Characterization of Volatile Organic Compounds in Mango Ginger (Curcuma amada Roxb.) from Myanmar
Abstract
:1. Introduction
2. Results
2.1. VOC Profile of Curcuma spp. rhizomes and Principal Components Analysis (PCA)
2.2. Major Discriminative VOCs Detected in C. amada and C. longa Species
3. Discussion
3.1. The VOCs Possessing Therapeutic Effect
3.2. The VOCs Possibly Contributing to the Mango Aroma
4. Materials and Methods
4.1. Plant Materials
4.2. Sample Preparation and Experimental Design
4.3. Analytical Conditions and HS Collection
4.4. GC-TOF-MS Analysis
4.5. Data Processing
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kusano, M.; Iizuka, Y.; Kobayashi, M.; Fukushima, A.; Saito, K. Development of a Direct Headspace Collection Method from Arabidopsis Seedlings Using HS-SPME-GC-TOF-MS Analysis. Metabolites 2013, 3, 223–242. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, F.; Cellini, A.; Marchetti, L.; Nagesh, K.M.; Piovene, C. Abiotic Stress in Plants—Mechanisms and Adaptations, 1st ed.; Shanker, A., Venkateswarlu, B., Eds.; InTech: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef]
- Peñuelas, J.; Llusià, J. The Complexity of Factors Driving Volatile Organic Compound Emissions by Plants. Biol. Plant. 2001, 44, 481–487. [Google Scholar] [CrossRef]
- D’Alessandro, M.; Turlings, T.C.J. Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 2006, 131, 24–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Satyal, P.; Setzer, W.N. Variations in the Volatile Compositions of Curcuma Species. Foods 2019, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Jena, S.; Ray, A.; Sahoo, A.; Panda, P.C.; Nayak, S. Deeper insight into the volatile profile of essential oil of two Curcuma species and their antioxidant and antimicrobial activities. Ind. Crops Prod. 2020, 155, 112830. [Google Scholar] [CrossRef]
- Mahadevi, R.; Kavitha, R. Phytochemical and pharmacological properties of Curcuma amada: A Review. Int. J. Res. Pharm. Sci. 2020, 11, 3546–3555. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Setzer, W.N. Chemical Composition and Biological Activities of Essential Oils of Curcuma Species. Nutrients 2018, 10, 1196. [Google Scholar] [CrossRef] [Green Version]
- Angel, G.R.; Menon, N.; Vimala, B.; Nambisan, B. Essential oil composition of eight starchy Curcuma species. Ind. Crops Prod. 2014, 60, 233–238. [Google Scholar] [CrossRef]
- Jatoi, S.A.; Kikuchi, A.; Gilani, S.A.; Watanabe, K.N. Phytochemical, pharmacological and ethnobotanical studies in mango ginger (Curcuma amada Roxb.; Zingiberaceae). Phytother. Res. 2007, 21, 507–516. [Google Scholar] [CrossRef]
- Singh, G.; Singh, O.P.; Maurya, S. Chemical and biocidal investigations on essential oils of some Indian Curcuma species. Prog. Cryst. Growth Charact. Mater. 2002, 45, 75–81. [Google Scholar] [CrossRef]
- Rao, A.S.; Rajanikanth, B.; Seshadri, R. Volatile aroma components of Curcuma amada Roxb. J. Agric. Food Chem. 1989, 37, 740–743. [Google Scholar] [CrossRef]
- Tamta, A.; Prakash, O.; Punetha, H.; Pant, A.K. Chemical composition and in vitro antioxidant potential of essential oil and rhizome extracts of Curcuma amada Roxb. Cogent Chem. 2016, 2, 1168067. [Google Scholar] [CrossRef]
- Sun, W.; Wang, S.; Zhao, W.; Wu, C.; Guo, S.; Gao, H.; Tao, H.; Lu, J.; Wang, Y.; Chen, X. Chemical constituents and biological research on plants in the genus Curcuma. Crit. Rev. Food Sci. Nutr. 2017, 57, 1451–1523. [Google Scholar] [CrossRef] [PubMed]
- Rowan, D.D. Volatile metabolites. Metabolites 2011, 1, 41–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisec, J.; Schauer, N.; Kopka, J.; Willmitzer, L.; Fernie, A.R. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 2006, 1, 387–396. [Google Scholar] [CrossRef]
- Jalili, V.; Barkhordari, A.; Ghiasvand, A. A comprehensive look at solid-phase microextraction technique: A review of reviews. Microchem. J. 2020, 152, 104319. [Google Scholar] [CrossRef]
- Kusano, M.; Kobayashi, M.; Iizuka, Y.; Fukushima, A.; Saito, K. Unbiased profiling of volatile organic compounds in the headspace of Allium plants using an in-tube extraction device. BMC Res. Notes 2016, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Bicchi, C.; Cordero, C.; Liberto, E.; Sgorbini, B.; Rubiolo, P. Headspace sampling of the volatile fraction of vegetable matrices. J. Chromatogr. A 2008, 1184, 220–233. [Google Scholar] [CrossRef]
- Zhang, Z.; Pawliszyn, J. Headspace solid-phase microextraction. Anal. Chem. 1993, 65, 1843–1852. [Google Scholar] [CrossRef]
- Sánchez-Palomo, E.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Rapid determination of volatile compounds in grapes by HS-SPME coupled with GC-MS. Talanta 2005, 66, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Martin, G.; Sanz-Landaluze, J.; León-Gonzalez, M.E.; Madrid, Y. In-vivo solid phase microextraction for quantitative analysis of volatile organoselenium compounds in plants. Anal. Chim. Acta 2019, 1081, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, R.; Panseri, S.; Giupponi, L.; Leoni, V.; Citti, C.; Cattaneo, C.; Cavaletto, M.; Giorgi, A. Phytochemical and Ecological Analysis of Two Varieties of Hemp (Cannabis sativa L.) Grown in a Mountain Environment of Italian Alps. Front. Plant Sci. 2019, 10, 1265. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Compounds by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured: Carol Stream, IL, USA, 2012. [Google Scholar]
- König, W.A.; Joulain, D.; Hochmuth, D.H. Terpenoids Library—MassFinder. Available online: https://massfinder.com/wiki/Terpenoids_Library (accessed on 20 March 2020).
- Skogerson, K.; Wohlgemuth, G.; Barupal, D.K.; Fiehn, O. The volatile compound BinBase mass spectral database. BMC Bioinform. 2011, 12, 321. [Google Scholar] [CrossRef] [Green Version]
- Stein, S.E.; Ausloos, P.; Clifton, C.L.; Klassen, J.K.; Lias, S.G.; Mikaya, A.I.; Sparkman, O.D.; Tchekhovskoi, D.V.; Zaikin, V.; Zhu, D. Evaluation of the NIST/EPA/NIH Mass Spectral Library. Abstr. Pap. Am. Chem. Soc. 1999, 218, 368. [Google Scholar]
- Câmara, J.S.; Alves, M.A.; Marques, J.C. Multivariate analysis for the classification and differentiation of Madeira wines according to main grape varieties. Talanta 2006, 68, 1512–1521. [Google Scholar] [CrossRef] [Green Version]
- Al-Qudah, T.S.; Malloh, S.A.; Nawaz, A.; Ayub, M.A.; Nisar, S.; Jilani, M.I.; Al-Qudah, T.S. Mango ginger (Curcuma amada Roxb.): A phytochemical mini review. IJCBS 2017, 11, 51–57. [Google Scholar]
- Padalia, R.C.; Verma, R.S.; Sundaresan, V.; Chauhan, A.; Chanotiya, C.S.; Yadav, A. Volatile terpenoid compositions of leaf and rhizome of Curcuma amada Roxb. from Northern India. J. Essent. Oil Res. 2013, 25, 17–22. [Google Scholar] [CrossRef]
- Hasegawa, T.; Nakatani, K.; Fujihara, T.; Yamada, H. Aroma of Turmeric: Dependence on the Combination of Groups of Several Odor Constituents. Nat. Prod. Commun. 2015, 10, 1047–1050. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Han, Q.; Qiao, C.; Song, J.; Lung Cheng, C.; Xu, H. Chemical markers for the quality control of herbal medicines: An overview. Chin. Med. 2008, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.K.; Srivastava, S.K.; Shah, N.C. Constituents of the Rhizome Essential Oil of Curcuma amada Roxb. from India. J. Essent. Oil Res. 2001, 13, 63–64. [Google Scholar] [CrossRef]
- Liju, V.B.; Jeena, K.; Kuttan, R. An evaluation of antioxidant, anti-inflammatory, and antinociceptive activities of essential oil from Curcuma longa L. Indian J. Pharmacol. 2011, 43, 526–531. [Google Scholar] [CrossRef] [PubMed]
- De Souza Tavares, W.; de Sousa Freitas, S.; Grazziotti, G.H.; Parente, L.M.L.; Lião, L.M.; Zanuncio, J.C. Ar-turmerone from Curcuma longa (Zingiberaceae) rhizomes and effects on Sitophilus zeamais (Coleoptera: Curculionidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae). Ind. Crops Prod. 2013, 46, 158–164. [Google Scholar] [CrossRef]
- Singh, G.; Kapoor, I.P.S.; Singh, P.; de Heluani, C.S.; de Lampasona, M.P.; Catalan, C.A.N. Comparative study of chemical composition and antioxidant activity of fresh and dry rhizomes of turmeric (Curcuma longa Linn.). Food Chem. Toxicol. 2010, 48, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Kapoor, I.P.S.; Singh, P.; de Heluani, C.S.; de Lampasona, M.P.; Catalan, C.A.N. Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food Chem. Toxicol. 2008, 46, 3295–3302. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Baldwin, I.T. Nitrogen supply influences herbivore-induced direct and indirect defenses and transcriptional responses in Nicotiana attenuata. Plant Physiol. 2004, 135, 496–506. [Google Scholar] [CrossRef] [Green Version]
- Pierik, R.; Ballaré, C.L.; Dicke, M. Ecology of plant volatiles: Taking a plant community perspective. Plant Cell Environ. 2014, 37, 1845–1853. [Google Scholar] [CrossRef] [Green Version]
- Hashmi, L.S.; Hossain, M.A.; Weli, A.M.; Al-Riyami, Q.; Al-Sabahi, J.N. Gas chromatography-mass spectrometry analysis of different organic crude extracts from the local medicinal plant of Thymus vulgaris L. Asian Pac. J. Trop. Biomed. 2013, 3, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Perumal, A.B.; Sellamuthu, P.S.; Nambiar, R.B.; Sadiku, E.R. Antifungal activity of five different essential oils in vapour phase for the control of Colletotrichum gloeosporioides and Lasiodiplodia theobromae in vitro and on mango. Int. J. Food Sci. Technol. 2016, 51, 411–418. [Google Scholar] [CrossRef]
- Sun, J.; Cui, G.; Ma, X.; Zhan, Z.; Ma, Y.; Teng, Z.; Gao, W.; Wang, Y.; Chen, T.; Lai, C.; et al. An integrated strategy to identify genes responsible for sesquiterpene biosynthesis in turmeric. Plant Mol. Biol. 2019, 101, 221–234. [Google Scholar] [CrossRef]
- Suwannayod, S.; Sukontason, K.L.; Pitasawat, B.; Junkum, A.; Limsopatham, K.; Jones, M.K.; Somboon, P.; Leksomboon, R.; Chareonviriyaphap, T.; Tawatsin, A.; et al. Synergistic Toxicity of Plant Essential Oils Combined with Pyrethroid Insecticides against Blow Flies and the House Fly. Insects 2019, 10, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, J.; Qi, M.; Fang, L.; Zhou, S.; Fu, R.; Zhang, P. Solid-phase microextraction-gas chromatographic-mass spectrometric analysis of volatile compounds from Curcuma wenyujin Y.H. Chen et C. Ling. J. Pharm. Biomed. Anal. 2006, 40, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Luo, J.; Kong, W.; Zhang, J.; Logrieco, A.F.; Wang, X.; Yang, M. Uncovering the antifungal components from turmeric (Curcuma longa L.) essential oil as Aspergillus flavus fumigants by partial least squares. RSC Adv. 2015, 5, 41967–41976. [Google Scholar] [CrossRef]
- Han, X.; Beaumont, C.; Stevens, N. Chemical composition analysis and in vitro biological activities of ten essential oils in human skin cells. Biochim. Open 2017, 5, 1–7. [Google Scholar] [CrossRef]
- Padmavathi, A.R.; Bakkiyaraj, D.; Thajuddin, N.; Pandian, S.K. Effect of 2, 4-di-tert-butylphenol on growth and biofilm formation by an opportunistic fungus Candida albicans. Biofouling 2015, 31, 565–574. [Google Scholar] [CrossRef]
- Wungsintaweekul, J.; Sitthithaworn, W.; Putalun, W.; Pfeifhoffer, H.W. Antimicrobial, antioxidant activities and chemical composition of selected Thai spices. Songklanakarin J. Sci. Technol. 2010, 32, 589–598. [Google Scholar]
- Ghosh, A.K.; Banerjee, S.; Mullick, H.I.; Banerjee, J. Zingiber officinale: A natural gold. Int. J. Pharma Bio Sci. 2011, 2, 283–294. [Google Scholar]
- Varadarajan, R.; Mathew, M.C.R.; Souprayan, S. Hepatoprotective efficacy of ethanolic extracts of rhizome Curcuma amada Roxb. In experimental rats. Ann. Plant Sci. 2018, 7, 1966. [Google Scholar] [CrossRef] [Green Version]
- Pino, J.A.; Mesa, J. Contribution of volatile compounds to mango (Mangifera indica L.) aroma. Flavour Frag. J. 2006, 21, 207–213. [Google Scholar] [CrossRef]
- Pino, J.A. Odour-active compounds in mango (Mangifera indica L. cv. Corazón). Int. J. Food Sci. Technol. 2012, 47, 1944–1950. [Google Scholar] [CrossRef]
- Munafo, J.P., Jr.; Didzbalis, J.; Schnell, R.J.; Steinhaus, M. Insights into the Key Aroma Compounds in Mango (Mangifera indica L. ‘Haden’) Fruits by Stable Isotope Dilution Quantitation and Aroma Simulation Experiments. J. Agric. Food Chem. 2016, 64, 4312–4318. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.N.; Tun, Y.T.; Kawase, M. Field survey and collection of traditionally grown crops in northern areas in Myanmar. AREIPGR 2006, 23, 161–175. [Google Scholar]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonsson, P.; Johansson, E.S.; Wuolikainen, A.; Lindberg, J.; Schuppe-Koistinen, I.; Kusano, M.; Sjöström, M.; Trygg, J.; Moritz, T.; Antti, H. Predictive Metabolite Profiling Applying Hierarchical Multivariate Curve Resolution to GC−MS Data A Potential Tool for Multi-parametric Diagnosis. J. Proteome Res. 2006, 5, 1407–1414. [Google Scholar] [CrossRef]
Accession No. | Species | Country of Origin | Source | Year of Acquisition with SMTA |
---|---|---|---|---|
ZO45 | C. amada | Myanmar | Genebank | 2004 |
ZO89 | C. amada | Thailand 1 | Rural market | 2005 |
ZO114 | C. amada | Myanmar | Local farm | 2004 |
ZO138 | C. longa | Myanmar | Local farm | 2006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Shukurova, M.K.; Asikin, Y.; Kusano, M.; Watanabe, K.N. Characterization of Volatile Organic Compounds in Mango Ginger (Curcuma amada Roxb.) from Myanmar. Metabolites 2021, 11, 21. https://doi.org/10.3390/metabo11010021
Chen Y, Shukurova MK, Asikin Y, Kusano M, Watanabe KN. Characterization of Volatile Organic Compounds in Mango Ginger (Curcuma amada Roxb.) from Myanmar. Metabolites. 2021; 11(1):21. https://doi.org/10.3390/metabo11010021
Chicago/Turabian StyleChen, Yanhang, Musavvara Kh. Shukurova, Yonathan Asikin, Miyako Kusano, and Kazuo N. Watanabe. 2021. "Characterization of Volatile Organic Compounds in Mango Ginger (Curcuma amada Roxb.) from Myanmar" Metabolites 11, no. 1: 21. https://doi.org/10.3390/metabo11010021
APA StyleChen, Y., Shukurova, M. K., Asikin, Y., Kusano, M., & Watanabe, K. N. (2021). Characterization of Volatile Organic Compounds in Mango Ginger (Curcuma amada Roxb.) from Myanmar. Metabolites, 11(1), 21. https://doi.org/10.3390/metabo11010021