Cytotoxic Activity and Metabolic Profiling of Fifteen Euphorbia Species
Abstract
:1. Introduction
2. Results
2.1. Cytotoxic Activity
2.2. LC-HR/MS Analysis
2.3. Metabolic and Molecular Correlations Analysis
3. Discussion
3.1. Cytotoxic Activity
3.2. LC-HR/MS Analysis
3.3. Metabolic and Molecular Correlations Analysis
4. Materials and Methods
4.1. Plant Material
4.2. Methanolic Extracts for Metabolic and Cytotoxic Studies
4.3. Cytotoxic Activity
4.4. LC-HR/MS Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karikas, G.A. Anticancer and chemopreventing natural products: Some biochemical and therapeutic aspects. J. BUON 2010, 15, 627–638. [Google Scholar] [PubMed]
- Hücre, B.T.; Aktiviteleri, H.S. Cytotoxic Activities of Certain Medicinal Plants on Different Cancer Cell Lines. Turk. J. Pharm. Sci. 2017, 14, 222–230. [Google Scholar]
- Vasas, A.; Hohmann, J. Euphorbia Diterpenes: Isolation, Structure, Biological Activity, and Synthesis (2008−2012). Chem. Rev. 2014, 114, 8579–8612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ernst, M.; Grace, O.M.; Saslis-Lagoudakis, C.H.; Nilsson, N.; Simonsen, H.T.; Rønsted, N. Global medicinal (Euphorbiaceae) uses of Euphorbia L. J. Ethnopharmacol. 2015, 176, 90–101. [Google Scholar] [CrossRef]
- Wu, Q.; Tang, Y.; Ding, A.; You, F.; Zhang, L.; Duan, J. 13C-NMR Data of Three Important Diterpenes Isolated from Euphorbia Species. Molecules 2009, 14, 4454–4475. [Google Scholar] [CrossRef] [Green Version]
- Gomaa, A.A.R.; Samy, M.N.; Abdelmohsen, U.R.; Krischke, M.; Mueller, M.J.; Wanas, A.S.; Desoukey, S.Y.; Kamel, M.S. Metabolomic profiling and anti-infective potential of Zinnia elegans and Gazania rigens (Family Asteraceae). Nat. Prod. Res. 2018, 34, 1–4. [Google Scholar] [CrossRef]
- Tawfike, A.F.; Viegelmann, C.; Edrada-Ebel, R. Metabolomics and dereplication strategies in natural products. In Metabolomics Tools for Natural Product Discovery; Humana Press: Totowa, NJ, USA, 2013; pp. 227–244. [Google Scholar]
- Allard, P.M.; Péresse, T.; Bisson, J.; Gindro, K.; Marcourt, L.; Pham, V.C.; Roussi, F.; Litaudon, M.; Wolfender, J.L. Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Anal. Chem. 2016, 88, 3317–3323. [Google Scholar] [CrossRef]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrum. Rev. 2007, 26, 51–78. [Google Scholar] [CrossRef]
- Chassagne, F.; Haddad, M.; Amiel, A.; Phakeovilay, C.; Manithip, C.; Bourdy, G.; Deharo, E.; Marti, G. A metabolomic approach to identify anti-hepatocarcinogenic compounds from plants used traditionally in the treatment of liver diseases. Fitoterapia 2018, 127, 226–236. [Google Scholar] [CrossRef]
- Farag, M.A.; Tawfike, A.F.; Donia, M.S.; Ehrlich, A.; Wessjohann, L.A. Influence of Pickling Process on Allium cepa and Citrus limon Metabolome as Determined via Mass Spectrometry-Based Metabolomics. Molecules 2019, 24, 928. [Google Scholar] [CrossRef] [Green Version]
- Tawfike, A.F.; Romli, M.; Clements, C.; Abbott, G.; Young, L.; Schumacher, M.; Diederich, M.; Farag, M.; Edrada-Ebel, R. Isolation of anticancer and anti-trypanosome secondary metabolites from the endophytic fungus Aspergillus flocculus via bioactivity guided isolation and MS based metabolomics. J. Chromatogr. B 2019, 1106, 71–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whelan, L.C.; Ryan, M.F. Ethanolic extracts of Euphorbia and other ethnobotanical species as inhibitors of human tumour cell growth. Phytomedicine 2003, 10, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Wongprayoon, P.; Charoensuksai, P. Cytotoxic and anti-migratory activities from hydroalcoholic extract of Euphorbia lactea Haw. Against HN22 cell line. Thai J. Pharm. Sci. 2018, 13, 69–77. [Google Scholar]
- Ashraf, A.; Sarfraz, R.A.; Rashid, M.A.; Shahid, M. Antioxidant, antimicrobial, antitumor, and cytotoxic activities of an important medicinal plant (Euphorbia royleana) from Pakistan. J. Food Drug Anal. 2015, 23, 109–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villanueva, J.; Quirós, L.M.; Castañón, S. Purification and partial characterization of a ribosome-inactivating protein from the latex of Euphorbia trigona Miller with cytotoxic activity toward human cancer cell lines. Phytomedicine 2015, 22, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Choene, M.; Motadi, L. Validation of the antiproliferative effects of Euphorbia tirucalli extracts in breast cancer cell lines. Mol. Biol. 2016, 50, 98–110. [Google Scholar] [CrossRef]
- Waczuk, E.P.; Kamdem, J.P.; Abolaji, A.O.; Meinerz, D.F.; Bueno, D.C.; do Nascimento Gonzaga, T.K.; do Canto Dorow, T.S.; Boligon, A.A.; Athayde, M.L.; da Rocha, J.B.T.; et al. Euphorbia tirucalli aqueous extract induces cytotoxicity, genotoxicity and changes in antioxidant gene expression in human leukocytes. Toxicol. Res. 2015, 4, 739–748. [Google Scholar] [CrossRef]
- Vasas, A. Isolation and Structure Elucidation of Diterpenes from Hungarian Euphorbia Species. Ph.D. Thesis, University of Szeged, Szeged, Hungary, 2006. [Google Scholar]
- Zani, C.L.; Marston, A.; Hamburger, M.; Hostettmann, K. Molluscicidal milliamines from Euphorbia milii var. hislopii. Phytochemistry 1993, 34, 89–95. [Google Scholar] [CrossRef]
- Avila, L.; Perez, M.; Sanchez-Duffhues, G.; Hernández-Galán, R.; Muñoz, E.; Cabezas, F.; Echeverri, F. Effects of diterpenes from latex of Euphorbia lactea Haw. and Euphorbia laurifolia on human immunodeficiency virus type 1 reactivation. Phytochemistry 2010, 71, 243–248. [Google Scholar] [CrossRef]
- Nothias-Esposito, M.; Nothias, L.F.; Da Silva, R.R.; Retailleau, P.; Zhang, Z.; Leyssen, P.; Roussi, F.; Touboul, D.; Paolini, J.; Dorrestein, P.C. Investigation of Premyrsinane and Myrsinane Esters in Euphorbia cupanii and Euphobia pithyusa with MS2LDA and Combinatorial Molecular Network Annotation Propagation. J. Nat. Prod. 2019, 82, 1459–1470. [Google Scholar] [CrossRef]
- Nielsen, P.E.; Nishimura, H.; Liang, Y.; Calvin, M. Steroids from Euphorbia and other latex-bearing plants. Phytochemistry 1979, 18, 103–104. [Google Scholar] [CrossRef]
- Seigler, D.S. Phytochemistry and systematics of the Euphorbiaceae. Ann. Missouri Bot. Gard. 1994, 81, 380–401. [Google Scholar] [CrossRef]
- Mahomoodally, M.F.; Dall’Acqua, S.; Sinan, K.I.; Sut, S.; Ferrarese, I.; Etienne, O.K.; Sadeer, N.B.; Ak, G.; Zengin, G. Phenolic compounds analysis of three Euphorbia species by LC-DAD-MSn and their biological properties. J. Pharm. Biomed. Anal. 2020, 189, 113477. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Schütte, H.R. 1-Methyl-6-hydroxy-1.2.3.4-tetrahydroisochinolin-3-carbonsäure im Milchsaft von Euphorbia myrsinites L. Z. Naturforsch. B 1968, 23, 491–493. [Google Scholar] [CrossRef]
- Fürstenberger, G.; Hecker, E. On the Active Principles of the Spurge Family (Euphorbiaceae) XI. [1] the Skin Irritant and Tumor Promoting Diterpene Esters of Euphorbia tirucalli L. Originating from South Africa. Z. Naturforsch. C 1985, 40, 631–646. [Google Scholar] [CrossRef]
- Cai, W.H.; Matsunami, K.; Otsuka, H. Supinaionosides A and B: Megastigmane Glucosides and Supinanitrilosides A—F: Hydroxynitrile Glucosides from the Whole Plants of Euphorbia supina. Chem. Pharm. Bull. 2009, 57, 840–845. [Google Scholar] [CrossRef] [Green Version]
- Fattorusso, E.; Lanzotti, V.; Taglialatela-Scafati, O.; Tron, G.C.; Appendino, G. Bisnorsesquiterpenoids from Euphorbia resinifera Berg. and an expeditious procedure to obtain resiniferatoxin from its fresh latex. Eur. J. Org. Chem. 2002, 1, 71–78. [Google Scholar] [CrossRef]
- Khan, A.Q.; Rasheed, T.; Kazmi, S.N.U.H.; Ahmed, Z.; Malik, A. Cycloeuphordenol, a new triterpene from Euphorbia tirucalli. Phytochemistry 1988, 27, 2279–2281. [Google Scholar] [CrossRef]
- Yu, H.J.; Shen, C.C.; Yi, H.M.; Chen, T.H.; Hsueh, M.L.; Lin, C.C.; Don, M.J. Euphorbiane: A novel triterpenoid with an unprecedented skeleton from Euphorbia tirucalli. J. Chin. Chem. Soc. 2013, 60, 191–194. [Google Scholar] [CrossRef]
- Afza, N.; Malik, A.; Siddiqui, S. Isolation and structure of cycloeuphornol, a new triterpene from Euphorbia tirucalli. Pak. J. Sci. Ind. Res. 1979, 22, 173–176. [Google Scholar]
- De, P.T.; Urones, J.G.; Marcos, I.S.; Basabe, P.; Cuadrado, M.S.; Moro, R.F. Triterpenes from Euphorbia broteri. Phytochemistry 1987, 26, 1767–1776. [Google Scholar] [CrossRef]
- Daoubi, M.; Benharref, A.; Hernandez-Galan, R.; Macías-Sánchez, A.J.; Collado, I.G. Two novel steroids from Euphorbia officinarum latex. Nat. Prod. Res. 2004, 18, 177–181. [Google Scholar] [CrossRef]
- Mueller, R.; Pohl, R. Flavonol glycosides of Euphorbia amygdaloides and their quantitative determination at various stages of plant development. 5. Flavonoids of native Euphorbiaceae. Planta Med. 1970, 18, 114–129. [Google Scholar]
- Tanaka, R.; Matsunaga, S. Supinenolones A, B and C, fernane type triterpenoids from Euphorbia supina. Phytochemistry 1989, 28, 3149–3154. [Google Scholar] [CrossRef]
- Toume, K.; Nakazawa, T.; Hoque, T.; Ohtsuki, T.; Arai, M.A.; Koyano, T.; Ishibashi, M. Cycloartane triterpenes and ingol diterpenes isolated from Euphorbia neriifolia in a screening program for death-receptor expression-enhancing activity. Planta Med. 2012, 78, 1370–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öksüz, S.; Gil, H.; Chai, R.R.; Pezzuto, J.M.; Cordell, G.A.; Ulubelen, A. Biologically active compounds from the Euphorbiaceae; 2. Two triterpenoids of Euphorbia cyparissias. Planta Med. 1994, 60, 594–596. [Google Scholar] [CrossRef]
- Kato, T.; Frei, B.; Heinrich, M.; Sticher, O. Antibacterial hydroperoxysterols from Xanthosoma robustum. Phytochemistry 1996, 41, 1191–1195. [Google Scholar] [CrossRef]
- Cabrera, G.M.; Seldes, A.M. Hydroperoxycycloartanes from Tillandsia recurvate. J. Nat. Prod. 1995, 58, 1920–1924. [Google Scholar] [CrossRef]
- Dumkow, K. Kaempferol-3-glucuronide and quercetin-3-glucuronide, principal flavonoids of Euphorbia lathyris L. and their separation on acetylated polyamide. Z. Naturforsch. B 1969, 24, 358. [Google Scholar] [CrossRef]
- Hu, Q.; Dai, L.L.; Wang, L.; Xiao, Y.H.; Pan, Z.Q. Study on optimization of extraction and separation processes of breviscapine. Chem. Bioeng. 2009, 26, 58–60. [Google Scholar]
- Zhang, W.; Di, D.; Wen, B.; Liu, X.; Jiang, S. Determination of Scutellarin in Scutellaria barbata Extract by Liquid Chromatography–Electrochemical Detection. J. Liq. Chromatogr. Relat. Technol. 2003, 26, 2133–2140. [Google Scholar] [CrossRef]
- Miyaichi, Y.; Kizu, H.; Tomimori, T.; Lin, C.C. Studies on the Constituents of Scutellaria Species. XI: On the Flavonoid Constituents of the Aerial Parts of Scutellaria indica L. Chem. Pharm. Bull. 1989, 37, 794–797. [Google Scholar] [CrossRef] [Green Version]
- Zayed, S.M.; Farghaly, M.; Taha, H.; Gotta, H.; Hecker, E. Dietary cancer risk conditional cancerogens in produce of livestock fed on species of spurge (Euphorbiaceae). J. Cancer Res. Clin. Oncol. 1998, 124, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhu, C.; Cheng, W.; Fan, X.; Chen, X.; Yang, S.; Guo, Y.; Ye, F.; Shi, J. Chemical constituents of the roots of Euphorbia micractina. J. Nat. Prod. 2009, 72, 1620–1626. [Google Scholar] [CrossRef]
- Wenxiang, W.; Xingbao, D. Acetophenone Derivatives From Euphorbia Ebracteolata Hayata. Acta Pharm. Sin. 1999, 7, 514–517. [Google Scholar]
- Khan, A.Q.; Rasheed, T.; Malik, A. Tirucalicine: A new macrocyclic diterpene from Euphorbia tirucalli. Heterocycles 1988, 27, 2851–2856. [Google Scholar]
- Marco, J.A.; Sanz-Cervera, J.F.; Yuste, A. Ingenane and lathyrane diterpenes from the latex of Euphorbia canariensis. Phytochemistry 1997, 45, 563–570. [Google Scholar] [CrossRef]
- Yamamura, S.; Shizuri, Y.; Kosemura, S.; Ohtsuka, J.; Tayama, T.; Ohba, S.; Terada, Y. Diterpenes from Euphorbia helioscopia. Phytochemistry 1989, 28, 3421–3436. [Google Scholar] [CrossRef]
- Forgo, P.; Rédei, D.; Hajdu, Z.; Szabó, P.; Szabó, L.; Hohmann, J. Unusual tigliane diterpenes from Euphorbia grandicornis. J. Nat. Prod. 2011, 74, 639–643. [Google Scholar] [CrossRef]
- Gschwendt, M.; Hecker, E. Über die Wirkstoffe der Euphorbiaceen. Z. Krebsforsch. Klin. Onkol. 1973, 80, 335–350. [Google Scholar] [CrossRef]
- Fürstenberger, G.; Hecker, E. New highly irritant euphorbia factors from latex of Euphorbia tirucalli L. Experientia 1977, 33, 986–988. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Li, Y.; Wang, S.F.; Zhao, Y.L.; Liu, K.C.; Wang, X.M.; Yang, Y.P. Ingol and ingenol diterpenes from the aerial parts of Euphorbia royleana and their antiangiogenic activities. J. Nat. Prod. 2009, 72, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.Q.; Malik, A. A new macrocyclic diterpene ester from the latex of Euphorbia tirucalli. J. Nat. Prod. 1990, 53, 728–731. [Google Scholar] [CrossRef]
- Adolf, W.; Köhler, I.; Hecker, E. Lathyrane type diterpene esters from Euphorbia lathyris. Phytochemistry 1984, 23, 1461–1463. [Google Scholar] [CrossRef]
- Daoubi, M.; Marquez, N.; Mazoir, N.; Benharref, A.; Hernández-Galán, R.; Munoz, E.; Collado, I.G. Isolation of new phenylacetylingol derivatives that reactivate HIV-1 latency and a novel spirotriterpenoid from Euphorbia officinarum latex. Bioorg. Med. Chem. 2007, 15, 4577–4584. [Google Scholar] [CrossRef]
- Opferkuch, H.J.; Hecker, E. New diterpenoid irritants from Euphorbia ingens. Tetrahedron Lett. 1974, 15, 261–264. [Google Scholar] [CrossRef]
- Noori, M.; Chehreghani, A.; Kaveh, M. Flavonoids of 17 species of Euphorbia (Euphorbiaceae) in Iran. Toxicol. Environ. Chem. 2009, 91, 631–641. [Google Scholar] [CrossRef]
- Singh, H.; Mishra, A.; Mishra, A.K. The chemistry and pharmacology of Cleome genus: A review. Biomed. Pharmacother. 2018, 101, 37–48. [Google Scholar] [CrossRef]
- Phan, N.M.; Nguyen, T.P.; Le, T.D.; Mai, T.C.; Phong, M.T.; Mai, D.T. Two new flavonol glycosides from the leaves of Cleome viscosa L. Phytochem. Lett. 2016, 18, 10–13. [Google Scholar] [CrossRef]
- Iwashina, T.; Kokubugata, G. Flavone and flavonol glycosides from the leaves of Triumfetta procumbens in Ryukyu Islands. Bull. Natl. Mus. Nat. Sci. Ser. B 2012, 38, 63–67. [Google Scholar]
- Hamad, M.N. Isolation of rutin from Ruta graveolens (Rutaceae) cultivated in Iraq by precipitation and fractional solubilization. Pharm. Glob. 2012, 3, 1. [Google Scholar]
- Williams, C.A.; Harborne, J.B.; Eagles, J. Leaf flavonoid diversity in the Australian genus Patersonia. Phytochemistry 1989, 28, 1891–1896. [Google Scholar] [CrossRef]
- Yang, Z.G.; Jia, L.N.; Shen, Y.; Ohmura, A.; Kitanaka, S. Inhibitory effects of constituents from Euphorbia lunulata on differentiation of 3T3-L1 cells and nitric oxide production in RAW264. 7 cells. Molecules 2011, 16, 8305–8318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, N.A. Flavonol glycosides of Euphorbia retusa and E. sanctae-catharinae. Phytochemistry 1985, 24, 371–372. [Google Scholar] [CrossRef]
- Corea, G.; Fattorusso, E.; Lanzotti, V.; Motti, R.; Simon, P.N.; Dumontet, C.; Di Pietro, A. Structure-activity relationships for euphocharacins A-L, a new series of jatrophane diterpenes, as inhibitors of cancer cell P-glycoprotein. Planta Med. 2004, 70, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Tanaka, T.; Nonaka, G.I.; Nishioka, I. Tannins and Related Compounds. XCV.: Isolation and Characterization of Helioscopinins and Helioscopins, Four New Hydrolyzable Tannins from Euphorbia helioscopia L.(1). Chem. Pharm. Bull. 1990, 38, 1518–1523. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.J.; Yeh, C.H.; Yang, L.M.; Liu, P.C.; Hsu, F.L. Phenolic compounds from Formosan Euphorbia tirucalli. J. Chin. Chem. Soc. 2001, 48, 105–108. [Google Scholar] [CrossRef]
- Bindra, R.S.; Satti, N.K.; Suri, O.P. Isolation and structures of ellagic acid derivatives from Euphorbia acaulis. Phytochemistry 1988, 27, 2313–2315. [Google Scholar] [CrossRef]
- Niu, C.S.; Li, Y.; Liu, Y.B.; Ma, S.G.; Liu, F.; Cui, L.; Yu, H.B.; Wang, X.J.; Qu, J.; Yu, S.S. Grayanane diterpenoids with diverse bioactivities from the roots of Pieris Formosa. Tetrahedron 2018, 74, 375–382. [Google Scholar] [CrossRef]
- Shen, Y.C.; Prakash, C.V.; Chen, Y.J.; Hwang, J.F.; Kuo, Y.H.; Chen, C.Y. Taxane Diterpenoids from the Stem Bark of Taxus mairei. J. Nat. Prod. 2001, 64, 950–952. [Google Scholar] [CrossRef]
- Tawfike, A.F.; Tate, R.; Abbott, G.; Young, L.; Viegelmann, C.; Schumacher, M.; Diederich, M.; Edrada-Ebel, R. Metabolomic tools to assess the chemistry and bioactivity of endophytic Aspergillus strain. Chem. Biodiverse. 2017, 14, e1700040. [Google Scholar] [CrossRef]
- Cheng, C.; Othman, E.; Stopper, H.; Edrada-Ebel, R.; Hentschel, U.; Abdelmohsen, U. Isolation of petrocidin A, a new cytotoxic cyclic dipeptide from the marine sponge-derived bacterium Streptomyces sp. SBT348. Mar. Drugs 2017, 15, 383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Ibrahim, A.H.; Attia, E.Z.; Hajjar, D.; Anany, M.A.; Desoukey, S.Y.; Fouad, M.A.; Kamel, M.S.; Wajant, H.; Gulder, T.A.; Abdelmohsen, U.R. New cytotoxic cyclic peptide from the marine sponge-associated Nocardiopsis sp. UR67. Mar. Drugs 2018, 16, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawfike, A.F.; Attia, E.Z.; Desoukey, S.Y.; Hajjar, D.; Makki, A.A.; Schupp, P.J.; Edrada-Ebel, R.; Abdelmohsen, U.R. New bioactive metabolites from the elicited marine sponge-derived bacterium Actinokineospora spheciospongiae sp. nov. AMB Express 2019, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Macintyre, L.; Zhang, T.; Viegelmann, C.; Martinez, I.; Cheng, C.; Dowdells, C.; Abdelmohsen, U.R.; Gernert, C.; Hentschel, U.; Edrada-Ebel, R. Metabolomic tools for secondary metabolite discovery from marine microbial symbionts. Mar. Drugs 2014, 12, 3416–3448. [Google Scholar] [CrossRef] [Green Version]
Sample Code | HEPG2 | MCF-7 | CACO2 |
---|---|---|---|
E. abyssinica J.F. Gmel. | -- | -- | 11.3 |
E. caput-medusae L. | -- | -- | 17.2 |
E. trigona Mill. | -- | 16.1 | 15.6 |
E. stenoclada Baill. | 19.3 | 19.5 | 18.2 |
E. tithymaloides L. | -- | -- | 13.6 |
E. tirucalli L. | -- | -- | -- |
E. royleana Boiss. | -- | -- | 9.1 |
E. officinarum L. | -- | -- | 7.2 |
E. horrida Boiss. | -- | -- | -- |
E. canariensis L. | 9.8 | 12.7 | -- |
E. grandialata R.A. Dyer | 8.4 | 7.5 | -- |
E. obesa Hook. | 6.3 | -- | -- |
E. lactea Haw. | 5.2 | 5.1 | -- |
E. ingens E. Mey. | -- | -- | -- |
E. milli Des Moul. | -- | -- | 9.8 |
N. | Compound | Class | Mode | Formula | m/z | Rt | Structure | Source |
---|---|---|---|---|---|---|---|---|
1 | l-Methyl-6-hydroxy-l,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid | Isoquinoline-3-carboxylic acid | - | C11H13NO3 | 206.0824 | 10.37 | E. myrsinites L. [26] | |
2 | 4-Deoxyphorbol | Diterpene | + | C20H28O5 | 349.2006 | 9.63 | E. tirucalli L. [27] | |
3 | Supinaionoside A | Sesquiterpene | - | C19H30O9 | 401.1817 | 10.01 | E. supina Raf. [28] | |
4 | Euphorbioside B | Sesquiterpene | + | C19H34O9 | 407.2271 | 8.12 | E. resinifera Berg. [29] | |
5 | Euphorbosterol | Sterol | + | C29H48O | 413.3775 | 27.46 | E. tirucalli L. [30] | |
6 | Euphorbiane | Triterpene | + | C30H48O | 425.3775 | 24.48 | E. tirucalli L. [31] | |
7 | Cycloeuphordenol | Sterol | + | C30H50O | 427.3931 | 26.12 | E. tirucalli L. [30] | |
8 | Cycloeuphornol | Sterol | + | C31H50O | 439.3931 | 27.24 | E. tirucalli L. [32] | |
9 | Canaric acid(3,4-seco-4(23),20(30)-Lupadien-3-oic acid) | Triterpene | + | C30H48O2 | 441.3724 | 27.36 | E. broteri Daveau. [33] | |
10 | Euphorbinol | Sterol | + | C31H52O | 441.4086 | 27.33 | E. tirucalli L. [32] | |
11 | 3β,7β-Dihydroxy-4α,14α-dimethyl-5α-cholest-8-en-11-one | Sterol | + | C29H48O3 | 445.3674 | 27.85 | E. officinarum L. [34] | |
12 | Rhamnetin-3-α-arabinofuranoside | Flavonoid | + | C21H20O11 | 449.1074 | 11.87 | E. amygdaloides L. [35] | |
13 | Supinenolone C | Triterpene | + | C30H46O3 | 455.3517 | 26.27 | E. supina Raf. [36] | |
14 | Euphonerin D | Triterpene | + | C30H48O3 | 457.3673 | 20.59 | E. neriifolia L. [37] | |
15 | 3β-Hydroxycycloart-25-ene-24-hydroperoxide | Sterol | + | C30H50O3 | 459.3829 | 25.98 | E. cyparissias L. [38] | |
Cycloart-23-ene-3,25-diol-25-hydroperoxide | Sterol | Tillandsia recurvata and Xanthosoma robustum [39,40] | ||||||
16 | Kaempferol-3-glucuronide | Flavonoid | + | C21H18O12 | 463.0867 | 11.92 | E. lathyris L. [41] | |
Scutellarin(Breviscapine) | Flavonoid | Scutellaria spp. and Erigeron breviscapus [42,43,44] | ||||||
17 | Ingenol-20-acetate 3-angelate (Euphorbia factor Pe1) | Diterpene | + | C27H36O7 | 473.2531 | 21.64 | E. spp [45] | |
18 | 24-Hydroperoxytirucalla-8,25-dien-3β-ol-7-one | Sterol | + | C30H48O4 | 473.3622 | 23.34 | E. micractina Boiss. [46] | |
19 | Ebractelatinoside C | Acetophenone | + | C21H30O13 | 491.1753 | 10.11 | E. ebracteolata Hayata [47] | |
20 | Tirucalicine | Diterpene | + | C27H38O9 | 507.2582 | 16.79 | E. tirucalli L. [48] | |
21 | Ingenol-3-angelate-5,20-diacetate | Diterpene | + | C29H38O8 | 515.2636 | 22.72 | E. canariensis L. [49] | |
22 | Euphohelioscopin B | Diterpene | + | C30H42O7 | 515.2998 | 24.44 | E. helioscopia L. [50] | |
23 | 16-Angeloyloxy-13α-isobutanoyloxy-4β,9α,7β- trihydroxytiglia-1,5-dien-3-one | Diterpene | + | C29H40O8 | 517.2792 | 23.04 | E. grandicornis Goebel [51] | |
13-O-[2-Methyl-2-cis-butenoyl]-16-O-isobutyryl -12-desoxy-16-hydroxy-phorbol(Euphorbia factor C) | Diterpene | E. cooperi N. E. Br. [52] | ||||||
24 | 12-O-(2Z,4E-Octadienoyl) -phorbol-13-acetate | Diterpene | + | C30H40O8 | 529.2791 | 20.37 | E. tirucalli L. [53] | |
25 | 17-Hydroxyingenol-17-benzoate-20-angelate | Diterpene | + | C32H38O8 | 551.2634 | 22.97 | E. canariensis L. [49] | |
26 | 12-O-(2Z,4E,6-Decatrienoyl)-phorbol-13-acetate | Diterpene | + | C32H42O8 | 555.2949 | 24.67 | E. tirucalli L. [53] | |
27 | 12-O-Acetylingol-3,8-ditiglate | Diterpene | + | C32H44O9 | 573.3053 | 22.48 | E. royleana Boiss. [54] | |
28 | 3,7,12-Tri-O-acecy1-8-isovaleryl-ingol | Diterpene | + | C31H44O10 | 577.3000 | 25.83 | E. tirucalli L. [55] | |
29 | 5,15,17-Tri-O-acetyl-3-O-benzoyl-l7-hydroxy-isolathyrol | Diterpene | + | C33H40O9 | 581.274 | 22.95 | E. lathyris L. [56] | |
30 | 8-Methoxyingol-7,12-diacetate-3-phenylacetate | Diterpene | + | C33H42O9 | 583.2896 | 25.25 | E. officinarum L. [57] | |
31 | 12-O-Acetyl-3-O-benzoylingol-8-tiglate | Diterpene | + | C34H42O9 | 595.2890 | 23.05 | E. royleana Boiss. [54] | |
32 | 3-O-(2,4,6-Decatrienoyl)-16-O-angeloyl-ingol(Euphorbia factor I5) | Diterpene | + | C35H46O8 | 595.3260 | 25.79 | E. ingens E. Mey. [58] | |
33 | 12-O-(2,4,6,8-Tetradecatetraenoyl)-phorbol-13-acetate | Diterpene | + | C36H48O8 | 609.3417 | 26.12 | E. tirucalli L. [53] | |
34 | Quercetin-3-O-β-D-glucopyranosyl-(1-4)-O-α-L-rhamnopyranoside | Flavonoid | + | C27H30O16 | 611.1599 | 10.83 | E. drancunculoides Lam. [59] | |
Vincetoxicoside A | Flavonoid | Tilia spp., Vincetoxicum spp. and many other plant spp. [60,61,62] | ||||||
Rutin | Flavonoid | Ruta graveolens L. and Many plants [63,64] | ||||||
35 | 8,12-O-Diacetylingol-3,7-ditiglate | Diterpene | + | C34H46O10 | 615.3155 | 24.11 | E. royleana Boiss. [54] | |
36 | Quercetin-3-O-(2’’-galloyl) -β-D-galactopyranoide | Flavonoid | - | C28H24O16 | 615.0990 | 10.77 | E. spp. [65,66] | |
37 | Euphocharacin G | Diterpene | + | C34H45NO10 | 628.3109 | 23.20 | E. characias L. [67] | |
38 | Helioscopinin B | Tannin | - | C27H22O18 | 633.0732 | 8.99 | E. helioscopia L. [68] | |
39 | 2,3-Di-O-methylellagic acid-7-O-rutinoside | Tannin | + | C28H30O17 | 639.1548 | 10.59 | E. tirucalli L. [69] | |
40 | Ingol-7,8,12-triacetate-3-(4-methoxyphenyl)-acetate | Diterpene | + | C35H44O11 | 641.2962 | 22.71 | E. officinarum L. [57] | |
41 | Euphocharacin K | Diterpene | + | C35H47NO10 | 642.3267 | 23.23 | E. characias L. [67] | |
42 | 3,3’,4-Tri-O-methyl-4’-O-rutinosyl-ellagic acid | Tannin | + | C29H32O17 | 653.1704 | 11.93 | E. acaulis Roxb. [70] E. tirucalli L. [69] | |
43 | 8,12-O-Diacetylingol-3,7-dibenzoate | Diterpene | + | C38H42O10 | 659.2844 | 23.04 | E. royleana Boiss. [54] | |
44 | Milliamine J | Alkaloid | + | C44H47N3O10 | 778.3324 | 26.81 | E. milli Des Moul. [20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Hawary, S.S.; Mohammed, R.; Tawfike, A.F.; Lithy, N.M.; AbouZid, S.F.; Amin, M.N.; Abdelmohsen, U.R.; Amin, E. Cytotoxic Activity and Metabolic Profiling of Fifteen Euphorbia Species. Metabolites 2021, 11, 15. https://doi.org/10.3390/metabo11010015
El-Hawary SS, Mohammed R, Tawfike AF, Lithy NM, AbouZid SF, Amin MN, Abdelmohsen UR, Amin E. Cytotoxic Activity and Metabolic Profiling of Fifteen Euphorbia Species. Metabolites. 2021; 11(1):15. https://doi.org/10.3390/metabo11010015
Chicago/Turabian StyleEl-Hawary, Seham S., Rabab Mohammed, Ahmed F. Tawfike, Nadia M. Lithy, Sameh Fekry AbouZid, Mohamed N. Amin, Usama Ramadan Abdelmohsen, and Elham Amin. 2021. "Cytotoxic Activity and Metabolic Profiling of Fifteen Euphorbia Species" Metabolites 11, no. 1: 15. https://doi.org/10.3390/metabo11010015
APA StyleEl-Hawary, S. S., Mohammed, R., Tawfike, A. F., Lithy, N. M., AbouZid, S. F., Amin, M. N., Abdelmohsen, U. R., & Amin, E. (2021). Cytotoxic Activity and Metabolic Profiling of Fifteen Euphorbia Species. Metabolites, 11(1), 15. https://doi.org/10.3390/metabo11010015