switzerland): Prepared by World Health Organization, International Atomic Energy Agency & Food and Agriculture Organization of the United Nations. 1996. Available online: https://apps.who.int/iris/handle/10665/37931 (accessed on 26 September 2021).
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Twenty-seventh Report (1983, Geneva, Switzerland): Evaluation of Certain Food Additives and Contaminants. Prepared by World Health Organization & Food and Agriculture Organization of the United Nations. 1983. Available online: https://apps.who.int/iris/handle/10665/39165 (accessed on 26 September 2021).
- Joint FAO/WHO Expert Consultation. Report (1998, Bangkok, Thailand) 2nd ed.: Vitamin and Mineral Requirements in Human Nutrition. Prepared by World Health Organization & Food and Agriculture Organization of the United Nations. 1998. Available online: https://apps.who.int/iris/handle/10665/42716 (accessed on 26 September 2021).
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.; Lightfoot, D. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Rana, Z.H.; Alam, M.K.; Akhtaruzzaman, M. Nutritional composition, total phenolic content, antioxidant, and α-amylase inhibitory activities of different fractions of selected wild edible plants. Antioxidants 2019, 8, 203. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, N.; De, B. Antioxidant activity of some leafy vegetables of India: A comparative study. Food Chem. 2007, 101, 471–474. [Google Scholar] [CrossRef]
- Datta, S.; Sinha, B.K.; Bhattacharjee, S.; Seal, T. Nutritional composition, mineral content, antioxidant activity and quantitative estimation of water-soluble vitamins and phenolics by RP-HPLC in some lesser used wild edible plants. Heliyon 2019, 5, e01431. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Zaslavsky, L. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019, 47, D1102–D1109. [Google Scholar] [CrossRef] [Green Version]
- Varsha, K.K.; Devendra, L.; Shilpa, G.; Priya, S.; Pandey, A.; Nampoothiri, K.M. 2, 4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int. J. Food Microbiol. 2015, 211, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Jiang, H.; Chen, Y.; Gu, S.; Xia, J.; Zhang, H.; Yan, R.; Lu, Y.; Li, L. The faecal metabolome in COVID-19 patients is altered and associated with clinical features and gut microbes. Anal. Chim. Acta 2021, 1152, 338267. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Pharmacological profile of natural and synthetic compounds with rigid adamantane-based scaffolds as potential agents for the treatment of neurodegenerative diseases. Biochem. Biophys. Res. Commun. 2020, 529, 1225–1241. [Google Scholar] [CrossRef] [PubMed]
- Pagire, S.H.; Pagire, H.S.; Lee, G.B.; Han, S.J.; Kwak, H.J.; Kim, J.Y.; Kim, K.Y.; Rhee, S.D.; Ryu, J.I.; Song, J.S.; et al. Discovery and optimization of adamantane carboxylic acid derivatives as potent diacylglycerol acyltransferase 1 inhibitors for the potential treatment of obesity and diabetes. Eur. J. Med. Chem. 2015, 101, 716–735. [Google Scholar] [CrossRef]
- Skolimowski, J.; Kochman, A.; Gebicka, L.; Metodiewa, D. Synthesis and antioxidant activity evaluation of novel antiparkinsonian agents, aminoadamantane derivatives of nitroxyl free radical. Bioorg. Med. Chem. 2003, 11, 3529–3539. [Google Scholar] [CrossRef]
- Novakov, I.A.; Kulev, I.A.; Radchenko, S.S.; Birznieks, K.A.; Boreko, E.I.; Vladyko, G.V.; Korobchenko, L.V. Synthesis and antiviral activity of the hydrochlorides of alicyclic mono-and diamines. Pharm. Chem. J. 1987, 21, 287–291. [Google Scholar] [CrossRef]
- Shobi, T.; Viswanathan, M. Antibacterial activity of di-butyl phthalate isolated from Begonia malabarica. J Appl. Biotechnol. Bioeng. 2018, 5, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Aboul-Enein, A.M.; Shanab, S.M.M.; Shalaby, E.A.; Zahran, M.M.; Lightfoot, D.A.; El-Shemy, H.A. Cytotoxic and antioxidant properties of active principals isolated from water hyacinth against four cancer cells lines. BMC Complement. Altern. Med. 2014, 14, 397. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Jia, L.; Park, S.K.; Li, J.; Gopalan, A.; Simmons-Menchaca, M.; Sanders, B.G.; Kline, K. Anticancer actions of natural and synthetic vitamin E forms: RRR-α-tocopherol blocks the anticancer actions of γ-tocopherol. Mol. Nutr. Food Res. 2009, 53, 1573–1581. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.K.; Chin, K.Y.; Suhaimi, F.H.; Ahmad, F.; Ima-Nirwana, S. Vitamin E as a potential interventional treatment for metabolic syndrome: Evidence from animal and human studies. Front. Pharmacol. 2017, 8, 444. [Google Scholar] [CrossRef] [Green Version]
- Engin, K.N. Alpha-tocopherol: Looking beyond an antioxidant. Mol. Vis. 2009, 15, 855–860. Available online: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2672149 (accessed on 26 September 2021).
- Lee, G.Y.; Han, S.N. The role of vitamin E in immunity. Nutrients 2018, 10, 1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elisabetsky, E. Traditional medicines and the new paradigm of psychotropic drug action. In Advances in Phytomedicine: Ethnomedicine and Drug Discovery, 1st ed.; Iwu, M.M., Wootton, J.C., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2002; pp. 133–144. [Google Scholar] [CrossRef]
- Han, H.D.; Cho, Y.J.; Cho, S.K.; Byeon, Y.; Jeon, H.N.; Kim, H.S.; Kim, B.G.; Bae, D.S.; Lopez-Berestein, G.; Sood, A.K.; et al. Linalool-incorporated nanoparticles as a novel anticancer agent for epithelial ovarian carcinoma. Mol. Cancer Ther. 2016, 15, 618–627. [Google Scholar] [CrossRef] [Green Version]
- Bahadori, M.B.; Zengin, G.; Bahadori, S.; Maggi, F.; Dinparast, L. Chemical composition of essential oil, antioxidant, antidiabetic, antiobesity, and neuroprotective properties of Prangos gaubae. Nat. Prod. Commun. 2017, 12, 1934578X1701201233. [Google Scholar] [CrossRef] [Green Version]
- Pinna, G. Sex and COVID-19: A protective role for reproductive steroids. Trends Endocrinol. Metab. 2021, 32, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Parfenov, V.A.; Golyk, V.A.; Matsnev, E.I.; Morozova, S.V.; Melnikov, O.A.; Antonenko, L.M.; Sigaleva, E.E.; Situkho, M.I.; Asaulenko, O.I.; Popovych, V.I.; et al. Effectiveness of betahistine (48 mg/day) in patients with vestibular vertigo during routine practice: The VIRTUOSO study. PLoS ONE 2017, 12, e0174114. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.H.; Yanoff, L.B.; Stern, E.A.; Akomeah, A.; Courville, A.; Kozlosky, M.; Brady, A.M.; Calis, K.A.; Reynolds, J.C.; Crocker, M.K.; et al. Acute effects of betahistine hydrochloride on food intake and appetite in obese women: A randomized, placebo-controlled trial. Am. J. Clin. Nutr. 2010, 92, 1290–1297. [Google Scholar] [CrossRef] [Green Version]
- Elmazar, M.M.; El-Abhar, H.S.; Schaalan, M.F.; Farag, N.A. Phytol/Phytanic acid and insulin resistance: Potential role of phytanic acid proven by docking simulation and modulation of biochemical alterations. PLoS ONE 2013, 8, e45638. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Ai, W.; Hu, X.; Meng, Y.; Yuan, C.; Su, H.; Wang, L.; Zhu, X.; Gao, P.; Shu, G.; et al. Phytol stimulates the browning of white adipocytes through the activation of AMP-activated protein kinase (AMPK) α in mice fed high-fat diet. Food Funct. 2018, 9, 2043–2050. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Zhang, W.; Feng, F.; Zhang, Y.; Kang, W. α-Glucosidase inhibitors isolated from medicinal plants. Food Sci. Hum. Wellness 2014, 3, 136–174. [Google Scholar] [CrossRef] [Green Version]
- Ofusori, A.E.; Moodley, R.; Jonnalagadda, S.B. Antiulcerogenic effects of Celosia trigyna plant extracts on ethanol-induced gastric ulcer in adult Wistar rats. J. Tradit. Complement. Med. 2020, 10, 586–593. [Google Scholar] [CrossRef]
- Alam, S.; Sadiqi, S.; Sabir, M.; Nisa, S.; Ahmad, S.; Abbasi, S.W. Bacillus species: A potential source of anti-SARS-CoV-2 main protease inhibitors. J. Biomol. Struct. Dyn. 2021, 1–11. [Google Scholar] [CrossRef]
- Jayarathne, S.; Koboziev, I.; Park, O.H.; Oldewage-Theron, W.; Shen, C.L.; Moustaid-Moussa, N. Anti-inflammatory and anti-obesity properties of food bioactive components: Effects on adipose tissue. Prev. Nutr. Food Sci. 2017, 22, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swamy, M.K.; Arumugam, G.; Kaur, R.; Ghasemzadeh, A.; Yusoff, M.M.; Sinniah, U.R. GC-MS based metabolite profiling, antioxidant, and antimicrobial properties of different solvent extracts of Malaysian Plectranthus amboinicus leaves. Evid. Based Complement. Alternat. Med. 2017, 2017, 1517683. [Google Scholar] [CrossRef] [Green Version]
- Vervoort, L.M.; Ronden, J.E.; Thijssen, H.H. The potent antioxidant activity of the vitamin K cycle in microsomal lipid peroxidation. Biochem. Pharmacol. 1997, 54, 871–876. [Google Scholar] [CrossRef]
- Knapen, M.H.J.; Jardon, K.M.; Vermeer, C. Vitamin K-induced effects on body fat and weight: Results from a 3-year vitamin K2 intervention study. Eur. J. Clin. Nutr. 2018, 72, 136–141. [Google Scholar] [CrossRef]
- Menteşe, E.; Yılmaz, F.; Emirik, M.; Ülker, S.; Kahveci, B. Synthesis, molecular docking and biological evaluation of some benzimidazole derivatives as potent pancreatic lipase inhibitors. Bioorg. Chem. 2018, 76, 478–486. [Google Scholar] [CrossRef]
- Falé, P.L.; Ascensão, L.; Serralheiro, M.L.; Haris, P.I. Interaction between Plectranthus barbatus herbal tea components and human serum albumin and lysozyme: Binding and activity studies. Spectroscopy 2011, 26, 79–92. [Google Scholar] [CrossRef]
- Tang, X.; Tang, P.; Liu, L. Molecular structure–Affinity relationship of flavonoids in lotus leaf (Nelumbo nucifera Gaertn.) on binding to human serum albumin and bovine serum albumin by spectroscopic method. Molecules 2017, 22, 1036. [Google Scholar] [CrossRef]
- Akoglu, H. User’s guide to correlation coefficients. Turkish J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005; Available online: http://www.eoma.aoac.org (accessed on 26 September 2021).
- Karahan, F.; Ozyigit, I.I.; Saracoglu, I.A.; Yalcin, I.E.; Ozyigit, A.H.; Ilcim, A. Heavy metal levels and mineral nutrient status in different parts of various medicinal plants collected from eastern Mediterranean region of Turkey. Biol. Trace Elem. Res. 2020, 197, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. Available online: https://www.ajevonline.org/content/16/3/144 (accessed on 26 September 2021).
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Ungurianu, A.; Şeremet, O.; Gagniuc, E.; Olaru, O.T.; Guţu, C.; Grǎdinaru, D.; Ionescu-Tȋrgovişte, C.; Marginǎ, D.; Dǎnciulescu-Miulescu, R. Preclinical and clinical results regarding the effects of a plant-based antidiabetic formulation versus well established antidiabetic molecules. Pharmacol Res. 2019, 150, 104522. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Hermoso, J.; Pignol, D.; Kerfelec, B.; Crenon, I.; Chapus, C.; Fontecilla-Camps, J.C. Lipase activation by nonionic detergents the crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex. J. Biol. Chem. 1996, 271, 18007–18016. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Xie, J.; Xu, Y.; Chen, W. Discovery of anthocyanins from cranberry extract as pancreatic lipase inhibitors using a combined approach of ultrafiltration, molecular simulation and spectroscopy. Food Funct. 2020, 11, 8527–8536. [Google Scholar] [CrossRef] [PubMed]
- Gehlen, M.H. The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. J. Photochem. Photobiol. C 2020, 42, 100338. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, L.; Liu, S.; Yang, J.; Zhang, H.; Yan, J.; Hu, X. Enzyme-catalyzed Michael addition for the synthesis of warfarin and its determination via fluorescence quenching of L-tryptophan. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 176, 183–188. [Google Scholar] [CrossRef] [PubMed]
Proximate Composition | Samples | ||||||||
---|---|---|---|---|---|---|---|---|---|
AAL | AAS | AVL | AVS | AVR | ATL | ATS | ATR | ||
Moisture | (%) | 8.23 ± 0.21 b | n.d.1 | 8.43 ± 0.46 b | 7.08 ± 0.46 c | 7.25 ± 0.40 c | 9.51 ± 0.56 *,a | 7.47 ± 0.27 b,c | 8.06 ± 0.10 b,c |
Ash | 6.97 ± 0.13 *,a | 15.73 ± 0.07 e | 17.67 ± 0.1 d | 11.9 ± 0.10 *,b | 17.14 ± 0.06 d | 26.71 ± 0.11 *,c | 15.61 ± 0.65 e | ||
Crude fat | 0.02 ± 0.00 | 2.12 ± 0.24 *,a | 0.06 ± 0.03 | 0.78 ± 0.04 | 0.089 ± 0.01 | 1.39 ± 0.21 *,b | 0.54 ± 0.10 | ||
Crude protein | 10.19 ± 0.66 | 28.31 ± 1.25 *,a | 8.83 ± 0.37 | 6.73 ± 0.53 | 17.36 ± 0.58 | 17.05 ± 0.28 | 7.41 ± 0.68 | ||
Carbohydrate | 75.28 ± 0.80 b | 45.30 ± 1.7 d | 66.34 ± 0.9 c | 73.33 ± 0.50 b | 65.83 ± 1.10 c | 47.33 ± 0.30 d | 58.10 ± 1.20 *,a | ||
Heavy metals (Conc. in ppm) | As | 0.15 ± 0.00 | n.d. | 0.1 ± 0.00 *,a | 0.00 | 0.03 ± 0.00 *,b | 0.00 | 0.00 | 0.16 ± 0.00 |
Cd | 0.2 ± 0.0 | 0.21 ± 0.0 | 0.09 ± 0.0 | 0.1 ± 0.0 | 0.26 ± 0.0 * | 0.08 ± 0.0 | 0.11 ± 0.0 | ||
Pb | n.d. | 0.6 ± 0.1 b | 0.2 ± 0.0 d | 0.7 ± 0.0 *,b | 0.4 ± 0.0 *,a | 0.2 ± 0.0 d | 0.6 ± 0.0 b | ||
Hg | 0.06 ± 0.0 * | 0.03 ± 0.0 | 0.03 ± 0.0 | 0.04 ± 0.0 | 0.03 ± 0.0 | 0.02 ± 0.0 | 0.02 ± 0.0 | ||
Sn | 0.2 ± 0.0 * | 0.08 ± 0.0 | 0.03 ± 0.0 | 0.1 ± 0.0 | 0.04 ± 0.0 | 0.08 ± 0.0 | 0.01 ± 0.0 | ||
Essential minerals (Conc. in ppm) | Cr | 0.5 ± 0.1 | n.d. | 0.5 ± 0.0 | 0.5 ± 0.0 | 0.5 ± 0.1 | 0.6 ± 0.1 | 0.5 ± 0.1 | 0.9 ± 0.0 * |
Cu | 10 ± 0.4 a | 10.5 ± 0.4 a | 6 ± 0.5 | 5.3 ± 0.5 | 6.1 ± 0.4 | 4 ± 0.6 | 4.3 ± 0.0 | ||
Fe | 415 ± 51.1 a | 392.4 ± 42 a | 60.6 ± 17.3 c | 235 ± 22.4 b | 223.5 ± 4 b | 82.7 ± 3.8 c | 169.8 ± 6.8 b | ||
Mn | 69.8 ± 16.1 *,a | 48.5 ± 2.7 b | 11.7 ± 1.2 | 19.8 ± 2.3 | 33.2 ± 3 b | 13.2 ± 1 | n.d. | ||
Se | 0.2 ± 0.0 a | 0.3 ± 0.1 a | 0.2 ± 0.1 a | 0.1 ± 0.0 | 0.04 ± 0.0 | 0.01 ± 0.0 | 0.02 ± 0.0 | ||
Zn | 30 ± 1.5 | 42.7 ± 4 a | 37.6 ± 4.7 a | 28.7 ± 6.4 | 38 ± 3.2 a | 20.2 ± 6 | 22.5 ± 1.6 |
Daily Intake (µg/Day) | Samples | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AAL | AAS | AVL | AVS | AVR | ATL | ATS | ATR | FOA/WHO 3 (PTI) | RDA/TUL by NIN and FSSAI, India | ||
Heavy metals | As | 15 b | n.a. | 10 *,c | - | 3*,d | - | - | 16 b | 3.0 µg/kg body weight (bw) (PMTDI) [35] | 1.1 *,a mg/kg |
Cd | 20 b | 21 b | 9 c | 10 c | 26 *,a | 8c | 11 c | 25 µg/kg bw (PTMI) [36] | 0.2 b mg/kg | ||
Cu | 1000 b | 1050 b | 600 | 530 | 610 | 400 | 430 | 0.5 mg/kg bw (PMTDI) [37] | 1.7 *,a mg/day | ||
Pb | N.A. | 60 b | 20 d | 70 a | 40 c | 20 d | 60 b | 3.0 µg/kg bw (PMTDI) [36] | 0.3 d mg/kg | ||
Hg | 6 b | 3 | 3 | 4 | 3 | 2 | 2 | 4 µg/kg bw (PTWI) [35] | 1.0 a mg/kg | ||
Sn | 20 *,b | 8 d | 3 e | 10 c | 4 e | 8 c,d | 1 e | 3.3 mg/kg bw (PMTDI) [38] | 250 *,a mg/kg | ||
Essential minerals/ Micronutrients | Cr | 46 b,c | n.a. | 50 b,c | 47 b,c | 48 b,c | 61 b | 58 b,c | 91 *,a | ~0.037 b,c mg/day [39] | 0.05 b mg/day |
Fe | 41,500 b | 39,240 b | 6060 d | 23,500 c | 22,350 c | 8270 d | 16,980 c | 60 *,a mg/day (Max) [40] | 45 b mg/day | ||
Mn | 6980 a | 4850 b | 1170 | 1980 | 3320 b | 1320 | N.A. | 8.3 a mg/day (Max) [39] | 4 b mg/day | ||
Se | 20 c | 30 b | 20 c | 10 d | 4 d | 1 d | 2 d | ~0.035 a,b mg/day [41] | 0.04 *,a mg/day | ||
Zn | 3000 | 4270 | 3760 | 2870 | 3800 | 2020 | 2250 | 45 *,b mg/day (Max) [37] | 40 *,a mg/day |
Compound | Peak Area (%) | Molecular Weight (g/mol) | Biological Activity |
---|---|---|---|
AALM | |||
2,4-Di-tert-butylphenol and derivative | 32.2 | 262 | Antifungal; Antioxidant [47]; One of the indicators of gut microbiota balance in COVID-19 infection [48]. |
Adamantane derivative | 30.1 | 164 | Anti-neurodegenerative [49]; Antiobesity [50]; Antioxidant [51]; Antiviral [52]. |
Dioctyl phthalate (DEHP) | 14.2 | 390 | Antibacterial [53]; Anticancer; Antioxidant [54]. |
α-Tocopherol (Vitamin E form) | 11.4 | 430 | Anticancer [55]; Antiobesity and reduce lipid peroxidation; Antioxidant [56,57]; Regulation of immune function and inhibition of platelet aggregation [58]. |
Linalool derivative | 7.53 | 168 | Anticonvulsive [59]; Anticancer [60]. |
ATRA | |||
2,4-Di-tert-butylphenol and derivative | 40.2 | 262 | Antifungal; Antioxidant [47]; One of the indicators of gut microbiota balance in COVID-19 infection [48]. |
Pentadecane | 12.5 | 212 | Anticancer; Antidiabetic; Antiobesity; Antioxidant (a volatile composition of various bioactive plant extracts) [61]. |
Progesterone metabolite | 11.7 | 315 | Covid-19, and Anti-inflammatory [62]. |
Dioctyl phthalate (DEHP) | 9.2 | 390 | Antibacterial [53]; Anticancer; Antioxidant [54]. |
Betahistine dimer | 7.9 | 241 | Treatment of vertigo [63]; Antiobesity [64]. |
AVLA | |||
Phytol | 23.43 | 296 | Precursor for synthetic forms of vitamin E and K1 [46]; Antidiabetic; Antiobesity [65,66]. |
Chondrillasterol | 13.2 | 412 | α-glucosidase inhibitor [67]; Anti-ulcerogenic [68]; In-silico inhibitor SARS-CoV-2 [69]. |
Linolenic acid | 9.8 | 278 | Anti-inflammatory; Antiobesity [70]. |
Neophytadiene | 9.5 | 278 | Analgesic; Antipyretic; Anti-inflammatory; Antimicrobial; Antioxidant [71]. |
γ-Tocopherols (Vitamin E form) | 3.8 | 416 | Anticancer [55]; Antiobesity and reduce lipid peroxidation, Antioxidant [56,57]; Regulation of immune function and inhibition of platelet aggregation [58]. |
Phytonadione (Vitamin K1) | 0.7 | 450 | Antiobesity; Antioxidant [72,73]. |
Docking Scores | Lipinski-Type Properties | Bioavailability Radar 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compound | ΔGbind (kcal/mol) | H-bond between 1ETH residue-ligand | Residue(s) | Ki (mM) | LogP | HBD | HBA | Violation of Rule | Drug likeness | Pink zone shows optimal physicochemical range |
Betahistine 136.2 g/mol | −4.39 | 1 | Phe78 | 0.61 | 0.55 | 1 | 2 | 0 | Yes | |
Tocopheryl acetate 472.7 g/mol | +173.35 | 2 | Phe78 and Ser153 | - | 6.36 | 0 | 3 | 1 | Yes | |
α-Tocopherol 430.7 g/mol | −2.64 | 1 | Tyr115 | 11.6 | 6.14 | 1 | 2 | 1 | Yes | |
γ-Tocopherol 416.7 g/mol | −2.28 | 1 | Tyr115 | 21.3 | 5.94 | 1 | 2 | 1 | Yes | |
Phytonadione 450.7 g/mol | 255.24 | 2 | Phe78 and Ser153 | - | 0 | 2 | 1 | Yes |
Kinetic Parameters (in Column) and Extracts/Compounds (in Rows) | Temperature (K) | Ksv (Lg−1) or (×104 LM−1) | Kq (×108 Lg−1s−1) or (×1013 LM-1S−1) | Ka (Lg−1) or (× 104 LM−1) | n | R2 | ΔG (kJM−1) |
---|---|---|---|---|---|---|---|
AALM (g/L) | 310 | 0.90 ± 0.21 | 0.90 ± 0.21 b | 0.04 ± 0.01 c | 0.91 ± 0.63 | 0.99 | n.a. 1 |
320 | 0.80 ± 0.14 | 0.80 ± 0.14 | 0.02 ± 0.03 | 0.58 ± 0.23 | 0.79 | ||
330 | 0.73 ± 0.12 | 0.80 ± 0.14 | 0.01 ± 0.004 | 0.70 ± 0.12 | 0.99 | ||
ATRA (g/L) | 310 | 2.30 ± 0.00 | 2.30 ± 0.00 c | 0.015 ± 0.01 c | 0.68 ± 0.05 | 0.99 | n.a. |
320 | 1.80 ± 0.17 | 1.80 ± 0.17 | 0.004 ± 0.01 | 1.25 ± 0.57 | 0.99 | ||
330 | 1.67 ± 0.40 | 1.67 ± 0.40 | 0.003 ± 0.00 | 1.05 ± 0.20 | 0.99 | ||
AVLA (g/L) | 310 | 1.47 ± 0.60 | 1.50 ± 0.60 d | 0.041 ± 0.05 c | 0.66 ± 0.46 | 0.97 | n.a. |
320 | 1.50 ± 0.16 | 1.50 ± 0.16 | 0.01 ± 0.02 | 1.46 ± 1.02 | 0.99 | ||
330 | 1.30 ± 0.56 | 1.30 ± 0.56 | 0.01 ± 0.01 | 0.89 ± 0.45 | 0.99 | ||
Betahistine (M/L) | 310 | 10.10 ± 0.60 | 1.01 ± 0.06 a | 8.91 ± 0.11 a | 1.67 ± 0.42 | 0.99 | −29.36 ± 0.05 a |
Orlistat (M/L) | 310 | 6.63 ± 4.90 | 0.66 ± 0.49 a | 3.91 ± 0.18 b | 1.21 ± 0.44 | 0.99 | −27.24 ± 0.11 b |
Parameters | TPC | TFC | DPPH | ABTS | FRAP | Kq | Ka |
---|---|---|---|---|---|---|---|
TPC | - | +0.62 | +0.95 ** | +0.05 | −0.57 | +0.68 * | −0.12 |
TFC | - | - | +0.46 | +0.80** | −0.90 ** | +0.01 | +0.13 |
DPPH | - | - | - | −0.09 | −0.43 | +0.84 ** | −0.29 |
ABTS | - | - | - | - | −0.81 ** | −0.45 | +0.17 |
FRAP | - | - | - | - | - | +0.01 | −0.12 |
Kq | - | - | - | - | - | - | −0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaturvedi, S.; Gupta, P. Evaluation of Bioactive Metabolites and Antioxidant-Rich Extracts of Amaranths with Possible Role in Pancreatic Lipase Interaction: In Silico and In Vitro Studies. Metabolites 2021, 11, 676. https://doi.org/10.3390/metabo11100676
Chaturvedi S, Gupta P. Evaluation of Bioactive Metabolites and Antioxidant-Rich Extracts of Amaranths with Possible Role in Pancreatic Lipase Interaction: In Silico and In Vitro Studies. Metabolites. 2021; 11(10):676. https://doi.org/10.3390/metabo11100676
Chicago/Turabian StyleChaturvedi, Swati, and Promila Gupta. 2021. "Evaluation of Bioactive Metabolites and Antioxidant-Rich Extracts of Amaranths with Possible Role in Pancreatic Lipase Interaction: In Silico and In Vitro Studies" Metabolites 11, no. 10: 676. https://doi.org/10.3390/metabo11100676
APA StyleChaturvedi, S., & Gupta, P. (2021). Evaluation of Bioactive Metabolites and Antioxidant-Rich Extracts of Amaranths with Possible Role in Pancreatic Lipase Interaction: In Silico and In Vitro Studies. Metabolites, 11(10), 676. https://doi.org/10.3390/metabo11100676